CS 230 Short Assignment 13

(a) **Claim:** \((g \circ f)^{-1}(C_0) = f^{-1}(g^{-1}(C_0)) \).

Proof:

Since

\[
g^{-1}(C_0) = \{ b \in B | g(b) \in C_0 \}
\]
and

\[
f^{-1}(g^{-1}(C_0)) = \{ a \in A | f(a) \in g^{-1}(C_0) \},
\]

Substituting \(b = f(a) \), we have

\[
f^{-1}(g^{-1}(C_0)) = \{ a \in A | g(f(a)) \in C_0 \}.
\]

On the other hand,

\[
(g \circ f)^{-1}(C_0) = \{ a \in A | (g \circ f)(a) \in C_0 \}
\]

Therefore,

\[
(g \circ f)^{-1}(C_0) = f^{-1}(g^{-1}(C_0))
\].

(b) **Claim:** If \(f \) and \(g \) are injective, then \(g \circ f \) is injective.

Proof:

Suppose \(\exists a_1, a_2 \in A \) such that

\[
(g \circ f)(a_1) = (g \circ f)(a_2).
\]

We want to prove \(a_1 = a_2 \).

Since \(g \) is injective and

\[
g(f(a_1)) = g(f(a_2)).
\]
We must have

\[
f(a_1) = f(a_2).
\]
Since \(f \) is also injective,

\[
a_1 = a_2.
\]
Therefore, \(g \circ f \) is injective.

(c) Since \(g \circ f \) is injective,

\[
(g \circ f)(a_1) = (g \circ f)(a_2) \implies a_1 = a_2.
\]

If \(f \) is not injective, \(\exists a_1, a_2 \in A \) such that \(f(a_1) = f(a_2) \) but \(a_1 \neq a_2 \).
Thus,
\[g(f(a_1)) = g(f(a_2)) \]
\[\Rightarrow (g \circ f)(a_1) = (g \circ f)(a_2) \]
\[\Rightarrow a_1 = a_2. \]

However, this contradicts \(a_1 \neq a_2 \).
Therefore, \(f \) is injective.

However, \(g \) may not be injective.

For example, if we have \(f: \mathbb{N} \to \mathbb{Z} \) and \(g: \mathbb{Z} \to \mathbb{Z} \) such that \(f(x) = x, g(x) = |x| \),

Then \(g \circ f \) is injective as its domain is \(\mathbb{N} \) and \((g \circ f)(x) = x \).

However, \(g \) is not injective because \(g(-x) = g(x) \) but \(-x \neq x\).

(d) **Claim:** If \(f \) and \(g \) are surjective, then \(g \circ f \) is surjective.

Proof:

We want to prove that \(\forall c \in C, \exists a \in A \) such that \((g \circ f)(a) = c \).

Since \(g \) is surjective, \(\exists b \in B \) such that \(g(b) = c \).

Since \(f \) is also surjective, \(\exists a \in A \) such that \(f(a) = b \),

\[\Rightarrow (g \circ f)(a) = c. \]

Therefore, \(g \circ f \) is surjective.

(e) Since \(g \circ f \) is surjective, \(\forall c \in C, \exists a \in A \) such that
\[(g \circ f)(a) = c. \]

Thus, \(\forall c \in C, \exists f(a) \in B \) such that
\[g(f(a)) = c. \]

Therefore, \(g \) is surjective.

However, \(f \) may not be surjective.

For example, if we have \(f: \mathbb{Z} \to \mathbb{Z} \) and \(g: \mathbb{Z} \to \mathbb{N} \) such that \(f(x) = |x|, g(x) = |x| \),

Then \(g \circ f \) is surjective as its range is \(\mathbb{N} \) and \(\forall x \in \mathbb{N}, (g \circ f)(x) = x \).

However, \(f \) is not surjective because when \(a < 0 \), there does not exist \(x \in \mathbb{Z} \) such that \(f(x) = a \).
(f) Theorem:

Let $f: A \to B$ and $g: B \to C$. Then:

- If f and g are injective, then $g \circ f$ is injective;
- If f and g are surjective, then $g \circ f$ is surjective;
- If $g \circ f$ is injective, then f is injective;
- If $g \circ f$ is surjective, then g is surjective.

Honor Code: By my signature, I have acted honestly in writing his problem set, and I have followed the Duke Honor Code:

- I will not lie, cheat, or steal in my academic endeavors;
- I will conduct myself honorably in all my endeavors; and
 - I will act if the Standard is compromised.

Signature: __