For this entire short assignment, let \(f : A \rightarrow B \) and \(g : B \rightarrow C \)

1. Let \(C_0 \subset C \). Consider \((g \circ f)^{-1}(C_0)\):

\[
(g \circ f)^{-1}(C_0) = \{ a : (g \circ f)(a) \in C_0 \} = \{ a : g(f(a)) \in C_0 \} = \{ a : f(a) \in g^{-1}(C_0) \} = f^{-1}(g^{-1}(C_0))
\]

So, \((g \circ f)^{-1}(C_0) = f^{-1}(g^{-1}(C_0))\). ■

2. Let \(f, g \) be injective functions. Then, \(f(a) = f(a') \Rightarrow a = a' \) and \(g(b) = g(b') \Rightarrow b = b' \). Now, consider \(g \circ f \). Suppose BWOC \(\exists a, a' \) such that \((g \circ f)(a) = (g \circ f)(a') \) but \(a \neq a' \). Then, we have:

\[
\begin{align*}
(g \circ f)(a) &= g(f(a)) \\
(g \circ f)(a') &= g(f(a'))
\end{align*}
\]

By the contradictory assumption, we know \(g(f(a)) = g(f(a')) \). Since \(g \) is injective, this then implies that \(f(a) = f(a') \). However, \(a \neq a' \) by assumption, which contradicts the fact that \(f \) is an injective function. Thus, if \(f \) and \(g \) are injective, \(g \circ f \) must also be injective. ■

3. Now, suppose \(g \circ f \) is injective. Then, I assert that \(f \) is injective. To see this, suppose BWOC that \(f \) is not injective. Then, \(\exists a, a' \subset A \) s.t. \(a \neq a' \) but \(f(a) = f(a') \). But then \((g \circ f)(a) = g(f(a)) = g(f(a')) = (g \circ f)(a') \). But \(a \neq a' \), which violates the assumption that \(g \circ f \) is injective.

However, it is not necessarily the case that \(g \) must be injective. To see this, suppose \(A = \{1, 2\} \) and \(B = C = \mathbb{R} \). Set \(f(a) = a \). Set \(g(a) = a^2 \). Clearly, \(g \) is not injective, as \(2 \neq -2 \) but \(g(2) = g(-2) \). However, \(g(f(a)) \) takes on values 4 if \(a = 2 \) and 1 if \(a = 1 \).

Thus, if \(g \circ f \) is injective, \(f \) must be injective but \(g \) need not be. ■

4. Suppose \(f, g \) are surjective functions. Then, \(b \in B \Rightarrow b = f(a) \) for at least one \(a \in A \) and \(c \in C \Rightarrow c = g(b) \) for at least one \(b \in B \). Now, consider \(g \circ f \). Suppose BWOC \(\exists c \in C \) s.t. \(\nexists a \in A \) s.t. \((g \circ f)(a) = c\). Then, \(f^{-1}(g^{-1}(c)) = \emptyset \). However, because \(g \) is surjective, \(\exists b \in B \) s.t. \(g(b) = c \), so \(g^{-1}(c) \neq \emptyset \). Thus, if \(f^{-1}(g^{-1}(c)) = \emptyset \), then \(\forall a \in A \) s.t. \(f(a) \in g^{-1}(c) \neq \emptyset \). But, because \(f \) is surjective, such an \(a \in A \) always exists. Thus, we have a contradiction. So, if \(f, g \) are surjective functions, so is \(g \circ f \). ■

5. Suppose that \(g \circ f \) is surjective. For some \(c \in C \), since \(g \circ f \) is surjective, \(\exists a \in A \) s.t. \((g \circ f)(a) = g(f(a)) = c \). Defining \(b = f(a) \), it then follows that \(g(b) = c \). Since this holds \(\forall c \in C \), we have shown that there always exists \(b \in B \) s.t. \(g(b) = c \), which is the precise definition of a surjective function.

However, it is not necessarily the case that \(f \) must be surjective. To see this, let \(A = \{2\}, B = \{1, 2\}, \) and \(C = \{4\} \). Define \(f(a) = a \), \(g(b) = b^2 \). Then, \((g \circ f)\) only takes on the value 4, so is surjective (because for any \(c \in C \) (there is only one), \(\exists b \in B \) \((b = 2) \), s.t. \(g(b) = c \)). However, \(f \) is not surjective, as there does not exist an \(a \in A \) such that \(f(a) = 1 \in B \).

Thus, if \(g \circ f \) is surjective, \(g \) must be surjective but \(f \) need not be. ■

6. **Theorem:** Let \(f : A \rightarrow B \) and \(g : B \rightarrow C \). Then,

1. If \(f \) and \(g \) are injective (surjective), then \(g \circ f \) is injective (surjective)
2. If \(f \) and \(g \) are bijective, then \(g \circ f \) is bijective.

3. If \(g \circ f \) is injective, then \(f \) must be injective, but \(g \) need not be

4. If \(g \circ f \) is surjective, then \(g \) must be surjective, but \(f \) need not be. ■