Fundamental Theorem of Algebra

Here we will use induction in the proof of the fundamental theorem of algebra to illustrate how induction is sometimes used in larger problems.

Definitions: A function $f : \mathbb{R} \to \mathbb{R}$ is a **polynomial** if it can be written in the form

$$f(x) = \sum_{i=0}^{d} c_i x^i = c_0 + c_1 x + c_2 x^2 + \cdots + c_d x^d,$$

where $c_i \in \mathbb{R}$ for $i = 0, 1, 2, \ldots, d$ are called the coefficients. If d is the exponent of the largest term that has a nonzero coefficients, we say the polynomial has **degree** d. A **zero**, or **root**, of the polynomial f is a number, a, such that $f(a) = 0$.

Examples:

- $f(x) = 5$ is a polynomial of degree 0 and it has zero real roots. (Note that the constant polynomial $f(x) = 0$ has degree undefined, not degree zero).
- $f(x) = x - 2$ is a polynomial of degree 1 and it has one real root $a = 2$.
- $f(x) = x^2 - 6x + 9 = (x - 3)^2$ is a polynomial of degree 2 and it has one real root, $a = 3$.
- $f(x) = x^3 - x = x(x^2 - 1)$ is a polynomial of degree 3 and it has three real roots, $a = 0, -1, +1$.

Theorem: (The Fundamental Theorem of Algebra)

A polynomial of degree d has at most d real roots.

The proof below is based on two lemmas that are proved on the next page.

Proof: We use induction on d.

BASE STEP: If $d = 0$, then $f(x) = c_0$ for some nonzero constant c_0. Thus, $f(x)$ is never zero, so it has zero roots. Hence, in the $d = 0$ case the number of roots does not exceed d.

INDUCTIVE STEP: Assume every polynomial of degree k has at most k roots for some integer $k \geq 0$.

Let $f(x)$ be a polynomial of degree $k + 1$. We will show that $f(x)$ has at most $k + 1$ roots. If $f(x)$ has no roots, then we are done, $0 \leq k + 1$.

If $f(x)$ has at least one root a, then, by Lemma 2, we can write $f(x) = (x - a)h(x)$ for some polynomial $h(x)$ with degree k. By the inductive hypothesis, $h(x)$ has at most k roots.

Since $x - a$ has one root and $h(x)$ has at most k roots, $f(x) = (x - a)h(x)$ has at most $k + 1$ roots. Thus, in any case, $f(x)$ has at most $k + 1$ roots.

Hence, every polynomial of degree d has at most d roots. \square
Lemma 1: \(\forall x, y \in \mathbb{R} \text{ and } \forall n \in \mathbb{N}, \)
\[x^n - y^n = (x - y)(x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \cdots + xy^{n-2} + y^{n-1}). \]

Proof: We expand the right hand side using the distributive axiom to get
\[(x - y)(x^{n-1} + x^{n-2}y + \cdots + xy^{n-2} + y^{n-1}) = x(x^{n-1} + x^{n-2}y + \cdots + xy^{n-2} + y^{n-1}) \]
\[- y(x^{n-1} + x^{n-2}y + \cdots + xy^{n-2} + y^{n-1}) = x^n + x^{n-1}y + x^{n-2}y^2 + \cdots + x^2y^{n-2} + xy^{n-1} \]
\[- x^n - y^n - x^{n-1}y^2 - \cdots - x^2y^{n-2} - xy^{n-1} = x^n - y^n. \]
Canceling all the middle terms, leaves only \(x^n - y^n. \) Thus, factoring in this way is always possible. \(\square \)

Examples:
\[x^2 - y^2 = (x - y)(x + y), \quad x^3 - y^3 = (x - y)(x^2 + xy + y^2), \quad x^4 - y^4 = (x - y)(x^3 + x^2y + xy^2 + y^3), \text{ etc.} \]

Lemma 2: Suppose \(f(x) \) is a polynomial of degree \(d > 1. \)
The number \(a \) is a zero of \(f(x) \) if and only if \(f(x) = (x - a)h(x) \) for some polynomial \(h(x) \) of degree \(d - 1. \)

Proof: We must prove both direction.

We prove the converse direction first. Assume \(f(x) = (x - a)h(x) \) for some polynomial \(h(x) \) of degree \(d - 1. \) By substitution, \(f(a) = (a - a)h(a) = 0 \cdot h(a) = 0. \) Thus, \(f(a) = 0, \) so \(a \) is a zero of \(f(x). \)

Now we prove for forward direction. Assume \(a \) is a real root of \(f(x). \) Since \(f(x) \) is of degree \(d, \) by definition, \(f(x) = \sum_{i=0}^{d} c_i x^i, \) with real number coefficients such that \(c_d \neq 0. \) Since \(a \) is a root of \(f(x), \)
\(f(a) = 0 \) and by substitution \(\sum_{i=0}^{d} c_i a^i = 0. \) By subtracting this expression (which is just subtracting zero), we can rewrite \(f(x) \) as
\[f(x) = f(x) - 0 = f(x) - f(a) = \sum_{i=0}^{d} c_i x^i - \sum_{i=0}^{d} c_i a^i = \sum_{i=0}^{d} c_i (x^i - a^i). \]

The term corresponding to \(i = 0 \) cancels because \(c_0(x^0 - a^0) = c_0(1 - 1) = 0, \) so we have \(f(x) = \sum_{i=1}^{d} c_i (x^i - a^i). \) By Lemma 1, for each \(i > 0, \)
\[x^i - a^i = (x - a)(x^{i-1} + x^{i-2}a + \cdots + xa^{i-2} + a^{i-1}). \]
By defining \(h_i(x) = x^{i-1} + x^{i-2}a + \cdots + xa^{i-2} + a^{i-1}, \) we now have \(x^i - a^i = (x - a)h_i(x) \) where \(h_i(x) \) is a polynomial of degree \(i - 1. \) Hence, we can rewrite \(f(x) \) as
\[f(x) = \sum_{i=1}^{d} c_i (x^i - a^i) = \sum_{i=1}^{d} c_i (x - a)h_i(x) = (x - a) \sum_{i=1}^{d} c_i h_i(x) = (x - a)h(x) \]

Note that \(h(x) = \sum_{i=1}^{d} c_i h_i(x) = \sum_{i=1}^{d} c_i (x^{i-1} + x^{i-2}a + \cdots + xa^{i-2} + a^{i-1}), \) so \(h(x) \) is a polynomial.
And the term \(x^{d-1} \) occurs only once, when \(i = d, \) and it occurs with coefficient \(c_d \) which is not zero.
Hence, \(h(x) \) has degree \(d - 1. \) \(\square \)

Lemma 2 theorem effectively shows that we can always “factor out” the expression \((x - a) \) from a polynomial when \(a \) is a root.