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The development and validation of a new knowledge-based scoring func-
tion (DrugScore) to describe the binding geometry of ligands in proteins
is presented. It discriminates ef®ciently between well-docked ligand bind-
ing modes (root-mean-square deviation <2.0 AÊ with respect to a crystallo-
graphically determined reference complex) and those largely deviating
from the native structure, e.g. generated by computer docking programs.
Structural information is extracted from crystallographically determined
protein-ligand complexes using ReLiBase and converted into distance-
dependent pair-preferences and solvent-accessible surface (SAS) depen-
dent singlet preferences for protein and ligand atoms. De®nition of an
appropriate reference state and accounting for inaccuracies inherently
present in experimental data is required to achieve good predictive
power. The sum of the pair preferences and the singlet preferences is cal-
culated based on the 3D structure of protein-ligand binding modes gener-
ated by docking tools. For two test sets of 91 and 68 protein-ligand
complexes, taken from the Protein Data Bank (PDB), the calculated score
recognizes poses generated by FlexX deviating <2 AÊ from the crystal
structure on rank 1 in three quarters of all possible cases. Compared to
FlexX, this is a substantial improvement. For ligand geometries generated
by DOCK, DrugScore is superior to the ``chemical scoring'' implemented
into this tool, while comparable results are obtained using the ``energy
scoring'' in DOCK. None of the presently known scoring functions
achieves comparable power to extract binding modes in agreement with
experiment. It is fast to compute, regards implicitly solvation and entropy
contributions and produces correctly the geometry of directional inter-
actions. Small deviations in the 3D structure are tolerated and, since only
contacts to non-hydrogen atoms are regarded, it is independent from
assumptions of protonation states.
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Introduction

The process of ®nding novel leads for a new tar-
get is the most important and undoubtedly one of
the most crucial steps in a drug development pro-
gram. Today two complementary strategies are fol-
lowed: experimental high-throughput screening to
discover possible leads from large compound
libraries, and computational methods exploiting
structural information of the protein binding site
ing author:

-accessible surface;
ermodynamic
deviation.
aiming at the construction of a ligand de novo or
their discovery by virtual screening of large data-
bases (Kubinyi, 1998; Muller, 1995; Van Drie &
Lajiness, 1998; Walters et al., 1998). The latter
approaches try to predict, e.g. via docking, the
actual binding mode of a ligand at the binding site
(Kuntz et al., 1994; Lengauer & Rarey, 1996). They
can only be applied in the present context if they
are (1) fast enough to scan over several hundred to
thousand compounds, (2) if they suggest reliable
geometries in agreement with experimental knowl-
edge, (3) if the generated multiple solutions (poses)
are ranked correctly, i.e. those most closely resem-
bling the experimental structures are scored best,
and (4), as an extension, if the Gibbs free energy of
binding is predicted reliably. Usually the perform-
# 2000 Academic Press
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ance of such methods is determined by assessing
whether the binding geometry of protein-ligand
complexes resolved by X-ray crystallography or
NMR is reproduced{. This latter validation cri-
terion imposes some preconditions onto the
methods being developed. Due to the limited resol-
ution of the structure determination techniques
applied, no precise data on protonation states of
ligand functional groups and the binding site resi-
dues are given. The development of methods in
computer-aided drug design has to cope with
these inherent inaccuracies and shortcomings.

Meanwhile several of the published docking pro-
cedures are fast enough to serve the outlined pur-
pose (Jones et al., 1997; Kuntz et al., 1982; Rarey
et al., 1996). The recently performed CASP2 compe-
tition (Dixon, 1997) revealed that among the mul-
tiple solutions generated by different approaches,
in nearly all cases several solutions were found
approximating the native pose. Though found in
most cases, the pose being most close to the exper-
imentally given situation is often not ranked as the
energetically most favorable one. This indicates
that a near-native geometry cannot be recognized
within a set of poses largely deviating from the
crystal structure. Since this step is of utmost
importance for the relevance of any computer-
assisted lead ®nding process, we embarked into
the development of a new scoring function. The
purpose of the work presented here is to correctly
identify those computer-generated poses which
most closely resemble the native structure, since
this is the crucial step prior to any estimation of
the binding energy.

Usually binding af®nity is quanti®ed by the
binding constant Ki assuming thermodynamic
equilibrium conditions for the protein-ligand com-
plex formation. Gibbs free energy of binding �G0

is then related to the binding constant by:

�G0 � ÿRT ln Ki �1�
At best, �G0 is determined by statistical thermo-
dynamics resulting in a master equation that con-
siders all contributing effects (Beveridge &
DiCapua, 1989; Kollman, 1993). Although being
theoretically the most convincing approach, elabor-
ate methods such as free energy perturbation (FEP)
or thermodynamic integration (TI) are computa-
tionally too demanding for the application
described above. Even so an explicit treatment of
the solvent environment is included, the results
obtained by FEP or TI can still suffer from insuf®-
cient sampling over contributing conformational
states of the system or inaccuracies in the force-
®eld used (Kollman, 1996). Various levels of
approximations have been considered, particularly
the treatment of electrostatics, e.g. of the solvent,
by continuum methods or the estimation of con®g-
{ In the following the binding geometry found in the
experimentally determined structure will be called
native pose.
urational entropy (Honig & Nicholls, 1995;
Warshel & Aqvist, 1991). Generally, with increas-
ing level of approximation, the methods try to par-
tition binding af®nity into several additive terms
(Dill, 1997).

The partitioning into individual terms or
descriptors is a widely accepted assumption for the
development of empirical regression-based scoring
functions. Usually a number of empirically derived
contributions is ®tted to a data set of experimental
observations (Bohm, 1994, 1998; Jain, 1996; Murray
et al., 1998; Rose, 1997). In some of these
approaches, e.g. SCORE by (Bohm, 1994), the con-
sidered terms are selected following physical con-
cepts and aimed at a fundamental understanding
of the binding process. Approaches such as VALI-
DATE (Head et al., 1996) are based on the ideas of
QSAR and use ef®ciently the information derived
from protein-ligand complexes by combining a
heuristic correlation analysis with various molecu-
lar 3D descriptors. These approaches achieve a pre-
cision of about 1 to 1.5 orders of magnitude when
predicting Ki (Bohm, 1994; Head et al., 1996). How-
ever, any regression analysis suffers severely from
the fact that the obtained conclusions can only be
as precise and generally valid as the data used cov-
ers all contributing and discriminating effects in
protein-ligand complexes.

The concept introduced by SCORE has been
implemented into the commonly used design tools
LUDI (Bohm, 1992) and FlexX (Rarey et al., 1996).
A detailed analysis of binding modes generated by
FlexX for a test set of 200 examples suggests that in
about 80 % of the cases a binding geometry close
to the native pose is generated among the multiple
solutions. Yet, in half of the cases, it is ranked less
favorable than other obviously arti®cial solutions
(B. Kramer, M. Rarey & T. Lengauer, unpublished
results). Quite similar ®ndings have been reported
for the two popular docking tools DOCK and
GOLD. As a ®rst consequence, Stahl & Bohm
(1998) developed several penalty ®lters to success-
fully discard computer-generated artifacts from the
list of favorable ligand poses. However, such post-
processing ®lters will only be as complete as the
data set that is used for their development contains
all possibly in¯uencing effects.

We decided to follow an alternative way to
develop a scoring function based on empirical
knowledge. Following the ideas of a so-called
``inverse Boltzmann'' distribution (vide infra), it is
assumed that only those binding modes are favor-
able that ®t to the maxima of distributions of
occurrence frequencies among interatomic contacts
between particular atom pairs in experimentally
determined structures. A scoring function based on
this concept is supposed to rank best all ligand
poses that are geometrically very similar to the
native pose. During its development we decided
not to assign proper protonation states to the con-
sidered atom types, assuming that the derived stat-
istical preferences implicitly re¯ect these in¯uences
along with any favorable long-range interaction
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patterns between functional groups. Any binding
feature not in agreement with the most frequently
observed contact preferences will likely be pena-
lized due to its minor occurrence.

Knowledge-based potentials have been applied
successfully to rank different solutions of the pro-
tein-folding problem (Jernigan & Bahar, 1996;
Torda, 1997; Vajda et al., 1997). Up to now, this
approach has only been applied to four case stu-
dies for the ranking of different protein-ligand
complexes. None of these, however, engaged in
identifying near-native poses of one ligand with
respect to one protein. Wallqvist and co-workers
(Wallqvist & Covell, 1996; Wallqvist et al., 1995)
classi®ed the surfaces of buried ligand atoms
found in 38 complexes and developed a model to
predict the Gibbs free energy of binding based on
these observed atom-atom preferences. Analyzing
ten HIV protease inhibitor complexes, they
approximated the free energy of binding to an
accuracy of �1.5 kcal/mol.

Using a data set of 30 HIV-1, HIV-2, and SIV
proteases, Verkhivker et al. (1995) compiled a dis-
tance-dependent knowledge-based pair-potential
which was then combined with the hydrophobicity
(Sharp et al., 1991) and conformational entropy
scales (Pickett & Sternberg, 1993) that originally
had been developed to explain protein folding and
stability. Applied to different HIV-1 protease com-
plexes, differences in the binding af®nity could be
estimated.

DeWitte & Shaknovich (1996) used a sample of
126 structures from the PDB (Bernstein et al., 1977)
to develop a set of ``interatomic interaction free
energies'' for a variety of atom types. In combi-
nation with a Metropolis Monte Carlo molecular
growth algorithm, ligands were gradually con-
structed in the binding site and energetically
scored.

Muegge & Martin (1999) explored structural
information of known protein-ligand complexes
from the PDB and derived distance-dependent
Helmholtz free interaction energies of protein-
ligand atom pairs. Tested on 77 protein-ligand
complexes, the calculated score displayed a stan-
dard deviation from the observed binding af®nities
of 1.8 log Ki units. The scoring function was further
evaluated by docking weak-binding ligands to the
FK506-binding protein (Muegge et al., 1999).

Here, we describe in detail the development of a
new scoring function tailored to discriminate mul-
tiple ligand poses. It is based on the vast structural
knowledge stored in the entire PDB and retrieved
using ReLiBase (Hendlich, 1998). Knowledge-based
probabilities, well adjusted to describe speci®c
short-range distances between ligand and protein
functional groups are combined with terms consid-
ering solvent-accessible surface portions of both
partners that become buried upon binding. For the
®rst time, knowledge-based probabilities are used
to discriminate and predict ligand-binding modes.
The new function has been applied to data sets of
91 and 68 complexes of known crystal structure.
Multiple solutions, generated for these examples
by FlexX, have been re-ranked to obtain a signi®-
cantly improved scoring with respect to their devi-
ation from the native pose. To test the performance
of our new DrugScore approach in the context of
other docking programs, a subset of 100 protein-
ligand complexes was extracted from both data
sets and used to generate ligand geometries with
DOCK (Ewing & Kuntz, 1997; Makino & Kuntz,
1997). Both, the ``energy'' and ``chemical scoring''
together with our scoring function were applied to
rank the resulting binding modes.

Theory

In the following, we shortly summarize the
theoretical background of the selected approach.

The non-covalent binding of ligand Laq. to pro-
tein Raq. to form a complex RLaq. typically occurs
in aqueous environment. The transfer from the
solute state with complete separation of both reac-
tants to the complexed state involves either enthal-
pic and entropic effects (Bohm & Klebe, 1996) that
contribute to the Gibbs free energy of binding. In
turn, it is related to the complex formation
equilibrium:

�G0 � �H0 ÿ T�S0 � ÿRT ln Ki �2�
Accordingly, for an appropriate description of the
binding properties of a RLaq. complex, the con-
sideration of effects resulting from the deliberation
of solvent molecules from the binding site or the
reorganization of the surrounding solvent must be
taken into account (Blokzijl & Engberts, 1993). A
treatment only in terms of enthalpic contributions
will be insuf®cient and must, in general, lead to
false predictions (Bohm & Klebe, 1996).

At ®rst sight, it seems hardly possible to model
entropic effects by solely considering atom pair,
triplet, or higher-order interactions. Nevertheless,
an implicit description of the complex solute-sol-
vent interactions and solvent entropic effects along
with the involved enthalpic contributions resulting
from interatomic forces (e.g. electrostatic or van
der Waals) is re¯ected by the formalism used to
derive potentials of mean force from database
knowledge (Sippl, 1995; Jernigan & Bahar, 1996).

As recently pointed out by Koppensteiner &
Sippl (1998), there is a dissatisfying confusion in
literature using terms such as ``potential of mean
force'' and ``knowledge-based potentials'' when
relating database-derived quantities to the Boltz-
mann equation. The term ``potential of mean
force'' has its physically sound basis in the theory
of liquids derived from statistical mechanics (Ben-
Naim, 1987). There, a n-particle correlation func-
tion g�n��~r1; . . . ; ~rn� can be translated into a potential
of mean force via:

W�n��~r1; . . . ; ~rn� � ÿRT ln g�n��~r1; . . . ; ~rn�: �3�
Taking a two-body case with spherical symmetry,
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the correlation function g�2��~r1; ~r2� corresponds to
the radial pair distribution function g(2)(r12), with
r12 equal to j~r1 ÿ ~r2j. In principle, the latter function
can be derived straight-forwardly from crystal data
by simply sampling the frequencies of both atoms
in a distance interval between r12 and r12 � dr.
Although not obvious for physical reasons, the
Boltzmann law has been applied successfully to
translate such a quantity into a potential of mean
force (Burgi & Dunitz, 1988).

Strictly speaking, the Boltzmann law is only
applicable to an ensemble of equal particles being
in thermodynamic equilibrium. In contrast, a data-
base of protein structures consists of many differ-
ent particles not necessarily residing in the same
global energy minimum. In addition, it is not
known if each member of this heterogeneous set
resides in its own global energy minimum. Fur-
thermore, it is by no means trivial to assign a ®xed
absolute temperature to a sample retrieved from a
database of crystal structures (Finkelstein et al.,
1995).

In contrast to the folding problem, in the present
study, we do not evaluate the properties of pro-
teins in total but we are interested in the properties
of a ``fragment-of-interest'' (e.g. an atom-atom pair
contact) embedded into the molecular environment
of various protein structures. Any statistical evalu-
ation is focussed on this ``fragment-of-interest''. It
is assumed that this fragment is exposed in a stat-
istically representative way to all relevant states.

The physical ground appears even less solid if,
instead of energies or potentials, the logarithm of
occurrence frequencies is enumerated (Godzik,
1996):

quantity � ÿ ln
gobserved

gexpected
�4�

Despite these assumptions and short-comings, we
still believe our heuristic knowledge-based
approach is appropriate for the problem to be
solved. We note that the ``quantity'' above should
be termed a ``knowledge-based quantity'' or a
``statistical preference'' (Koppensteiner & Sippl,
1998) instead of a ``potential'', and we want the
expression ``potential'' to be understood in this
sense in the following. As with any empirical
approach, the selected evaluation procedure can
only be justi®ed by the results obtained and its
predictive power to reproduce or estimate exper-
imental data.

Distance-dependent pair-potentials

In the context of protein-fold predictions it has
been shown that coarse-grained (i.e. low resol-
ution) energy models (Bowie et al., 1991; Hendlich
et al., 1990; Jones et al., 1992; Kocher et al., 1994;
Miyazawa & Jernigan, 1996) can effectively dis-
criminate experimentally observed (i.e. crystal
structures) and near-native folds from decoy con-
formations. In addition, the incorporation of arti®-
cial distance-dependencies into Miyazawa-Jernigan
contact potentials (Park & Levitt, 1996) as well as
the use of smaller interaction radii for the develop-
ment of such potentials (Bahar & Jernigan, 1997),
corresponding to increased resolution, unravels
more details contained within the data.

To correctly distinguish (near) native ligand
poses from computer-generated artifacts, e.g.
obtained by docking, an approach on an atomic
level is followed by compiling distance-dependent
pair-potentials between ligand and protein atoms
of type i and j. In our approach, we have followed
the formalism developed by Sippl (1990, 1993):

�Wi;j�r� �Wi;j�r� ÿW�r� � ÿ ln
gi;j�r�
g�r� �5�

g�r� �
P

i

P
j gi;j�r�

i�j
�6�

where gi,j(r) is the normalized radial pair distri-
bution function for atoms of types i and j, separ-
ated by a distance in the interval of r and r � dr;
g(r) is the normalized mean radial pair distribution
function for a distance between any two atoms in
the range of r and r � dr. It corresponds to the
reference state and incorporates all non-speci®c
information common to all atom pairs present in
an environment typical for proteins. Taken
together, the net statistical preferences �Wi,j are
obtained by comparing the mean statistical prefer-
ences of the subsystems i, j (Wi,j) to the reference
system (W).

In addition, both radial distribution functions
are normalized with respect to the volume 4pr2dr
of the spherical shell associated with the intera-
tomic distance r to achieve a faster convergence
toward zero at large distances (Bahar & Jernigan,
1997).

The ®xing of an upper radius limit rmax for inter-
actions between atoms i and j (Godzik et al., 1995)
determines the overall shape of the resulting poten-
tials. Sampling over short distances up to this limit
will emphasize the speci®c interactions formed by
a ligand functional group to the neighboring bind-
ing-site residues. An extension of this sampling
region to much larger distances incorporates the
in¯uences of an averaged solvent contribution that
is mainly entropy driven (DeWitte & Shaknovich,
1996). Recently, Muegge & Martin (1999) devel-
oped potentials for large distances of up to 12 AÊ .
Since we want to focus on the geometrical dis-
crimination of various ligand binding modes, we
restrict our sampling to 6 AÊ , thereby guaranteeing
that highly speci®c interactions will dominate. The
rationale for this limit arises from the fact that a
6 AÊ contact is short enough not to involve a water
molecule as mutual mediator of a ligand-to-protein
interaction.

To avoid the sampling over large distances, an
alternative approach to incorporate solvent effects
is required. As discussed in the context of protein-
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fold prediction, solvent effects can be considered
by two-body potentials to a different extent
(Godzik et al., 1995; Skolnick et al., 1997). As was
noted ®rst by Sippl (1993) and later by Miyazawa
& Jernigan (1999), solvent-mediated effects are
underestimated when solely applying pair poten-
tials. Nevertheless, the recent study of Muegge &
Martin has obviously demonstrated the opposite
by ®nding correlations between the sum of atom
pair potentials and binding free energies of pro-
tein-ligand complexes. The authors explain this
behavior by the consideration of a large cutoff for
their atom pair interactions. It thus converts the
degree of ligand penetration into the protein in an
implicit recognition of solvation effects.

Non-polar surface-dependent singlet-potential

A combination of the short-distances sampling
together with the ®ndings from protein-fold pre-
diction motivated us to derive a knowledge-based
one-body potential scaled to the size of the sol-
vent-accessible surface (SAS) of the protein and the
ligand that becomes buried upon complex
formation:

�Wi�SAS; SAS0� � Wi�SAS� ÿWi�SAS0�

� ÿ ln
gi�SAS�
gi�SAS0� �7�

In this equation, gi is the normalized distribution
function of the surface area of an atom i in the bur-
ied state (SAS) (considering ligand and protein
individually) in comparison to the solvated state
(SAS0). It is calculated by an approximate cube-
algorithm (see Methods). In this assumption any
polar portion of the SAS that becomes buried in
the complex in a polar environment is considered
to remain ``solvent-accessible'' (Koehl & Delarue,
1994). The latter strategy is based on the rationale
that changes in the Gibbs free energy can only be
expected if polar molecular portions are transferred
from a polar solvent to a non-polar protein
environment. In contrast, polar portions carried
over from the polar solvent to a polar binding site
environment can be neglected.

In contrast to the atom pair potential mentioned
above (equation (6)), gi(SAS0) is not an averaged
distribution function over all atom types but refers
to the atom of type i only. Thus, �Wi re¯ects the
contribution arising from differences in the sol-
vent-accessible surface between the protein-bound
and fully solvated state.

As a ®rst approximation, the ligand confor-
mations as found by X-ray crystallography or
docking procedures are assumed to be identical to
those adopted in the solvent. In this rough model,
conformational changes, e.g. due to a ``hydro-
phobic collapse'' of the ligand (Testa et al., 1996),
are not considered.
Calculation of the total score to rank
ligand poses

Individual atom-pair potentials sampled for pro-
tein-ligand complexes are intercorrelated and
depend on speci®c features arising from the direct
molecular environment embedding a particular
contact. However, in our approach we assume that
a reasonable description of the total preference �W
for a particular binding geometry can be approxi-
mated by summing all individual contributions
(i.e. of ki ligand atoms of type i and lj protein
atoms of type j):
�W � g
X

ki

X
lj

�Wi;j�r� � �1ÿ g�

�
�X

ki

�Wi�SAS; SAS0�

�
X

lj

�Wj�SAS; SAS0�
�

�8�

g is an adjustable parameter, optimized empirically
to be 0.5.

The scorings thus obtained will only be com-
pared among different poses of the same ligand in
one given protein. Additional contributions to the
binding energy such as conformational, rotational,
and translational entropy are not required, since
they cancel out in a relative comparison of differ-
ent poses. In accordance to our goal to rank mul-
tiple binding modes suggested by a docking run,
this relative estimate is therefore satisfactory. Inter-
estingly enough Muegge & Martin (1999) showed
in their approach that a pure consideration of
knowledge-based potentials is suf®cient to derive
absolute binding constants. This suggests that the
above-mentioned entropy-related ordering par-
ameters are implicitly accounted for in this
approach, or (unlikely) that they hardly matter in
the ligand-binding process.

Our approach does not incorporate any energy
contribution arising from intramolecular inter-
actions (van der Waals and torsion potentials).
Since popular docking tools such as FlexX, DOCK,
and GOLD generate only favorable ligand confor-
mations, we believe that these terms can only be of
minor importance in comparison to the solute state
contributions. This assumption is supported by a
recent study by Bostrom et al. (1998). The authors
demonstrate that energies resulting from confor-
mational transitions between a bound and
unbound state usually amount to less than 3 kcal/
mol. Contributions resulting from the inherent
¯exibility of the protein are supposed to have neg-
ligible impact on the calculated scoring, in particu-
lar since the protein is assumed rigid during
docking runs.
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Methods

Protein-ligand complexes for derivation
of potentials

Both, short-range pair and SAS-potentials are
derived using for data extraction the ReLiBase sys-
tem (Hendlich, 1998), which contains 6026 PDB
protein structures holding all ligands with bond
and atom-types notation according to the SYBYL
type convention.

For our purpose, we evaluated crystallographi-
cally determined complexes only with resolution
better than 2.5 AÊ . Complexes with covalently
bound ligands or ligands with less than six or
more than 50 non-hydrogen atoms were excluded.
The latter restriction is used to regard ligands only
with a size of typical drug molecules. Due to the
®rst pass effect in the liver, a rather strict upper
limit of about 600 Daltons can be applied for a
typical organic molecule. Examples with frequently
occurring prosthetic groups such as haemoglobin,
¯avin-adenine-dinucleotide or nicotinamide-ade-
nine-dinucleotide were not considered as explicit
ligands but as part of the protein.

Furthermore, we excluded all complexes that
were subsequently used in the validation of the
predictive power of the potentials in order to avoid
any redundancy or training effects due to over®t-
ting. To check for further redundancy bias, we
compiled additional data sets by considering only
proteins with a mutual sequence homology of less
than 30 % compared to the protein used to test the
predictive capability of the approach. Though, this
was not found to introduce a signi®cant change
either in terms of the depths or the position of the
minima. To account for the volume occupied by
the ligand, a correction term similar to the one pro-
posed by Muegge & Martin (1999) was investi-
gated. However, on ®nding that it did not effect
the overall shape of the potentials signi®cantly, it
was omitted in further calculations.

Potentials were derived for the following atom
types: C.3 (carbon sp3), C.2 (carbon sp2), C.ar (car-
bon in aromatic rings), C.cat (carbon in amidinium
and guanidinium groups), N.3 (nitrogen sp3), N.ar
(nitrogen in aromatic rings), N.am (nitrogen in
amid bonds), N.pl3 (nitrogen in amidinium
and guanidinium groups), O.3 (oxygen sp3),
O.2 (oxygen sp2), O.co2 (oxygen in carboxylate
groups), S.3 (sulfur sp3), P.3 (phosphorus sp3),
F (¯uorine), Cl (chlorine), Br (bromine), Met (Ca,
Zn, Ni, Fe).

Due to their low occurrence frequency or non-
unique assignment criteria, the following atom
types were grouped together: S.2 (sulfur sp2) and
S.3, N.4 (positively charged nitrogen ) and N.3.

Compilation of distance-dependent pair-
potentials

A normalized distance-dependent radial pair
distribution function for atom pairs with types i
and j is given by:

gi;j�r� �
Ni;j�r�=4pr2P
r�Ni;j�r�=4pr2� �9�

Scaling to 4pr2 accounts for the volume of the
spherical shell of the radius r and the thickness dr.

The number Ni,j(r) of atom pairs i,j at a distance
between r and r � dr is obtained by counting the
occurrences:

Ni;j�r� �
X

i

X
j

d�j~ri ÿ ~rjj; r� �10�

where the double summation runs over all atom
types i and j present in the database, respectively.
The delta function d equals 1, if r4j~ri ÿ ~rjj4r� dr,
otherwise 0.

Using gi,j(r) (equation (9)), the mean radial pair
distribution function g(r) and the distance depen-
dent pair-potentials Wi,j(r) and W(r) (equations (5)
and (6)) and ®nally the net potential �Wi,j(r)
(equation (8)) are computed (see Theory).

The size of the bins dr was chosen in a way that
a suf®ciently high resolution is guaranteed and an
adequate amount of data are sampled within each
bin. Thus, statistically signi®cant results can be
obtained. A bin size dr of 0.1 AÊ was found to
reveal satisfactory results.

The minimal distance boundary rmin was set to
1 AÊ , especially since metal-to-oxygen/nitrogen
contacts occur at short distances around 1.8 AÊ ; the
maximal distance bound rmax was set to 6 AÊ . Any
special treatment of ``short contact distances'' (with
no occurrences) to re¯ect repulsive terms are not
required, since these will not be present in either a
crystal structure or a computer-docked complex.
Both techniques inherently avoid short atom-to-
atom contacts due to the consideration of van der
Waals repulsion terms.

To account for uncertainties inherently present
in experimental data (for a resolution of 2.5 AÊ ,
inaccuracies of atom positions may be as large as
0.4 AÊ (Kossiakoff et al., 1992)), a smoothing func-
tion is applied to the distribution data. It effec-
tively distributes a single hit over more than one
bin according to a triangular weighting scheme.
This scheme causes one hit to be assigned to all
neighboring bins within a 0.2 AÊ distance from the
central bin, with a weight linearly falling off from
one to zero within this range.

Compilation of solvent-accessible
surface-dependent singlet-potentials

The solvent-accessible surface-dependent singlet-
potentials are calculated separately for ligand and
protein atoms from the normalized distribution
functions (equation (11)):

gi�SAS� � Ni�SAS�P
SAS Ni�SAS� �11�
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and:

gi�SAS0� � Ni�SAS0�P
SAS0

Ni�SAS0� �12�

gi(SAS) is the probability to ®nd an atom of type i
with an exposed solvent-accessible surface SAS in
a complexed state, while gi(SAS0) is the probability
to ®nd the same atom with the same solvent-acces-
sible surface in a state totally separated from the
complex. The normalization (denominator)
accounts for the total number of occurrences in
both cases.

The solvent-accessible surface is calculated by a
fast and approximate cube-algorithm adapted from
Bohm (1994). A cubic grid with a spacing of 1 AÊ is
constructed around a ligand and embedded into
the active site of the protein. All cubes with centers
within a distance of less than rvdW � 1.4 AÊ of a
ligand or a protein atom are de®ned as occupied in
the ®rst step. Subsequently, those cubes being sim-
ultaneously located in the neighborhood of at least
one O or N atom in the protein and in the ligand
are excluded. In the next step, for those of the
unoccupied cubes that fall next to occupied ones,
the closest atom is determined and these cubes are
labeled to be ``surface portion'' of the neighboring
atom. Summing up all cubes assigned to atoms
®nally yields a value which is approximately pro-
portional to the considered surface portion (Bohm,
1994).

Van der Waals radii are used according to the
Tripos force ®eld (Clark et al., 1989), those of O
and N atoms are reduced by 0.2 AÊ (Li & Nussinov,
1998) to account for a potential involvement in
hydrogen bonding.
{ 1abe 1abf 1atl 1azm 1bbp 1cbx 1cde 1cil 1com 1cps
1ctr 1did 1die 1dr1 1dwc 1dwd 1ela 1epb 1frp 1ghb
1hfc 1hgj 1hsl 1hyt 1icn 1imb 1ivc 1ivd 1ive 1ivf 1lah
1lcp 1lic 1lna 1lst 1mld 1mrg 1mrk 1nis 1nsc 1pbd 1phf
1poc 1pph 1ppl 1pso 1rbp 1rds 1rnt 1rob 1slt 1snc 1srj
1tlp 1tng 1tnh 1tni 1tpp 1ukz 1wap 1xid 1xie 2ada 2ak3
2cgr 2cht 2cmd 2cpp 2gbp 2mth 2pk4 2sim 2tmn 2xis
2ypi 3aa 3cpa 3hvt 4fbp 4hmg 4phv 4tim 4tln 4ts1 5abp
5p2p 6abp 6rnt 6tmn 7tim 8atc

{ 121p 1aaq 1acm 1aco 1aec 1aha 1ake 1apt 1avd
1bma 1byb 1cbs 1cdg 1coy 1dbb 1eap 1eed 1elb 1elc
1eld 1ele 1etr 1fen 1fkg 1glp 1glq 1hdc 1hef 1hvr 1ida
1igj 1ivb 1ldm 1lmo 1lpm 1mbi 1mdr 1mmq 1nco 1phd
1phg 1ppc 1ppi 1ppk 1ppm 1rne 1tnk 1tnl 1tph 1trk
2ctc 2er6 3cla 3gch 3ptb 4dfr 4fxn 4hvp 4phv 4tmn 5cts
5tim 5tmn 6cpa 6tim 7cpa 8gch 9hvp

} 1abe 1abf 1acj 1ack 1ase 1azm 1blh 1cbx 1cde 1cil
1cps 1ctr 1dbm 1did 1die 1dr1 1dwd 1ela 1frp 1ghb
1hfc 1hgi 1hgj 1hsl 1hti 1hyt 1icn 1imb 1ivc 1ivd 1ive
1ivf 1lah 1lcp 1lic 1lna 1lst 1mld 1mrg 1mrk 1mup 1nis
1nsc 1pbd 1phf 1poc 1pph 1ppl 1pso 1rds 1rnt 1rob
1snc 1srj 1tdb 1thy 1tlp 1tng 1tnh 1tni 1tpp 1ukz 1ulb
1wap 1xid 1xie 2ada 2ak3 2cgr 2cht 2cmd 2cpp 2gbp
2lgs 2mcp 2mth 2pk4 2r04 2r07 2sim 2tin 2xis 2yhx 2ypi
3aah 3cpa 4cts 4est 4fab 4fbp 4phv 4tim 4tln 5abp 5p2p
6abp 6rnt 6tmn 7tim 8atc
The surface attributed to the solvated state is cal-
culated similarly without considering any particu-
lar counterpart (ligand/protein). The conformation
in solution is assumed to be identical to the one
adopted in the crystal structure or the docked com-
plex.

Test data to evaluate ranking performance

We have tested the performance of the derived
potentials by assessing for two different data sets
their capability to rank best those ligand poses that
closely approximate the native one. The ®rst data
set{ is a subset of 91 protein-ligand complexes
extracted from the 200 examples that have been
used in the validation of the FlexX docking pro-
gram (Rarey et al., 1996). These 91 complexes cover
a broad range of ligand diversity, e.g. considering
the number of rotatable bonds (ranging from 0 to
27), the number of hydrogen-bond donors and
acceptors (ranging from 1 to 17) or the number of
non-polar atoms (from 2 to 39). In half of the cases,
FlexX ®nds solutions with an rmsd value of less
than 2 AÊ to the crystal structure on the ®rst rank,
while for the other portion FlexX fails to select
these ``well-docked'' cases as best solutions. The
ligand poses are generated using standard input
®les for FlexX (B. Kramer et al., unpublished
results) with default parameter settings.

The second set{ consists of 68 protein-ligand
complexes matching the same criteria as those
applied to the ®rst set. Again ligand poses are gen-
erated using FlexX. However, for only 30 examples
FlexX ®nds a solution deviating by less than 2.0 AÊ

from the X-ray reference. Out of these 30 cases, for
28 (93%) a computed solution <2.0 AÊ is found by
FlexX on rank 1. In our study, this second set was
used for a cross-validation of our scoring function
in conjunction with FlexX, since it was not
involved in the parameter adjustment during
development of the function.

To test DrugScore in context with DOCK, 100
protein-ligand complexes} are extracted from both
data sets to generate input ®les following the pro-
cedure described by Ewing (1997). Flexible docking
with dihedral and rigid body minimization is
applied using default parameter settings except for
the ``peripheral seeds'' parameter which is set to
50. All generated solutions using ``uniform
sampling'' are ranked and stored by either apply-
ing the ``energy'' or ``chemical score''. Since the
two scorings are used during structure generation,
the resulting solutions in either cases are distinct.
In the ®rst case, DOCK generates in 61% of all
cases a solution that deviates by less than 2.0 AÊ

from the crystal structure and recognizes in 54%
out of these cases a geometry <2.0 AÊ on the ®rst
rank. Applying the ``chemical score'', in 43% of all
cases a solution with less than 2.0 AÊ deviation
from experiment is generated; in 46% out of these
cases such a ligand geometry is ranked best. Thus,
in the present case and different from recently pub-
lished work of Knegtel et al. (1999) who applied



Figure 1. Pair distribution functions of polar/charged
interactions as computed by equation (9). The ®rst
atom-type label refers to the ligand atoms, the second to
protein atoms. The reference state (mean distribution
function over all pairs) as calculated by equation (6) is
depicted by solid squares.

Figure 2. Pair distribution functions of nonpolar and
aromatic interactions as computed by equation (9).
Atom-type characterization and reference state are
displayed as given in Figure 1.
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DOCK to the ¯exible docking of 32 thrombin
inhibitors, the ``energy score'' reveals better results
compared to the ``chemical score''.

Results

Ligand-protein atom pair correlation functions
and statistical preferences

Pair correlation functions for ligand-protein
atom pairs were derived by counting the occur-
rence frequencies of distinct pairs at discrete dis-
tances using equation (10). The pair correlation
functions for polar/charged interactions are pre-
sented in Figure 1, those of non-polar interactions
in Figure 2. Statistical preferences were computed
by equation (5). Utilizing 17 different atom types
yields 289 possible pair combinations depicted in
Figures 3 and 4, respectively. In all cases, the ®rst
atom-type index i is attributed to a ligand atom,
the second j to a protein or cofactor atom. In the
following we will focus on some illustrative
examples.

Frequency of occurrences of pair interactions

Based on 1376 protein structures considered the
minimum number of hits integrated over a dis-
tance range from 1 to 6 AÊ for the examples pre-
sented here amounts to 8028 in the case of the
O.co2-N.pl3 pair; the highest count was found for
the C.3-C.3 pair to be 120,533. Thus, in the case of
O.co2-N.pl3, on average more than 160 hits are col-
lected within one bin of width 0.1 AÊ . Although this
average number gives only a rough estimate on
the statistical signi®cance of this distribution, we
note that for the distance range below 2.4 AÊ the
number of counts is markedly lower. It thus yields
less signi®cance in this area. Of all pair distri-
butions, 173 (60 % of 289) contain less than 500
hits, i.e. less than ten hits per bin on average. For
156 (i.e. 54 % of all) of these, one of the atom types
of either the ligand or the protein belongs to S.3,
P.3, C.cat, metal, F, Cl, or Br.

The rare occurrence of S.3, F, Cl, and Br in the X-
ray structures used to compile the statistical prefer-
ences is also re¯ected in the test data set. However,
we anticipate that as long as interactions involving
S.3/F/Cl/Br-X contacts do not dominate the ener-
getics of ligand binding, a reliable scoring can still
be estimated based on the contributions resulting
from the remaining more frequently populated
atom pairs.

Atoms of type P.3 are usually connected to oxy-
gen, carbon and nitrogen atoms, resulting in phos-
phate, phosphonate or phosphinate derivatives.
Being not exposed to the molecular surface, the
major contributions of these functional groups are
determined by the preferences arising from the
highly populated distributions of the neighboring
oxygen and nitrogen atoms. As a ®rst approxi-
mation, the same holds for C.cat coding for the car-
bon atom in amidinium and guanidinium groups.
These atoms are at least in the molecular plane
shielded by the surrounding nitrogen atoms.

Reference state of pair interactions

The reference state is calculated as arithmetic
mean over all normalized pair correlation functions
of atom types ij. It is represented by ®lled squares
in Figures 1 and 2. De®ned in this way, it may be
regarded as a mean interaction preference between
``averaged atom-types'', thus mainly representing
non-speci®c contributions from dense packing
effects.

The nature of certain features expressed in the
distributions or the subsequently derived statistical



Figure 3. Statistical preferences for polar/charged pair
interactions as a function of the distance R, calculated
according to equation (5).

Figure 4. Statistical preferences for nonpolar/aromatic
pair interactions as a function of the distance R, calcu-
lated according to equation (5).
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preferences are dif®cult to partition into types of
interaction that operate between isolated pairs of
atoms, since the compiled pair-correlation func-
tions are averages of the ensemble, comprising
intercorrelated many-body interactions occurring
in a dense packing and arising from several physi-
cal effects (electrostatic, steric, solvent, etc.).

Our reference state is derived from a large
sample of protein-ligand complexes, accordingly
some structuring of this distribution is observed.
Local ¯uctuations in the distribution supposedly
arise at low distances (�2 AÊ ) from metal contacts,
around 2.7 AÊ from polar and charge-assisted inter-
actions. The elevated probability around 4 AÊ is
presumably caused by aromatic contacts and
structuring at larger distances may be attributed to
contacts resulting from pattern formation in the
second coordination sphere.

Individual distributions and statistical preferences
of pair interactions

To distinguish ligand binding modes approxi-
mating the native structure from inappropriate
ones generated by docking tools, it is important
that the type-speci®c distributions differ substan-
tially from each other.

Based on a visual inspection of the computed
preferences we decided to refrain from averaging i-
j and j-i atom-type contacts (®rst letter corresponds
to ligand atom, second one to protein atom). If our
data originated from isolated atoms or a hom-
ogenous non-structured molecular distribution,
symmetrical conditions would be expected. How-
ever, for the data selected the applied mean-®eld
approach reveals clear differences due to a distinct
molecular embedding of the considered atom-
types in ligand and protein environments.

The derived distributions can be divided into
two main classes: the ®rst contains interactions
between polar and charged atoms and exhibits
pronounced maxima at distances between 2.5 and
3.0 AÊ . They correspond to hydrogen bonds and
salt bridges (Figure 1). The second class comprises
non-polar interactions and displays broader distri-
butions. The latter reveal higher probabilities com-
pared to the reference state at distances >3.5 AÊ

(Figure 2).
The distributions within one group show differ-

ences to which a physical meaning can be attribu-
ted. Going from O.3-O.3 to O.3-O.co2 and O.co2-
N.pl3, the distribution maxima corresponding to
the shell of next neighbors fall into a decreasing
distance range, thus exhibiting higher probability
at lower distances. Contacts between the above-
mentioned atom types can be assigned to a
``normal'' hydrogen bond, a polar charge-assisted
interaction and a salt-bridge (Davis & Teague,
1999). Expressed in terms of statistical preferences
(equation (5)), an ideal O.3-O.3 interaction is
2.5 times less probable than a similar O.3-O.co2
interaction.

Surprisingly, at a ®rst glance, O.3-O.co2 and
O.co2-N.pl3 interactions are equally probable con-
tradicting to the assumption that salt bridges with
both partners bearing opposite charges contribute
more to the stability of a protein-ligand complex
than a single charge-assisted H-bond (Hossain &
Schneider, 1999). According to our de®nition,
N.pl3 atom types only occur in amidinium and
guanidinium groups. In consequence, a carboxylate
group and an amidinium/guanidinium group in
ideal bidentate H-bonding geometry show two
O.co2-N.pl3 interactions instead of one ideally
oriented O.3-O.co2 interaction. Thus, the contri-
bution of a bidentate salt-bridge, considering only
interactions at the contact distance, amounts to
about twice that of the polar-charged interaction.

For non-polar contacts (Figures 2 and 4), the
C.ar-C.ar interaction shows a slightly more struc-
tured distribution compared to the C.3-C.3 inter-
action and the maximum of the former resides at a



Figure 6. Statistical preferences for ligand atoms of
type C.3 and O.co2 as calculated from the distribution
functions for solvent accessibility of both atom types for
complexed and separated state from the protein accord-
ing to equation (7). The number of cubes (#cubes) is an
approximate measure for the solvent accessibility; zero
cubes refer to complete burial.
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shorter distance of 3.7 AÊ . Accordingly, the C.ar-
C.ar contact exhibits an elevated preference com-
pared to the all-atom distribution at this distance,
in agreement with the well-known aromatic-aro-
matic interactions (Burley & Petsko, 1985). In con-
trast, C.3-C.3 interactions do not show any
preference of the atom pair distribution over the
entire distance range of 1 to 6 AÊ sampled here.
This is clearly in agreement with the well-known
fact that the latter type of interaction hardly exhi-
bits any directional preferences.

In comparing the depth of the preference mini-
ma, one has to consider that at short distances
(<3 AÊ ), on average, only one direct partner will be
involved. With increasing distance additional next-
neighbors get into contact and the coordination
number roughly scales with the square of the dis-
tances. Estimating the total contribution of one
speci®c contact to the stability of a ligand-protein
complex, both the individual strength and its
occurrence frequency have to be considered.

The derived statistical preferences display differ-
ences when compared to pure van der Waals inter-
actions operating between isolated atom pairs in
two aspects. The occurrence of multiple minima at
larger distances results from particular packing
patterns present in a protein-type environment and
re¯ects organization in high-order coordination
shells. In addition, our preferences fall off below
distances of 2 AÊ and display minima at 1 AÊ . This is
bound to occur, since for good reasons, no exper-
imental observations are recorded at such short
distances. We believe there is no need for a speci®c
correction term to cope with this non-de®ned dis-
tance range, since the computed binding modes
from FlexX or other docking programs will not
contain geometries with mutually penetrating pro-
tein and ligand atoms.

The compiled preferences for a given atom pair
i, j are calculated only as a function of the distance
between the atoms, any directional preference pat-
terns are implicitly contained and re¯ected; e.g. let
Figure 5. Intrinsic geometrical constraints re¯ected by
the atom pair preferences of O.2-O.3 and C.2-O.3. Given
the minima of the statistical pair preferences (O.2-O.3:
2.55 AÊ ; C.2-O.3: 3.45 AÊ ) and the bond length (C.2-O.2:
1.22 AÊ ), the C.2-O.2-O.3 angle is calculated to be 128 �.
us consider a hydrogen-bond between a carbonyl
group and an O.3-type oxygen (Figure 5). The
minimum of an O.2-O.3 interaction (not shown
here) is located at 2.55 AÊ , the C.2-O.3 interaction
has a minimum at 3.45 AÊ . Assuming a C.2-O.2
bond length of 1.22 AÊ , a mean spatial C.2-O.2-O.3
angle of 128 � is calculated. Taking the preferred
distances O.2-O.3 and C.2-O.3 together, these con-
ditions clearly constrain the frequently observed
hydrogen-bonding geometry of a carbonyl group
with an alcohol-type oxygen atom. The same orien-
tational preference is observed for representative
fragments stored in ISOSTAR (Bruno et al., 1997).
Additional contact preferences formed by the
neighboring atoms will further de®ne the spatial
arrangement of a speci®c directional interaction.

SAS-dependent preferences for solvent-
exposure of ligand and protein atoms

To incorporate solvent effects we derived a SAS-
dependent singlet preference either for ligand and
protein atoms. As de®ned by equation (7), this pre-
ference is calculated as the logarithm of the prob-
ability for a ligand or protein atom of type i to
expose parts of its SAS in the complexed state com-
pared to a state where both partners are comple-
tely separated from each other (see Methods). We
note that by de®ning the reference state in this
way, the derived preferences are independent from
each other and not a result of a mean-®eld
approach.

Figure 6 shows the statistical preferences for a
C.3-type or O.co2-type ligand atom to be exposed
in the protein-bound state compared to the
unbound state. Here the ``number of cubes'' is
approximately proportional to the SAS area.

Except for very small surface portions remaining
solvent-exposed at the binding site, complete bur-
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ial of C.3 atoms in protein-ligand complexes is
strongly favorable for complex formation which is
expressed by a deep minimum near zero cubes.

A completely different although quite reasonable
behavior is observed for O.co2-type atoms: in the
isolated state, carboxylate oxygen atoms strongly
prefer to be solvent-exposed. In complexed state,
the distribution is the result of a compromise
between several effects. On the one hand, burial of
O.co2 atoms diminishes the SAS (shift to a smaller
numbers of cubes). On the other hand, surface por-
tions contacting polar protein atoms are not con-
sidered as being buried. Hence, ``partial'' burial for
O.co2 results as best compromise for the com-
plexed state. Expressed in terms of preferences, a
``partial'' burial stabilizes complex formation in
contrast to a complete burial; additionally a com-
plete solvent exposure is also slightly unfavorable.

``Scoring the scoring function''

Usually the root-mean-square deviation of a
ligand pose, generated by a docking tool, is deter-
mined with respect to the corresponding crystal
structure. This is a generally accepted quality
measure for the obtained docking result. We
de®ne, based on this measure, those ligand poses
Figure 7. Correlations of scores, normalized to values bet
structure for the protein-ligand complexes 1bbp, 1lst, 1rbp,
carbon) ligand atoms amounts from 52 % for 2ada to 95 %
2ada) to 6 (1bbp) and the number of solutions generated by
metries correspond to low scores on the ordinate.
as ``well-docked'' that do not deviate more than
2.0 AÊ from the crystal structure. Visual inspection
of a number of test cases showed that within this
limit the generated solutions usually resemble the
native binding mode.

To assess the discriminatory power of a scoring
function, i.e. its capability to distinguish between
well-docked and clearly different solutions, we
selected the criterion that one of the ``well-docked''
solutions has to end up on the best scoring rank.
Since this condition is more stringent than just
demanding one of the ``well-docked'' solutions to
be among, i.e. the ten best rankings, our criterion
meets the requirement for virtual screening of
large databases.

As an even more stringent criterion, we can
demand that the experimentally given solution is
ranked better than any other computer-generated
ligand binding pose (including the ``well-docked''
ones). However, we have to remember that even
these ``ideal'' reference solutions are affected by
experimental de®ciencies. Taking this limited accu-
racy into account, we also consider our scoring
function to operate satisfactorily if solutions,
deviating not further than 2.0 AÊ from the
experimentally given structure (``well-docked''
ween 0 and 100, versus the rmsd value from the crystal
and 2ada are depicted. The percentage of non-polar (i.e.
for 1rbp, the number of rotatable bonds from 1 (1rbp,
FlexX from 99 (1rbp) to 289 (1lst). Favorable ligand geo-



Figure 8. Accumulated number of complexes as a
function of the rmsd value from the crystal structure
found for ligand poses on rank 1 scored by FlexX (*)
and DrugScore (~), respectively. The number of com-
plexes with the best geometry found on any rank by
FlexX is depicted as ®lled squares.
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solutions), are ranked better than the crystal
structure.

Correlation of the calculated scores versus
rmsd of the crystal structure

Total preferences were calculated according to
equation (8) for the different solutions obtained by
docking experiments. They were plotted versus the
rmsd value from the crystal structure. This pro-
cedure involves the projection of the total prefer-
ence score, multifactorily composed from many
individual contributions, onto the single geometri-
cal rmsd descriptor. It is dif®cult to estimate what
kind of correlation will be present; however, one
can expect that the crystal structure and approxi-
mate ligand poses should be ranked better than
strongly deviating solutions. Furthermore, the
lower envelope of the resulting scatter plot may
exhibit multiple local minima (due to the rough-
ness of the potential hypersurface).

We have to recall that similar rmsd values do
not necessarily represent similar ligand poses,
especially for large values. Accordingly, poses fall-
ing into the same range of larger rmsd values can
obtain quite different scorings. In contrast, similar
ligand binding modes should reveal similar scores
if the underlying function is suf®ciently ``soft'' to
tolerate some geometric deviations.

In Figure 7 the correlations of calculated scores
for ligand geometries generated by FlexX versus
the rmsd value from the crystal structure for four
protein-ligand complexes are displayed; the indi-
vidual scores were normalized to values between 0
and 100. Favorable solutions correspond to low
scores. The examples shown were selected to rep-
resent quite distinct cases (e.g. spread of non-polar
surface contribution, number of rotatable bonds,
number of generated FlexX solutions).

In all cases, the crystal structure (rmsd � 0) is
represented by the best score. For 1bbp, 1lst and
2ada, the native geometry is well separated from
any computed solution. Docked geometries being
clearly apart from the native structure are satisfac-
torily separated from the approximating poses.
These latter solutions tend to obtain a better scor-
ing with decreasing rmsd.

In conclusion, for all four cases the scoring func-
tion, de®ned by equation (8), successfully recog-
nizes the experimental and ``well-docked'' poses
among a set of up to 289 distinct ligand poses
(Figure 7).

Validation of the approach on large test sets of
protein-ligand complexes

The successful reproduction of some test cases
indicates the scope of the method; however, to rig-
orously validate our method we evaluated large
sets of protein-ligand complexes.

Two test sets are taken from a sample used to
validate FlexX (B. Kramer et al., unpublished
results). In the ®rst case, comprising 91 protein-
ligand complexes, FlexX has already recognized a
generated solution with rmsd <2.0 AÊ on the ®rst
rank in 54 % of the cases. For the remaining 46 %,
FlexX also generates a geometry with rmsd <2.0 AÊ ;
however, theses poses are attributed to a worse
rank.

The second test set contains 68 additional com-
plexes. Out of these, for 28 cases a computed
solution with rmsd <2.0 AÊ is found by FlexX on
rank 1. For 38 remaining cases, FlexX did not gen-
erate a pose with rmsd <2.0 AÊ using default set-
tings. This second set was not involved in the
development of the scoring function, i.e. parameter
adjustment was solely performed on the basis of
data from the ®rst set. We used this set for a cross-
validation of our scoring function in conjunction
with FlexX.

Out of both data sets, 100 protein-ligand com-
plexes were selected to evaluate the performance
of DrugScore with respect to docking solutions
generated by DOCK. Applying the DOCK speci®c
``energy scoring'' (or ``chemical scoring''), a gener-
ated solution with rmsd <2.0 AÊ is recognized on
the ®rst rank in 54 % (46 %) of the cases by DOCK.

We want to stress that all complexes used for
validating our approach (including those shown in
Figure 7) have been excluded from the database
used to compute the probability distributions and
to derive the statistical preferences.

Recognition of ``well-docked'' solutions

Figure 8 summarizes the accumulated number of
complexes plotted versus the rmsd value with
respect to the crystal structure of the best ranked
ligand pose either determined by FlexX or the scor-
ing function described here (DrugScore).



Table 1. Results for scoring multiple docking solutions of 91 protein-ligand complexes generated by FlexX and
DrugScore

% of complexes with solutions exhibiting rmsd of the crystal structure

<1.0 AÊ <1.5 AÊ <2.0 AÊ 52.0 AÊ

All ranksa 65 76 84 16
1st rankb FlexX 20 37 54 46

DrugScore 39 66 73 27
Improvementc 95 78 35 ÿ41

a All solutions of each docking experiment for the 91 complexes are considered. This number expresses the portion of all
complexes for which at least one solution with the given rmsd value was computed by FlexX.

b Only the ligand geometry scored to be on the ®rst rank by either FlexX or DrugScore is considered. The numbers are related to
the ones in the ®rst line.

c The improvement is calculated by (%DrugScore ÿ %FlexX)/%FlexX.
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In addition, for all examples the solution gener-
ated by FlexX that obtains the smallest rmsd value,
disregarding its actual scoring rank, is also plotted.
These values give an idea how well an ideal scor-
ing function could perform. It also indicates by
how much the generated poses with the best
matching geometry deviate from the X-ray refer-
ence. Note that all cumulated values are sorted
independently. Thus, the ordinate displays a coun-
ter for the complexes and not an identi®cation
number.

As is obvious from the diagram, the new scoring
function performs signi®cantly better than the one
implemented in FlexX. Table 1 gives the percentage
of test cases found on rank 1 with rmsd values of
<1.0 AÊ , <1.5 AÊ , <2.0 AÊ and 52.0 AÊ compared to
the best approximating geometry found on any
rank. With respect to the recognition of poses
deviating by <2 AÊ on rank 1, FlexX succeeds in
54 % of the cases whereas DrugScore detects 73 %.

The difference in rmsd value, exhibited by the
solutions ranked best according to FlexX or Drug-
Score, respectively, are shown in Figure 9. Whereas
in ten cases, DrugScore selects a solution deviating
more strongly in geometry (by more than 1 AÊ ) on
the ®rst rank compared to FlexX, in 28 cases a pose
is selected being more than 1 AÊ closer to the X-ray
Figure 9. The differences between rmsd values exhib-
ited by solutions found on rank 1 by FlexX and Drug-
Score are displayed, respectively, for each protein-ligand
complex. The broken line shows the mean value of all
differences of ÿ0.7 AÊ .
reference. Averaged over all 91 complexes, the
mean improvement in reducing the rmsd value for
rank 1 is 0.7 AÊ .

For the second test set (68 complexes), out of the
30 cases satisfactorily docked by FlexX (below 2 AÊ

rmsd), the scoring in FlexX and DrugScore obtain
nearly identical success rates (93 % and 92 %,
respectively).

In Figure 10, the accumulated number of com-
plexes is plotted versus the rmsd value from the
crystal structure of the best ranked ligand pose
either selected by the ``chemical scoring'' in DOCK
or by DrugScore. Furthermore, the generated sol-
utions with the smallest rmsd values are accumu-
lated disregarding their actual scoring rank.

Table 2 gives the percentage of test cases found
on rank 1 with rmsd values of <1.0 AÊ , <1.5 AÊ ,
<2.0 AÊ and 52.0 AÊ compared to the best approxi-
mating geometry found on any rank. With respect
to the recognition of ``well-docked'' solutions
(<2 AÊ ) on rank 1, the ``chemical scoring'' in DOCK
succeeds in 46 % of the cases whereas DrugScore
detects 70 %. When using the ``energy scoring''
during structure generation (data not shown here),
the scoring of DOCK and DrugScore yields similar
success rates (54 % and 51 %, respectively).

Recognition of the crystal structures

As mentioned above, assuming the crystallogra-
phically determined structures to be ``optimal'' sol-
utions, they should obtain the best scoring
compared to any computer-generated ligand pose.
As shown in Figure 11, this is actually the case for
54 % of the examples of the ®rst test set for FlexX
(91 complexes). If we alleviate, as described above,
the criterion to complexes falling into a window of
2 AÊ deviation, in even 71 % of the cases the crystal
structure or a ``well-docked'' geometry will be
ranked by DrugScore as favorable.

What are the reasons that some cases do not per-
form well? Visual inspection of some of the unsuc-
cessful examples provides some explanations. In
the case of 1icn (resolution: 1.74 AÊ ; Figure 12), the
crystal structure is scored on rank 35. The ligand
oleate is oriented with its carboxylate group
towards the interior of the protein, thereby expos-



Figure 10. Accumulated number of complexes as a
function of the rmsd from the crystal structure found
for ligand poses on rank 1 scored by DOCK (``chemical
scoring'') (*) and DrugScore (~), respectively. The
number of complexes with the best geometry found on
any rank by FlexX is depicted as solid squares.

Figure 11. The rank of the crystal structure calculated
by DrugScore among all decoy geometries generated by
FlexX for each of the 91 protein-ligand complexes of the
®rst test set is shown.
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ing the non-polar end of the hydrocarbon chain
towards the solvent. The carboxylate group is not
involved in any directional interaction to any pro-
tein functional group within a distance of 3.5 AÊ ;
only a water molecule occurs in its next neighbor-
hood (3.3 AÊ ). Instead, a ligand pose with reversed
orientation of the molecule (rmsd � 11.3 AÊ ) is
ranked best. In this mode, two hydrogen bonds to
a protein amide group are formed and the non-
polar terminus is buried inside the pocket, result-
ing in a much better score. Interestingly, in the
crystal structure the carboxylate group is disor-
dered and three alternative positions are given in
the PDB. Additionally, a weak but continuous, J-
shaped electron density is reported beyond the
location of the terminal methyl of oleate in the
wild-type holo protein (Eads et al., 1993), which
has an arginine at the bottom of the binding pock-
et. In contrast, this amino acid has been replaced
by a glutamine in the mutated protein used for
1icn. It thus can not form a salt bridge with the car-
boxylate of the fatty acid. With some care, these
®ndings could also allow for an interpretation of
Table 2. Results for scoring multiple docking solutions
(applying ``chemical scoring'') and DrugScore

% of complexe

<1.0 AÊ

All ranksa 17
1st rankb DOCK 18

DrugScore 41
Improvementc 128

a All solutions of each docking experiment for the 100 comple
complexes for which at least one solution with the given rmsd value

b Only the ligand geometry scored to be on the ®rst rank by eithe
the ones in the ®rst line.

c The improvement is calculated by (%DrugScore ÿ %DOCK)/%D
the reported electron density with a reversed orien-
tation of the ligand. Then, the disordered part of
the electron density would correspond to the
hydrocarbon tail and this inverted orientation
matches with our predictions. In the complex 2pk4
(resolution: 2.25 AÊ ; Figure 13), o-amino-hexanoic
acid is placed into a shallow groove close to the
protein surface. While a solution with rmsd 1.3 AÊ

is ranked best, the crystal structure (rank 129) itself
shows an interaction between the amino group of
the ligand and a protein carboxylate group of
2.1 AÊ . This remarkably short distance is scored as
repulsive by the corresponding atom pair prefer-
ence.

Applying the scoring function to the second test
set for FlexX, 65 % of all crystal structures are
found on rank 1. In 90 % of the 68 cases, only
docked solutions with rmsd <2 AÊ reveal a higher
rank than those of the native structure, i.e. these
cases ful®ll the alleviated conditions (results not
shown here).

For the set of complexes generated by DOCK
using the ``chemical scoring'' (``energy scoring''),
DrugScore ®nds in 76 % (57 %) of all cases the crys-
tal structure on rank 1. Using the alleviated con-
dition, in 83 % (62 %) of all cases the crystal
of 100 protein-ligand complexes generated by DOCK

s with solutions exhibiting rmsd of the crystal structure

<1.5 AÊ <2.0 AÊ 52.0 AÊ

31 43 57
33 46 54
48 70 30
45 52 ÿ44

xes are considered. This number expresses the portion of all
was computed by DOCK.

r DOCK or DrugScore is considered. The numbers are related to

OCK.



Figure 12. A section of the binding pocket of 1icn is displayed together with the X-ray structure of the ligand
(color-coded by atom type) found on rank 35 by DrugScore and the geometry with rmsd � 11.3 AÊ ranked best (red
colored). The entrance to the pocket orients toward the right, bottom and top parts are clipped for clarity. The car-
boxylate group of the crystal structure has no adequate interaction partner except a water molecule (not shown here)
at 3.3 AÊ distance. In contrary, the better ranked, however geometrically deviating pose does not only form two
hydrogen bonds to an amide-NH (distances 2.8/2.9 AÊ , depicted as dotted lines), but also buries its non-polar termi-
nus towards the interior of the protein. See the text for explanations.
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structure or a ``well-docked'' solution is ranked
best (data not shown here).

Investigation of factors that might influence the
recognition rate of solutions approximating the
experimentally given structures

Considering two knowledge-based quantities
that re¯ect either pair distributions of atom-atom
contacts or solvent-accessible surface portions
raises the question, how much redundancy is
expressed by both terms? In Figure 14, we sum-
marize the performance of both types of statistical
preferences separately applied to the ®rst test set
used for FlexX in order to detect the ``well-docked''
solutions. Again the accumulated number of com-
plexes is plotted versus the rmsd value observed
for the solution on rank 1. While the score based
on atom-atom preferences alone clearly performs
better than the FlexX score (showed as ®lled cir-
cles), the SAS-dependent score shows only a slight
improvement at low rmsd. Interestingly, the latter
score does not contain any information on the
nature of a molecular counterpart of either the
ligand or of the binding site residue. It only takes
into account whether polar or non-polar molecular
portions are found in a polar or non-polar environ-
ment, respectively. Moreover, there is no implicit
consideration of detailed atom pair interactions nor
is there any information about the geometry of the
interactions.

Although the statistics using the total prefer-
ences, calculated as a sum of the atom-pair and
SAS preferences, only show a slight improvement
compared to the consideration of atom-pair prefer-
ences alone, in 5 % of all 91 cases a correct recog-
nition of a ``well-docked'' solution on rank 1
would have failed without the SAS-dependent
score. An illustrative example exhibits the protein-
ligand complex 1ela (Figure 15). The ligand coded
by atom types represents the crystal structure, the
molecule shown in blue corresponds to the best
solution found by only considering the atom-pair
preferences (rmsd � 11.9 AÊ ) and the one in red
results from using both preference scores
(rmsd � 2.5 AÊ ). For the incorrect, strongly deviat-
ing mode (blue) a deep hydrophobic pocket, com-
posed by methyl groups of Thr221, Thr236 and
Val224, remains accessible to the solvent. Further-
more, a hydrophobic CF3 group of the ligand also
exposes its surface to the solvent. Both features can
only be treated correctly if the approach including
the SAS-dependent score is applied.

To obtain some insight whether the developed
approach depends on the detailed composition of
the ligands, we plotted the rmsd values of the best
solutions versus the percentage of non-polar atoms,
the percentage of hydrogen bond donor and accep-
tor atoms (all related to the total number of heavy
atoms), the absolute number of rotatable bonds or
the resolution of the experimental structure deter-
minations. No signi®cant correlation could be
found for either of these features, apart from a
possibly very slight dependence on the number of
rotatable bonds. It is likely that the latter points
toward the complexity of the problem. The larger
the number of rotatable bonds, the more dif®cult
the prediction of a reasonable binding confor-
mation will be. Accordingly, it is not surprising



Figure 13. A section of the bind-
ing pocket of 2pk4 is shown
together with the conformation of
the ligand as found by X-ray crys-
tallography (ranked as no. 129 by
DrugScore, color-coded by atom
type). The geometry of the best
scored docking solution deviating
by 1.3 AÊ from the crystal structure
is depicted in red. In the crystal,
the ligand forms a hydrogen bond
between the terminal amino group
and a carboxylate group of the pro-
tein that measures to only 2.1 AÊ

length (shown as a dotted line).
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that a more rigid ligand usually obtains a smaller
rmsd value.

Discussion and Conclusion

In this study, distance-dependent pair prefer-
ences and SAS-dependent singlet preferences are
derived from crystallographically determined pro-
tein-ligand complexes. A scoring function incorpor-
ating both terms has been shown to be very
promising{. It discriminates satisfactorily between
well-docked (rmsd <2.0 AÊ ) ligand binding modes
and those largely deviating from the native struc-
ture generated by the docking tools FlexX and
DOCK. This has been shown for test sets compris-
ing 91 and 68 complexes (FlexX) and a mixed sub-
set of 100 complexes (DOCK). A substantial
improvement is achieved compared to the original
scoring in FlexX as well as the ``chemical scoring''
in DOCK. In comparison with the ``energy scor-
ing'' in DOCK, similar results are obtained.

Apart from computationally demanding
methods based on ®rst principles such as FEP or
TI, knowledge-based as well as regression-based
approaches are primarily applied to predict pro-
tein-ligand interactions. While for the latter
regression-based approaches the partitioning of the
total ligand-to-protein binding features into several
additive terms increases our understanding of the
{ The new scoring function is still under
development. It is planned to incorporate this function
into ReLiBase (http://www2.ebi.ac.uk:8081/home.html),
a database for the handling of protein-ligand complexes,
and to make it available in the framework of this data
analysis tool.
contributions to the binding process arising from
different physical origin, it is dif®cult to assess
whether this set of considered terms is complete.
In addition, only anticipated effects can be con-
sidered during the regression analysis and it is by
no means clear how strongly these terms are inter-
correlated. As a consequence, including even more
sophisticated terms to existing state-of-the-art
regression-based scoring functions only revealed
minor improvements (Bohm, 1998; Stahl & Bohm,
1998). Furthermore, the predictive power of these
relationships towards protein-ligand complexes,
distinct from all examples used in the training set,
is dif®cult to estimate. Although PLS-derived
relations (Head et al., 1996) are in agreement with
Figure 14. The performance of both statistically
derived preference schemes applied to the ®rst test set
of 91 protein-ligand complexes to recognize ``well-
docked'' solutions in comparison to the original FlexX
scoring.



Figure 15. The binding pocket of
elastase (PDB code: 1ela) is dis-
played. The crystal structure of the
ligand is color-coded by atom type,
the best ranked solution
(rmsd � 11.9 AÊ ) applying only the
distance-dependent pair preference
scheme is colored in blue, the sol-
ution (rmsd � 2.5 AÊ ) found on rank
1 applying the pair and the SAS-
dependent singlet preferences is
colored in red. The deep sub-
pocket on the right is composed of
the side-chain of Val224 and two
methyl groups of Thr221 and
Thr236.
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those derived by multiple linear regression, the
contribution of each individual term in these for-
mer equations is dif®cult to understand due to the
fact that implicitly ``new'' orthogonal descriptors
are calculated as linear combinations in terms of
the original ones.

Knowledge-based approaches are assumed to be
more general, since they implicitly incorporate
even those effects that are yet not fully understood.
The conversion of structural database information
of experimentally determined geometries into stat-
istical preferences regards cooperative effects as
well as mainly entropy-driven effects arising from
the solvation. They are expected to be taken into
account as a result of the mean-®eld character of
the approach. Moreover, less frequently populated
states are considered with lower statistical prefer-
ences, thus implicitly penalizing computer-gener-
ated artifacts.

Since no explicit training set is used in contrast
to the derivation of regression-based scoring func-
tions, our scoring function should be generally
applicable. This was demonstrated for exemplary
cases where all proteins with a homology >30 % to
the test case protein were excluded from the data-
base used to derive the preferences. Nevertheless,
several parameters had to be adjusted in the con-
text of our approach to reveal optimal results: e.g.
the interatomic distance cut-off, the bin size for
data sampling and the scaling of the pair prefer-
ences to the singlet preferences.

As mentioned already, the choice of the refer-
ence state is crucial and could lead to the underes-
timation of several contributions (Godzik et al.,
1995). To account for solvent effects, not suf®-
ciently considered by pair preferences collected up
to 6 AÊ (Bahar & Jernigan, 1997), we introduced a
SAS-dependent singlet potential.

Only non-hydrogen atom types are used within
our scoring function. On the one hand, most com-
plexes in PDB either lack or only contain force-
®eld generated polar hydrogen atoms. Accord-
ingly, most of these atoms would have to be
model-built prior to the derivation of the prefer-
ences. On the other hand, in particular hydrogen-
atom positions strongly depend on the in¯uences
of their molecular environment. The local electro-
static ®eld in a protein can change upon ligand
binding and might result in substantial pKa shifts
of ionizable groups. In consequence, de®ning pro-
tonation states a priori, e.g. during a docking exper-
iment, is by no means straightforward. Although
at a ®rst glance, the neglect of H-atom positions
appears to imply the loss of information about
directionality of polar interactions, the simul-
taneous consideration of many-fold pair-prefer-
ences in a compact molecular environment
recovers these features (Figure 5).

Using the data in the Cambridge structural data-
base (CSD; Allen et al., 1991) instead of the PDB to
derive statistical preferences of intermolecular
interactions could cope with these shortcomings.
Furthermore, additional data and an enhanced
scope of atom types could be studied. However,
protein-ligand complexes are usually crystallized
from water, whereas the overwhelming part of
organic small molecules are crystallized from
organic solvents. As a consequence, for a quantitat-
ive correlation as anticipated here the in¯uence of
the hydrophobic effect is expected to be smaller in
the data derived from the CSD compared to the
PDB. This in¯uence was ®rst recognized by
Verdonk et al. (1999) during the development of
SuperStar. Furthermore, since the CSD data are of
higher accuracy compared to those in the PDB, the
derived statistical preferences are expected to exhi-
bit less scatter.

The recent studies of Verkhivker et al. (1995) and
Muegge & Martin (1999) use the same formalism
to derive potentials; however, they follow a quite
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different objective: the application of a knowledge-
based scoring function to predict �G values of
experimentally determined protein-ligand com-
plexes. Our goal is to render prominent the ligand
geometry most closely resembling the native struc-
ture. The rationale behind this intention is the
observation, that scoring functions such as
SCORE2 (Bohm, 1998) are already reliable enough
to correctly predict �G within 1.3 log units if
applied to native-like geometries. Virtual screening
tools presently generate a whole set of arti®cal
ligand binding modes that have to be detected as
such. Moreover, both studies follow a different
procedure to derive the potentials or preferences.
While Verkhivker and co-workers compile ligand-
protein interactions up to 6-7 AÊ from a small data
set of 30 HIV and SIV proteases and relate these
pair-interaction potentials to other explicit entropic
and solvation terms, Muegge & Martin derive
potentials of mean force from 697 complexes stored
in the PDB using a cut-off at 12 AÊ together with a
correction term regarding the volume occupied by
the ligand in order to incorporate solvent effects
into their pair potentials.

Several improvements and enhancements can be
imagined. So far our scoring function is applied to
post-process solutions from FlexX and DOCK. It is
encouraging that DrugScore performs comparably
well, independent of the methods applied to gener-
ate ligand poses. This suggests its general applica-
bility. Nevertheless, it is not totally obvious
whether solely using our approach would reveal
comparable results or whether only the combi-
nation of two subsequently applied scoring func-
tions (Bohm's SCORE in FlexX or ``chemical
scoring''/``energy scoring'' in DOCK and our scor-
ing function) achieves the reported success rate.
We are currently implementing DrugScore into
FlexX to study these effects. Furthermore, geo-
metrical complementation of the binding sites due
to crystal contacts are not yet taken into account
during the derivation and the application of our
approach. Even if only a minor in¯uence on the
shape of the preferences as well as the predictive
power is expected, this assumption has to be inves-
tigated. The same holds for water molecules often
being a mediator for ligand-protein interactions.
Cofactors are considered as part of the protein
during the compilation of atom/atom preferences,
yet they are neglected during ligand scoring. For
the latter two situations, a correlation with the
actually evaluated binding mode is obvious. These
effects have to be taken into account.

Note Added in Proof

During revision of this paper, Mitchell et al.
(1999b) published the development of an atomic
level potential of mean force using high-resolution
X-ray structures from the PDB. In total 820 possible
atom-atom pairs are evaluated. The performance to
identify low-energy binding modes from decoy
conformations is tested for one case, the heparin
binding to bFGF (PDB code: 1bfc) (Mitchell et al.,
1999a). While the crystal structure was ranked low-
est, the best scored geometry generated by FTdock
deviates largely from the experimental one.
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