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Prediction of small molecule binding modes to macromolecules of known
three-dimensional structure is a problem of paramount importance in
rational drug design (the ``docking'' problem). We report the develop-
ment and validation of the program GOLD (Genetic Optimisation for
Ligand Docking). GOLD is an automated ligand docking program that
uses a genetic algorithm to explore the full range of ligand conformation-
al ¯exibility with partial ¯exibility of the protein, and satis®es the funda-
mental requirement that the ligand must displace loosely bound water
on binding. Numerous enhancements and modi®cations have been
applied to the original technique resulting in a substantial increase in the
reliability and the applicability of the algorithm. The advanced algorithm
has been tested on a dataset of 100 complexes extracted from the Brook-
haven Protein DataBank. When used to dock the ligand back into the
binding site, GOLD achieved a 71% success rate in identifying the exper-
imental binding mode.
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Introduction

Protein binding sites exhibit highly selective rec-
ognition of small organic molecules, in that evol-
ution has equipped them with a complex three-
dimensional ``lock'' into which only speci®c ``keys''
will ®t. This has been exploited by medicinal che-
mists in the design of molecules selectively to aug-
ment or retard biochemical pathways and so exhibit
a clinical effect. X-ray crystallography has revealed
the structure of a signi®cant number of these bind-
ing sites. It would be advantageous in attempting
the computer-aided design of therapeutic molecules
to be able to predict and to explain the binding
mode of novel chemical entities (the ``docking'' pro-
blem) when the active site geometry is known.

Any solution to the docking problem requires
both a powerful search technique to explore the
conformation space available to the protein and the
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ligand and a good understanding of the process of
molecular recognition to devise scoring functions
that can reliably predict binding modes. Further-
more, since many putative dockings will require
evaluation before elucidating the binding mode,
any scoring function must be rapid in operation.

There are currently many different approaches
to solving the docking problem (Blaney & Dixon,
1993; Jones & Willett, 1995). Early approaches to
ligand docking consider both protein and ligand to
be rigid, as typi®ed by the DOCK program (Kuntz
et al., 1982). Since the bioactive conformation of a
bound ligand rarely corresponds to the isolated
ligand X-ray structure (Nicklaus et al., 1995), recent
techniques have dealt with the issue of confor-
mational ¯exibility. Deterministic approaches in-
clude the FLOG system of Miller et al. (1994) and
FLEXX of Rarey et al. (1996). The latter algorithm is
very ef®cient and has been veri®ed on 19 protein-
ligand complexes. Alternative, stochastic sampling
techniques include genetic algorithms (Jones et al.,
1995a; Judson et al., 1994; Oshiro et al., 1995), simu-
lated annealing (Goodsell & Olsen, 1990) and evol-
utionary programming (Gehlhaar et al., 1995).

Inspection of the X-ray crystallographic struc-
tures of proteins with associated high-af®nity
# 1997 Academic Press Limited
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ligands reveals that the ligands appear to conform
closely to the shape of the binding cavity, maximis-
ing the hydrophobic contribution to binding, and
to interact at a number of hydrogen bonding sites.
The optimal binding mode may thus involve the
ligand forming hydrogen bonds at key hydrogen-
bonding sites, accompanied by hydrophobic sur-
face area burial. The most signi®cant contributions
to apolar surface area burial are likely to be disper-
sive interactions between protein and ligand atoms
together with an entropic contribution from the
displacement of ordered water from the active site
into the solvent. Suf®ciently accurate simulation of
many of these interactions may be enough to pre-
dict the binding mode of the majority of high-af®-
nity ligands.

We have reported the use of a genetic algorithm,
hereinafter a GA (Davis 1991; Goldberg, 1989;
Holland, 1992) to perform protein docking (Jones
et al., 1995a), where an evolutionary strategy is em-
ployed to explore the conformational variability of
a ¯exible ligand while simultaneously sampling
available binding modes into a partially ¯exible
protein active site. The GA provides a search para-
digm that enables the rapid identi®cation of good,
though not necessarily optimal, solutions to combi-
natorial optimisation problems. Of particular inter-
est is the use of GAs in performing conformational
analysis of both small molecules (Jones at al.,
1995b; Brodmeirer & Pretsch, 1994; Clark et al.,
1994) and macromolecules (Dandekar & Argos,
1996; Sun 1993).

Here, we describe a docking program called
GOLD (Genetic Optimisation for Ligand Docking)
that is based on the algorithm described by (Jones
et al., 1995a). GOLD performs automated docking
with full acyclic ligand ¯exibility, partial cyclic
ligand ¯exibility and partial protein ¯exibility in
the neighbourhood of the protein active site. In
order to search the space of available binding
modes ef®ciently, hydrogen bond motifs have been
directly encoded into the GA. A simple scoring
function was used to rank generated binding
modes. This comprised a term for hydrogen bond-
ing (which took account of the fundamental re-
quirement that water must be displaced from both
donor and acceptor before a bond is formed); a
pairwise dispersion potential that was able to de-
scribe a signi®cant contribution to the hydrophobic
energy of binding; and a molecular mechanics
term for the internal energy of the ligand. The orig-
inal algorithm has now been substantially en-
hanced, as detailed in Materials and Methods. The
resulting algorithm has been tested on a number of
complex ligands and the result of docking NADPH
into dihydrofolate reductase (DHFR) is reported
here as an example of the power of this technique.
In order to probe the strengths and weaknesses of
GOLD in a more rigorous manner, 100 protein-
ligand complexes were selected from the Protein
Data Bank (PDB: Bernstein et al., 1977). These com-
plexes were selected on the basis of pharmacologi-
cal interest and whether or not the ligands
involved were ``drug like''. The result was a varied
and demanding test set of complexes. We report
here the results obtained by using GOLD to predict
the binding modes for these test complexes and
compare these predictions against the crystallogra-
phically observed binding modes.

Results

The GA described in Materials and Methods re-
quired as input the approximate size and location
of the active site, together with coordinates of the
protein and a ligand conformation. As GOLD used
a cavity detection procedure to further de®ne the
active site, the size and location input by the user
was not critical. Although the determination of the
active site is not currently automated, there are
techniques available that are capable of predicting
the location of the active site with considerable ac-
curacy (Peters et al., 1996). The output was the
ligand and protein conformations associated with
the ®ttest chromosome in the population when the
GA run terminated. Since GAs are non-determinis-
tic algorithms, 20 GA runs were performed in each
docking experiment in order to ensure that most
high-af®nity binding modes would be explored. In
most cases similar results were obtained and, in
general, the algorithm does not need to be run 20
times to elucidate a binding mode. In the examples
that follow, the best solution refers to the predicted
binding mode (i.e. the result from the 20 runs that
had the highest GA ®tness score) and not to the
solution that was closest to that observed in the
crystal structure. Depending on the complexity of
the docking problem, each GA run would take
anything between three and 35 minutes on a Sili-
con Graphics R4400 Indigo II workstation. Due to
the rapid and sustained increase in CPU perform-
ance, computing time can be expected to reduce
substantially in the future.

In order to illustrate the effectiveness of the tech-
nique we ®rst describe the docking of NADPH
into DHFR. Following this introductory example,
the results of testing GOLD on a dataset of 100
complexes are presented in detail.

A number of results are illustrated in the colour
Figures, where the experimental result is shown co-
loured by atom type and the GA prediction is
shown in red. For clarity, only a few protein resi-
dues are displayed.

NADPH in dihydrofolate reductase

Dihydrofolate reductase (DHFR) catalyses the
NADPH-linked reduction of folate to dihydrofolate
then onto tetrahydrofolate. The three-dimensional
structure of the ternary complex of DHFR with
NADPH and the anti-cancer drug methotrexate
has been determined by X-ray crystallography to a
resolution of 1.7 AÊ (Bolin et al., 1982) and the coor-
dinates have been deposited in the PDB (entry
3DFR). The NADPH cofactor is a large and fairly
complex molecule and thus provided a demanding



Figure 1. Docking of NADPH into dihydrofolate reductase.

Development and Validation of a Genetic Algorithm 729
test system for GOLD. Methotrexate, NADPH and
all water molecules were removed from the ternary
complex. Using GOLD, NADPH was docked back
into DHFR and the algorithm's predictions were
compared with the experimentally observed bind-
ing mode.

This is an extremely complicated problem: acyc-
lic ¯exibility of NADPH was described using 17 ro-
tatable bonds, while cyclic ¯exibility was
accounted for by ten free corners. The active site
was determined by ¯ood-®lling to a radius of
12 AÊ . After accounting for the probe radius, atom
size and the ®nal ¯ood-®ll from the detected cavity
(see Materials and Methods for more details), this
roughly corresponded to solvent-accessible protein
cavity atoms in a sphere of radius 15 AÊ around the
binding cleft. Of the 20 dockings, the solution with
the highest ®tness score is shown in Figure 1.
Given the dif®culty of the problem, this is an extre-
mely powerful prediction, having a root-mean-
square (r.m.s.) deviation between predicted and ex-
perimental heavy-atom coordinates of 1.2 AÊ . In the
remaining 19 GOLD solutions there were four sol-
utions with a r.m.s. deviation of under 1.5 AÊ and
the average r.m.s. deviation over all 20 solutions
was 2.6 AÊ . The solution that was closest to the
crystal structure was ranked fourth and had an
r.m.s. deviation of 1.1 AÊ .

Because of the many degrees of freedom in the
NADPH-DHFR system this calculation was rela-
tively time-consuming with the average GA run
taking 26 minutes and 44 seconds on an R4400
CPU.

Experiments on the dataset of 100
PDB complexes

In order to achieve insight into the strengths and
de®ciencies of GOLD a dataset of 100 protein
ligand complexes was selected from the PDB for
the purposes of evaluation. This selection was
done by one of us (R.T.) who was not involved in
the development of the algorithm. These com-
plexes were selected on the basis of pharmacologi-
cal interest, with preference being given to ``drug-
like'' molecules and to ligands that formed interest-
ing or unusual interactions with the protein. The
test set was highly varied: the number of heavy
atoms in the ligand varied between six and 55
while the number of rotatable bonds in the ligand
varied between zero and 30; and there were many
different types of protein, including a number of
metalloenzymes. We believe that the dataset is an
extremely demanding testset for any docking tech-
nique, and it is also much larger than the datasets
used in previously reported research. Those dock-
ing programs that have been tested on a number
of complexes (but still fewer than the results pre-
sented here) include the GA for ¯exible docking
used by Judson et al. (1995) which has been tested
on ten complexes and the FLEXX algorithm that
has been tested on 19 complexes (Rarey et al.,
1996).

The PDB codes of 99 of the complexes are listed
in the third column of Table 1. The ®nal complex
was 1ACL (Harel et al., 1993). The ligand in this
complex (decamethonium) has no polar group and
GOLD was thus unable to make a prediction for
the binding mode of this ligand, since the principle
driving force of our algorithm is the identi®cation
of hydrogen-bonding interactions between the
ligand and the protein.

Preparation of the dataset

During preparation of the input structures (as
described in Materials and Methods) considerable
care was taken over the correct assignment of pro-
tonation and tautomeric states of both the protein
and the ligand. Of particular importance in pro-



Table 1. Results of docking predictions on dataset of 100 complexes.

Subjective
result Number PDB identi®cation code

Good 41 1ABE 1ACM 1ACO 1CBX 1COY 1CPS 1DBB 1DBJ 1FKG 1FKI
1HDY 1HEF 1HYT 1LST 1MDR 1MRK 1PBD 1PHD 1POC 1SRJ
1STP 1TPP 1ULB 1XIE 2ADA 2CGR 2CHT 2CTC 2PHH 2SIM

3AAH 3PTB 3TPI 4DFR 4PHV 7TIM 8GCH 1AEC 1AHA 1ASE
1HSL

Close 30 1BLH 1DIE 1DR1 1DWD 1EPB 1GHB 1GLQ 1IDA 1IVE 1LDM
1PHA 1PHG 1RNE 1SLT 1TKA 1TMN 1XID 2DBL 2PK4 2YHX
3CPA 3GCH 3HVT 4CTS 5P2P 6ABP 6RNT 1APT 1AZM 4EST

Errors 9 1BAF 1EAP 1ETR 1HDC 1LIC 1RDS 1ROB 6RSA 1ACK
Wrong 19 1AAQ 1ACJ 1DID 1EED 1ETA 1HRI 1ICN 1IGJ 1MCR 1MUP

2R07 1NIS 1TDB 2AK3 2MTH 2PLV 3CLA 4FAB 2MCP
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teins are the ionisation and tautomeric states of his-
tidine residues, which can be positively charged,
neutral with a proton on Nd, neutral with a proton
on Ne or even negatively charged and deproto-
nated. Also aspartic and glutamic acid, though
generally ionised, can occasionally be protonated
on either oxygen atom. In the case of aspartic pro-
teases a proton was added to one of the two proxi-
mal, catalytic Asp residues, in the position where it
seemed to form the best possible hydrogen bond to
the neighbouring Asp. In other cases, the oxygen
atom that was more solvent-exposed was normally
protonated. When preparing the ligand, thought
was given as to the charge state of basic nitrogen,
acidic oxygen and acidic nitrogen atoms. If necess-
ary, literature cited in the PDB ®le was consulted
to help determine ionisation states. Atom typing of
the ligand was particularly awkward in the case of
3HVT (Wang et al., 1994). Here, a normally trigonal
cyclic ligand nitrogen atom was stressed to a non-
planar conformation and it was not clear if this
atom could act as a nitrogen acceptor. However,
the analysis by Allen et al. (1995) indicated that the
nitrogen geometry was not suf®ciently distorted
for the ligand to accept hydrogen bonds. The
ligands in complexes 1EED (Cooper et al., 1992)
and 1IGJ (Jeffrey et al., 1993) were not complete
and, after consulting the literature, the remainder
of the ligands was created using the SYBYL BUILD
module (Clark et al., 1989) prior to docking.

When preparing the protein, all water molecules
were normally removed. However, the following
exceptions were made for some metal ion com-
plexes: 2CTC (Teplyakov et al., 1994) where the
ligand is hydrogen-bonded to a water molecule co-
ordinated to a zinc ion; 1MDR (Landro et al., 1994)
where a water molecule was tightly bound to a Mg
ion; and 1NIS (Lauble et al., 1994), where a water
molecule is co-ordinated by a Fe ion. In the case of
1HEF (Murthy et al., 1992) the whole of the active
site was created by applying crystallographic sym-
metry operators.

A check was made of each ligand structure to
see if conformational ¯exibility of ligand rings was
likely to be observed. If this was the case then
GOLD was run with corner ¯ipping turned on, as
in the following test systems: 1FKI, 1IGJ, 1MRK,
1RDS, 1TDB, 2ADA, 2AK3 and 6RSA. In 1FKI
(Holt et al., 1993) the ligand, FK506, has a large
macrocycle for which corner ¯ipping is inadequate
(corner ¯ipping ¯ips one atom while holding
neighbouring cyclic atoms ®xed and hence will not
signi®cantly deform large macrocycles): in this test
system the docking was therefore only partially
¯exible. This system is further complicated by the
fact that the amide bond in FK506 appears to ¯ip
between planar-cis and planar-trans on binding to
the protein (Van Duyne et al., 1993). While this
change would not be predicted by GOLD, it is not
surprising given the rotamase activity of the FKBP
protein.

The algorithm requires that the user specify the
rough size and location of the active site. On aver-
age, ¯ood-®ll and cavity detection was performed
to a radius of 10.2 AÊ (roughly corresponding to all
solvent-accessible cavity atoms within a radius of
13 AÊ of the active site centre), though the radius of
¯ood-®ll varied between 5 AÊ and 15.5 AÊ , depend-
ing on the size of the active site. In all cases the
speci®ed size was suf®cient to encompass the
whole of the active site. Indeed, in many cases
where the algorithm failed, GOLD had placed the
ligand in a different pocket or in a completely
different area of the active site.

Results

For each test system the GA was run 20 times.
The solution with the highest GA ®tness score was
then compared with the crystallographically ob-
served binding mode. Depending on how close the
predicted binding mode was to the crystallographi-
cally observed binding mode the result was as-
signed to one of four subjective categories. The
®rst, good, was for those predictions where the
binding mode, all hydrogen-bonding and metal co-
ordination interactions and other close contacts be-
tween the protein and the ligand were reproduced
correctly. If an acceptable result was generated
with the ligand binding mode reproduced, but
with some displacement of ligand groups from the
experimental result, the GA prediction would be
assigned to the close category. A third category, er-
rors, was used for those predictions that were par-
tially correct but contained signi®cant errors.
Finally, the fourth category, wrong, was used for



Figure 2. 4PHV. Example of good. A peptide-like ligand docked into HIV protease.
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completely incorrect predictions. These categories
are illustrated in Figures 2 to 5.

Figure 2 shows an example of good, with all
ligand groups correctly positioned. An example of
the close category is shown in Figure 3, where the
ligand binding mode is clearly reproduced, though
the nitrophenyl moiety and acid groups are dis-
placed from the experimental result. Figure 4
shows an example of the errors category. While the
Figure 3. 1GLQ. Example of close. A nitrophenyl-substi-
tuted peptide ligand docked into glutathione S transfer-
ase.
benzene ring and phosphonate group are correctly
positioned, GOLD has identi®ed a different inter-
action with the acid group and there is some dis-
placement of the alkyl side-chain. A wrong
prediction is shown in Figure 5, where GOLD has
completely failed to predict the binding mode of
oleate within a fatty acid binding protein. When
assigning solutions to each category an allowance
was made for solvated, and thus mobile, ligand
groups (for example in 4DFR, the ligand metho-
trexate, has a solvent- exposed acid group that is
Figure 4. 1EAP. Example of errors. A succinylamino
phosphonate ligand docked into an antibody.



Figure 5. 1ICN Example of wrong. Oleate docked into a fatty acid binding protein.
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highly mobile in the GOLD solutions) and for
those cases where the experimentally observed
geometry of the ligand appeared unreasonable (see
the descriptions for 3GCH and 1IVE below).

Table 1 shows the complexes assigned to each
category. If we consider acceptable results to be
contained in the good and close categories, then
GOLD achieved a 71% prediction rate. On average,
each GA run (of which 20 were performed for each
of the 100 complexes) took 12 minutes and ten
seconds. The longest run took 34 minutes and
three seconds, while the shortest run was two min-
utes and 52 seconds. The length of each GA run
was primarily dependent on the size and ¯exibility
of the ligand.

Table 1 shows that the best (i.e. top scoring)
answer of 20 GA runs was essentially correct (i.e.
Table 2. Complexes correctly predicted after
after 2, 5 or 10 runs

Number of
GA runs

Number of
complexes
correctly
predicted Com

2 49 1DBB 1DB
2ADA 4DF
1EPB 1GL

1TMN 1XID
1APT 4EST

5 63 1DWD 1EP
5P2P 6RN

10 65 1DWD 1EP
4EST
good or close) for 71 of the test structures. The ques-
tion arises of whether the correct answer can
usually be found in less than 20 runs. Table 2
shows how many of the 71 complexes are pre-
dicted correctly after the ®rst two, the ®rst ®ve and
the ®rst ten runs. It can be seen that as many as 49
correct answers are obtained after only two runs
(therefore, 1/10 of the CPU time) and 63 com-
plexes have had their binding modes predicted cor-
rectly after ®ve runs. Thus, in general, GOLD does
not require 20 GA runs to elucidate a binding
mode. Note that 4EST was correctly predicted after
®ve GA runs but incorrectly predicted after ten
runs.

As an alternative to subjective analysis, r.m.s. de-
viations between heavy atoms in the prediction
and experimental result may be used. The subjec-
20 GA runs, that are incorrectly predicted

plexes incorrectly predicted

J 1FKG 1HDY 1XIE
R 4PHV 8GCH 1DWD
Q 1IDA 1PHG 1RNE

2DBL 5P2P 6RNT

B 1GHB 1GLQ 1RNE
T 1APT
B 1GLQ 1RNE 1APT



Figure 6. 1FKG. Docking of a rotamase inhibitor to FK506BP.
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tive characterisation was preferred, since a small
r.m.s. result may mask a signi®cant error, while a
reasonable result may have a large r.m.s. score if
near-symmetrical groups are ¯ipped. For example
the GOLD prediction for 1FKG had a relatively
high r.m.s. deviation of 1.81 AÊ , while the result, il-
lustrated in Figure 6, was clearly excellent. The
high r.m.s. deviation resulted from unimportant
differences in solvent-exposed groups and GOLD
rotating a bond so that a methyl and an ethyl
group were exchanged, relative to the experimental
binding mode. A summary of r.m.s. values is
given in Table 3, where it can be seen that 66 com-
plexes had r.m.s. deviations of 2.0 AÊ or less, while
71 had r.m.s. deviations of 3.0 AÊ or less. The one
close result with an r.m.s. deviation greater than
3.0 AÊ is for 1IDA (Tong et al., 1995), where a pep-
tide-like ligand bound in HIV protease was pre-
dicted to bind in the same conformation as in the
experimental result, but rotated by 180� around the
protease 2-fold axis. Given the 2-fold symmetry of
the active site this was felt to be an acceptable re-
sult, although the alternative binding mode pre-
dicted by GOLD is not the observed binding mode
(the two alternate binding modes are shown in
Figure 4 of Tong et al., 1995). In 1HEF, another
HIV protease complex, the ligand is observed in
two distinct binding modes (Murthy et al., 1992);
the r.m.s. value calculated here was for the ligand
orientation closer to the GOLD prediction.

Analysis of ligand composition

In order to try and predict when the algorithm is
likely to succeed or fail, the performance of the al-
gorithm was analysed in terms of ligand ¯exibility,
size and polarity. The algorithm was considered to
have succeeded in the case of a good or close predic-
tion, and to have failed if an errors or wrong predic-
tion was obtained. Table 4 shows how success or
failure varies with the minimum, maximum and
average values for the number of ligand heavy
atoms, the percentage of polar atoms and the num-
ber of ligand torsions and free corners. Inspection
of the Table shows that the GA is more likely to
fail if the ligand is large or highly ¯exible. This is
not surprising, as both these qualities are indicators
of the complexity of the problem. However, it is
clear from the Table that the algorithm is capable
of predicting the binding mode of both large and
highly ¯exible ligands. Lastly, an analysis of the
proportion of polar atoms in the ligand shows that
the GA is more likely to succeed if the ligand is
polar. Given the design of the algorithm and the
®tness function used this is not at all surprising. In
fact, GOLD is most likely to fail given a large, ¯ex-
ible, hydrophobic ligand. There are three fatty-acid



Table 3. Summary of r.m.s. deviations between predictions and ex-
perimental results.

r.m.s. Total Good Close Errors Wrong

40.5 8 8 0 0 0
>0.5, 41.0 27 24 3 0 0
>1.0, 41.5 20 7 13 0 0
>1.5, 42.0 11 2 9 0 0
>2.0, 42.5 2 0 2 0 0
>2.5, 43.0 3 0 2 1 0
>3.0 28 0 1 8 19
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like ligands in the dataset (1LIC, 1ICN and 2PLV)
and GOLD fails in all cases. In order to estimate
the statistical signi®cance of these indicators, a w2

test was applied to the three variables in Table 4.
For the number of ligand heavy atoms w2 � 0.33
(p � 0.85, n � 1), for the number of ligand rotatable
bonds and free corners w2 � 1.84 (p � 0.20, n � 1)
and for the proportion of polar atoms in the ligand
w2 � 3.98 (p < 0.05, n � 1). Thus, the statistical evi-
dence would indicate that the effectiveness of
GOLD is not too related to ligand size or ¯exibility
but that performance of the algorithm is highly de-
pendent on ligand hydrophobicity.

Problems in protein structure

In any docking experiment it is required that the
co-ordinates of the active site be known to reason-
able accuracy. Intuitively, it would not be surpris-
ing if the algorithm started to fail on poor-quality
protein structures. There are two main reasons for
this. Firstly, poor resolution means that the exper-
imental result is less precise, i.e. the ligand might
be wrongly positioned by the crystallographer. Sec-
ondly, one of the reasons for a poor resolution
might be high thermal motion or even disorder, in
which case the ligand might be highly mobile,
with no clearly de®ned binding mode. The com-
plexes in the dataset varied considerably in resol-
ution. Table 5 shows how the subjective result
obtained varied with resolution of the protein
structure. An analysis of the Table shows that if
the protein structure had a resolution of 2.5 AÊ or
better then GOLD achieved a prediction rate of
77%. However, if the resolution was poorer than
2.5 AÊ then the prediction rate dropped to 52%. A
w2 test on these data indicated that there is less
than a 5% probability of this distribution arising
through chance (w2 �4.91, p < 0.05, n � 1).

Another problem frequently encountered in pro-
tein structures containing small molecules is the
poorly determined geometry of ligand groups. One
Table 4. Maximum, average and minimum values for the n
and free corners and percentage of ligand polar atoms

Heavy atoms Tors
Result Max Avg Min Max

Good + Close 52 20.4 6 28
Errors + Wrong 55 24.3 9 40
example is 1APT (resolution 1.8 AÊ , James et al.,
1983) where a carbon atom in an ester group has
tetrahedral rather than planar geometry. In 1TDB
(resolution 2.65 AÊ , Perry et al., 1993) a normally tet-
rahedral carbon has planar geometry. In both of
these cases the minimised structure docked by
GOLD was signi®cantly different from the bound
structure. In spite of this, GOLD did fairly well in
the case of 1APT but failed to predict the binding
mode of the ligand in 1TDB. The ligand in complex
1HEF (resolution 2.2 AÊ , Murthy et al., 1992) had a
bad bump involving two methyl groups and an
unusual ester conformation.

In complex 1IVE (resolution 2.4 AÊ , Jedrzejas et al.,
1995) the benzoic acid ligand, 4-(acetylamino)-3-
aminobenzoic acid, is unusual in that the ligand
has a non-planar (almost 90�) amide group and a
very short contact is seen between the terminal O
of Asp151 and the ligand benzene ring. The mini-
mised structure docked by GOLD clearly had a
trans amide bond. Despite this, GOLD did fairly
well, with the plane of the benzene ring, the acid
group and the amide substituent in the correct pos-
ition. However, in the GOLD prediction the ben-
zene ring was ¯ipped (moving the amino group),
in order to avoid a bad internal steric clash with
the amide group (this does not happen in the crys-
tal structure because of the 90� amide bond). This
was felt to be an acceptable result and the predic-
tion was assigned to the close category, because of
the unusual problems in docking this ligand.

In 3GCH (resolution 1.9 AÊ , Stoddard et al., 1990)
the bond angle between the ligand and the protein,
through the terminal oxygen atom of Ser195, is
only 82�. Since GOLD has an angle-bending poten-
tial for covalently bound ligands it will not
reproduce this geometry. However, given the cir-
cumstances, GOLD does a reasonable job and pos-
itions the benzene ring of the cinnamic ester
between two portions of the backbone, as seen in
the crystal structure.
umber of ligand heavy atoms, number of ligand torsions

ions and free corners % H-bonding
Avg Min Max Avg Min

7.9 0 66.7 31.9 8.7
11.4 0 53.9 25.1 4.8



Table 5. Protein structure resolution and subjective
results obtained

Resolution Total Good � Close Errors �Wrong

>1.0, 41.5 2 2 0
>1.5, 42.0 44 34 10
>2.0, 42.5 32 24 8
>2.5, 43.0 20 11 9
>3.0 1 0 1
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In 1BLH (resolution 2.3 AÊ ) a phosphonate inhibi-
tor is covalently bound to b-lactamase (Chen et al.,
1993). In Figure 7 the crystal structure is shown co-
loured by atom type and the GOLD prediction is
shown in red. The signi®cant difference between
the GA prediction and the experimental result is in
the ester torsion angle of the carbamate group. In
the crystal structure the C-O-C�O torsion angle is
trans (172�), whereas in the prediction it is cis
(1.4�). A search of the Cambridge Structural Data-
base (CSD: Allen et al., 1991) reveals 418 small mol-
ecule crystals containing 491 acyclic torsions of this
type. In all cases the torsion is cis. It is worth not-
ing that the torsional potential used in GOLD will
not distinguish between these two conformations
and in the 20 solutions generated, some of the low
scoring predictions were identical with the crystal
Figure 7. 1BLH. Docking of a covalently bou
structure. It is notable that the crystal structure
contains a torsion angle not observed in small mol-
ecule crystallography, while GOLD, with no bias
against that torsion, predicts a binding mode that
is consistent with the small molecule observations.
It is interesting to speculate if the GOLD binding
mode would be consistent with the experimental
structure factors. Unfortunately, the phenyl group
in the GOLD solution makes a close contact with a
crystallographic water molecule (two carbon atoms
are 2.4 AÊ from the water molecule, which was re-
moved from the active site prior to docking).
Although the water molecule is not hydrogen-
bonded to the protein, it's presence may argue
against the GOLD prediction.

Analysis of wrong solutions

In order to gain an understanding of why GOLD
fails, all the solutions in the errors or wrong cat-
egories were examined in detail to see if the cause
for failure could be identi®ed.

In order for GOLD to work properly it is nor-
mally required that the ligand be hydrogen bonded
to the binding site. However, it was found that this
was not always the case. It is obvious that this as-
sumption was misplaced in the case of 1ACL,
nd phosphonate inhibitor to b-lactamase.
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where GOLD failed to give an answer. Addition-
ally, the failure to predict the binding mode of the
complexes 1HRI (Zhang et al., 1993), 1IGJ (Jeffrey
et al., 1993), 1MUP (BoÈcskei et al., 1992), 3CLA
(Leslie, 1990) and 2R07 (Badger et al., 1989) was
due to the ligand not forming any hydrogen bonds
to the protein. It is also the case that the ligand in
3HVT does not form any hydrogen bond to the
protein. However, GOLD is able to predict the
ligand binding mode correctly as a protein donor
is relatively close to a ligand acceptor (though they
are certainly not hydrogen bonded). For the same
reason one of the 20 solutions for 3CLA was
relatively close to the observed binding mode
(r.m.s. 2.2 AÊ ).

The design of GOLD favours the docking of hy-
drophilic ligands. There are two reasons for this.
Firstly, the chromosome encoding in GOLD means
that the GA samples binding modes by searching
patterns of hydrogen-bonding motifs. Thus the al-
gorithm is directed to ®nd hydrogen-bond net-
works, whereas it is not guided to ®nd
hydrophobic interactions. Secondly, the ®tness
function contains a term for dispersive interactions
but does not have a term for desolvation. With a
signi®cant part of the hydrophobic contribution to
binding missing from the ®tness score, the algor-
ithm is likely to underestimate the contribution to
binding from hydrophobic interactions. The com-
plexes 1ICN (Eads et al., 1993), 1LIC (LaLonde et al.,
1994), and 2PLV (Filman et al., 1989) all contain
ligands with a hydrocarbon chain and a polar head
group hydrogen-bonded to the protein. However,
in all three cases GOLD failed to dock these highly
¯exible and hydrophilic ligands, presumably for
the two reasons outlined above. The prediction for
1LIC was better than the predictions for 1ICN and
2PLV with the hydrophobic tail in the correct
place, but the ligand was orientated back to front.
1ICN was a particularly dif®cult problem as the
acid head group in the oleate ligand was disor-
dered in the crystal structure.

The problem of underestimating the hydro-
phobic contribution to binding is illustrated in the
results obtained for 1ACJ (Harel et al., 1993). Here,
the predicted solution is clearly wrong but ranked
solutions 2 to 6 are correct predictions with little
difference in ®tness scores from the highest rank-
ing solution. A similar situation is observed in
4FAB (Herron et al., 1989), where the crystallogra-
phically observed binding mode is present in the
set of GOLD solutions but the top scoring predic-
tion has solvent-exposed hydrophobic groups and
strong hydrogen bonds. Analysis of the solutions
shows that the predicted solution has exposed the
hydrophobic part of the ligand to the solvent in
order to form strong hydrogen bonds to groups on
the protein surface. The failure to predict the bind-
ing mode of the ligands in 1ACK (Harel et al.,
1993) and 6RSA (Borah et al., 1985) also appeared
to be due to the same effect, though the experimen-
tal binding mode was not present in any of the
GOLD solutions.
In some cases GOLD failed because of inter-
actions between the protein and the ligand that
were not expressed in the GA ®tness function. For
example, the algorithm does not properly represent
the interactions between electron-rich and electron-
de®cient groups. In 1ACK (Harel et al., 1993) an
electron-de®cient ligand choline group is not prop-
erly stacked on top of a Trp residue. In 1MCR (Ed-
mundson et al., 1993) there appears to be a NH..pi
interaction contributing to binding. The inability of
GOLD to recognise this bond may explain the fail-
ure to predict the binding mode. In 1ETA (Hamil-
ton et al., 1993) the binding of the ligand would
appear to be partially driven by a short I..O con-
tact. Such contacts have been observed in small
molecule crystals (Lommerse et al., 1996) and,
again, this interaction is not recognised by GOLD.

It is not clear why GOLD failed in the cases of
1NIS (Lauble et al., 1994), 1ROB (Lisgarten et al.,
1993), 1TDB (Perry et al., 1993), 2AK3 (Diederichs
& Schultz, 1991), 2MCP (Padlan et al., 1985) and
2MTH (Smith & Dodson, 1992). In 1TDB the pre-
dictions seemed very unstable, with hardly any
consistency or clustering in the 20 binding modes
produced by GOLD. The predictions were particu-
larly bad for 2MCP and 2MTH, where the ligand
was predicted to bind to a completely different re-
gion, in both cases approximately 9 AÊ from the ex-
perimentally observed binding mode. 1TDB
contained a ligand with very poor geometry (see
above) and 2MTH had a crystal structure resol-
ution of 3.1 AÊ . These factors may have contributed
to failure. Some systems seemed to fail because of
their complexity: 1AAQ (Dreyer et al., 1992) and
1EED (Cooper et al., 1992) both contained highly
complex ligands (26 and 30 rotatable bonds, re-
spectively) and it was not possible to identify any
other cause of failure (although the number of rota-
table bounds was not found to be a statistically sig-
ni®cant cause of failure for this dataset, the
algorithm will undoubtedly start to fail as ligand
¯exibility increases). In 1HDC (Ghosh et al., 1994)
the steroid ligand shows large differences in the lo-
cation of the hydrophobic skeleton between the
GA prediction and the experimental result, while
the crystallographically observed binding mode is
also present in the set of GOLD solutions. How-
ever, in this case a visual examination of the results
did not show the GOLD prediction to be unreason-
able in that the hydrophobic skeleton made good
contact with the protein. In 1DID the observed
binding mode was not ranked highly because the
empirical parameters for Mn underestimated the
coordination energy between N.3 and Mn.

Some of the complexes in the errors category
were quite good solutions, with the binding mode
of the majority of the ligand correctly predicted.
This was the case for the complexes 1BAF (BruÈ nger
et al., 1991), 1ETR (Brandsetter et al.), 1EAP (Zhou
et al., 1994) and 1RDS (Nonaka et al., 1993). The
prediction for 1EAP is shown in Figure 4. A subjec-
tive analysis of the observed and predicted binding
modes did not suggest any reason for preference of



Figure 8. 1BAF. Docking of dinotrophenyl piperidine N-oxide ligand to an antibody.

Development and Validation of a Genetic Algorithm 737
the crystallographic binding mode. Although the
prediction for 1RDS was incorrect, performing a
further 20 GA runs produced 40 GA solutions, of
which the highest scoring was close to the exper-
imental result. In 1ETR the ligand contains a
nitrogen bicycle that is highly mobile in the GOLD
set of solutions. It is the position of this group that
is wrong in the GOLD prediction and it is not easy
to explain the preference for the crystallographic
binding mode. However, this group is linked to
the rest of the ligand through a sulphonamide
group. The difference may be due to the Tripos
force®eld torsional potential used by GOLD lack-
ing parameters for sulphonamide torsions (Clark
et al., 1989). A search of the CSD for acyclic tor-
sions of the form C-NH-SO2-benzene retrieved
93 hits, only one of which was consistent with the
GA prediction. However, the experimental result
was consistent with the largest peak in the histo-
gram of torsional frequencies obtained from the
search.

The case of 1BAF is worth further comment.
Here an antibody is complexed with a dinitro-
phenyl piperidine N-oxide ligand (BruÈ nger et al.,
1991) and the crystal structure resolution is 2.9 AÊ .
Figure 8 shows the ligand and some important
residues from the crystal structure coloured by
atom type while the GOLD prediction is shown
in red. Ligand binding is dominated by the sand-
wiching of the dinitrophenyl ring between two
tryptophan residues. GOLD correctly predicts the
position of this ring. However, closer inspection
shows that the predicted binding mode has the
ligand ¯ipped and the two side-chains ex-
changed, relative to the experimental result.
GOLD has formed strong hydrogen bonds be-
tween the ligand protonated nitrogen atom and
Tyr33 and Asp49. In the crystal structure these
residues are partly desolvated by hydrophobic
ligand groups. Given the low resolution of the
crystal structure and the unusual experimental
binding mode it is again interesting to speculate,
as with 1BLH, if the structure factors are consist-
ent with the predicted binding mode.

In the complexes 1EAP, 1ETR, 1HDC, 1ACJ,
1DID, 1ROB and 4FAB, GOLD made an incorrect
prediction (in that the top-ranked solution did not
correspond to the crystallographically observed
binding mode) yet an acceptable solution was
found in one of the 19 other solutions. In the com-
plexes 1EED, 2AK3, 2MTH, 3CLA and 1RDS a
much better (though still partially incorrect) sol-
ution was found within the set of solutions. In
some senses this is good, as an experienced model-
ler examining the predicted binding modes gener-
ated by GOLD may be able to identify the solution
closest to the crystallographically observed binding
mode as the most likely. However, the fact that
solutions closest to the observed binding mode
score lower than incorrect solutions may indicate a
failure in the discriminatory ability of the ®tness
function.
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Docking using unbound protein structures

In the docking problems described above, we
have docked the ligand back into the bound con-
formation of the active site. However, for several
of the test systems, the structure of the unbound
protein has been solved. In order to investigate the
effectiveness of the algorithm when using the un-
complexed protein, docking into the unbound ac-
tive site was performed for three of the test
systems: 1BLH, 1DR1 and 4DFR. In the case of
1DR1 the crystal structure of uncomplexed chicken
liver DHFR (PDB entry 8DFR: Matthews et al.,
1985) was used for the protein and a good result
was obtained. In fact, this result was superior to
the docking obtained using the bound protein. For
4DFR the crystal structure of unbound Escherichia
coli DHFR (PDB entry 5DFR: Bystroff & Kraut,
1991) was used for the protein and a close result
was obtained. In this case the prediction for the
ligand, methotrexate, was poorer than was ob-
tained using the complexed protein, though all im-
portant protein ligand contacts were observed. In
both of these test systems the conformation of the
bound and unbound protein active sites were suf®-
ciently similar to enable successful experiments to
be performed on the unbound protein.

The complex 1BLH is described above. Here, the
unbound conformation of b-lactamase was taken
from PDB entry 3BLM (Herzberg, 1991). It was ob-
served that residue Tyr105 had changed confor-
mation upon binding to the phosphonate inhibitor
(Chen et al., 1993). The GOLD prediction for bind-
ing to the unbound protein was different from the
previous prediction obtained for binding to the
bound protein as the earlier prediction made a
close contact to this residue. A close result was ob-
tained, with the ligand in a similar position to that
observed in the crystal structure complex. As in
the crystal structure, the carbamate C-O-C�O tor-
sion in this prediction was trans.

Discussion

Here, we have described the development of
GOLD, a GA for ¯exible ligand docking. The effec-
tiveness of the approach has been illustrated by the
docking of NADPH to DHFR. The method has
been veri®ed by testing the program on a set of
100 complexes selected from the PDB. During this
process GOLD achieved a 71% success rate in re-
producing the experimentally observed binding
mode. While this was a very encouraging result,
an analysis of the results was performed in order
to determine common causes for failure and con-
ditions for success. Inspection of ligand compo-
sition revealed that the algorithm was most likely
to fail if the ligand was hydrophobic or if the pro-
tein active site was poorly resolved. Likewise, if
the active site is poorly determined failure is
clearly probable. The algorithm has been speci®-
cally designed to elucidate the binding mode of hy-
drophilic ligands and it runs into major problems
when trying to dock hydrophobic ligands.

Presently GOLD has no effective mechanism for
sampling hydrophobic interactions and the scoring
function used in the GA does not include terms for
desolvation. Future research will endeavour to
make good these de®ciencies. In the ®rst instance
hydrophobic groups in the ligand and points of
hydrophobic interaction in the active site will be
identi®ed. These can be mapped to each other in
the GA chromosome (in an analogous fashion to
what is already done for donor hydrogen atoms
and acceptors), thus directing the GA search to elu-
cidate hydrophobic interactions. One possible
method of taking account of desolvation might in-
volve calculating the solvent-accessible surface
area of the docked ligand (Connolly, 1983;
Fraternali & Gunstren, 1996; Still et al. 1990).

There remain some interactions that are not ac-
counted for by the ®tness function. Examples of
these are: interactions between electron-rich and
electron-de®cient groups; unusual non-bonded
contacts such as I...O; ring stacking; ring edge to
face interactions and hydrogen bonds to pi sys-
tems. We hope to extend the algorithm to include
these interactions.

Despite the algorithm's apparent success there
are a number of problems with the methodology
in general. Firstly, the algorithm is comparatively
time-consuming. Two approaches are available for
reducing the run-time of the procedure and these
will be investigated in the future: increasing the ef-
fectiveness of the program so that each run will be
more likely to identify a high scoring docking and
thus fewer runs will be required to elucidate the
binding mode; and increasing the ef®ciency of the
program so that each run takes less time. One tech-
nique that has the potential to increase both ef®-
ciency and effectiveness of the algorithm is to
search only those ligand torsional angles that are
seen in small molecule crystals. The CSD could be
used as a knowledge base for deriving torsional
constraints (Allen et. al., 1991; Klebe, 1994).

Although the algorithm is almost completely
automated, the user is required to input the ap-
proximate size and location of the active site to-
gether with the ionisation state of the protein and
of the ligand. There are now techniques that can
predict the location of the active site with consider-
able accuracy (Peters et al., 1996). Using a tech-
nique such as this would help fully automate the
algorithm.

Frequently, one of the aims of docking exper-
iments is to estimate the binding free energy of the
ligand. Since the scoring function used by GOLD
does not contain any entropic component it is unli-
kely that the program could predict binding free
energies or rank actives correctly. However, given
that GOLD can predict the binding mode effec-
tively, there are a number of approaches that at-
tempt to predict binding free energies accurately
(Ajay & Murcko, 1995).



Figure 9. Steady state with no duplicates GA.
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A more fundamental limitation of the algorithm
is that (with the exception of a few terminal bonds)
the binding site is essentially rigid. From our lim-
ited experiments on unbound complexes, it would
appear that there are systems for which the confor-
mational changes to the protein active site on bind-
ing are suf®ciently small to enable docking to the
uncomplexed protein. Furthermore, it is often a
bound protein conformation that is used as target
in structure-based drug design. We hope in the fu-
ture to extend the ¯exibility of the protein to in-
clude highly mobile active site side-chains.
Modelling large-scale conformational changes of
the protein upon binding remains an intractable
problem.

Materials and Methods

Genetic algorithms

A GA is a computer program that mimics the process
of evolution by manipulating a collection of data struc-
tures called chromosomes. Each of these structures en-
codes a possible solution (i.e. a possible ligand
orientation within the protein binding site) to the dock-
ing problem and may be assigned a ®tness score based
on the relative merit of that solution. A steady-state op-
erator-based GA was used to explore conformation
space and ligand binding modes (Davis, 1991). This GA
is illustrated in Figure 9. The algorithm is similar to the
software already described (Jones et al., 1995a). However,
there have been many signi®cant improvements and de-
velopments.

Initialisation of the protein and of the ligand

The protein was prepared as described by Jones et al.
(1995a,b), i.e., water molecules and ions were removed
and hydrogen atoms were added at appropriate geome-
try, taking account of protonation states.

GOLD requires that the user indicates the approxi-
mate size and location of the ligand binding site: this is
done using the user-de®nable parameters ORIGIN and
RADIUS, where the binding site should lie within a
sphere of radius RADIUS, around the point ORIGIN. A
¯ood-®ll algorithm (Ho & Marshall, 1990) was used to
locate the solvent-accessible surface within distance RA-
DIUS of the point ORIGIN. Following this a cavity-de-
tection algorithm (Delaney, 1992) isolated concave
solvent-accessible surfaces to which the ligand could
bind. The routine was parameterised to locate all cavities
less than 7.5 AÊ wide. A second pass of the algorithm re-
Table 6. Allowed donors and acceptors based on SYBYL ato

SYBYL atom types

N.1, N.ar, O.co2 (carboxylate acid), O.2 in NO2 nitro group
N,3, N.2, N.pl3 with only 2 connections (acidic N)
O.2, O.2 in amide group
O.3a

O.co2 or O.2 bonded to P or S, or O.co2 (singly charged oxygen)
N.am, N.pl3, N.4

N.B. Donors must have a hydrogen atom attached.
a O.3 can accept only if a donor, or if bonded to one C.3 atom an

C.3 atoms.
moved isolated cavities that were less than 2.0 AÊ wide.
The active site was de®ned by using a second ¯ood-®ll
to ®nd the solvent-accessible protein surface within 2.0 AÊ

of the remaining cavities. All hydrogen-bond donor,
donor hydrogen atoms and acceptors within this surface
were identi®ed using the SYBYL atom-type characteris-
ation (Clark et al., 1989) shown in Table 6 (a set of frag-
ments illustrating SYBYL atom typing can be seen in
Figure 9 of Jones et al. (1995a)). Lone pairs were added
to acceptors at a distance of 1.0 AÊ .

If a terminal donor or acceptor was bound to the pro-
tein via a single bond, then that bond was selected as ro-
tatable (where a terminating atom is the ®nal heavy
atom in an acyclic chain). This rule allowed terminating
NH and OH groups to move into good positions for hy-
drogen bonding. However, any protonated nitrogen
atom that could form a strong hydrogen bond to a near-
by protein O.2 or O.co2 acceptor, was held ®xed in that
hydrogen-bonded conformation.

A check was made of all donors and acceptors (whose
lone pairs or donor hydrogen atoms could not rotate) to
determine if they would be accessible for binding to the
ligand. A binding point was created for each donor-hy-
drogen and acceptor lone-pair at a distance of 2.9 AÊ , co-
linear with the bond to the donor or acceptor. Donor
hydrogen atoms were considered available for ligand
binding only if their binding point lay within the cavity
determined above.

We assumed (Jones et al., 1995a) that hydrogen bonds
had a directional preference along the acceptor lone-pair.
However, it appears that, while many acceptors exhibit
this behaviour, some acceptors prefer to form bonds in
m types

Donor Acceptor Acceptor geometry

N Y Lone-pair
Y Y
N Y Plane of lone-pairs
Y Y
N Y No lone-pair geometry
Y N N/A

d a C.2 or C.ar atom within a benzene ring, or if bonded to two
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the plane of the lone-pairs, or have no preference in re-
lation to the lone-pair positions (unpublished results). In
Table 6, acceptors are characterised by their preferred
hydrogen-bonding geometries, as determined by
searches of the CSD. Acceptors may show a tendency to
form hydrogen bonds along lone-pair directions (e.g. the
oxygen atoms of nitro groups), or merely within the
plane of the lone-pairs (e.g. ether oxygen atoms), or they
may show no strong directional preferences at all (e.g.
phosphate oxygen atoms). In actuality, phosphate oxy-
gen atoms do show some lone pair preference for hydro-
gen bonding (unpublished results). However, this
preference is not marked and GOLD was found to per-
form much better if it is assumed that phosphate oxygen
atoms do not show hydrogen-bonding directionality,
relative to the lone-pairs.

An acceptor was deemed available for binding if it lay
in the detected cavity and showed no preference for hy-
drogen-bonding in the lone-pair directions or the lone-
pair plane. If an acceptor preferred to form hydrogen
bonds in the plane of its lone pairs and if the binding
point of either lone-pair lay within the active site cavity
then both lone-pairs were accessible for ligand binding.
The acceptors that displayed hydrogen bond directional-
ity along-lone pairs could bind to the ligand only
through lone-pairs whose binding points lay in the active
site cavity. If no such lone-pair was found then the ac-
ceptor was not available for ligand binding. In order to
reproduce binding motifs observed in complexes, a cor-
rection was made for the two charged oxygen atoms in a
carboxylic acid. If one of the syn lone-pairs on either of
the two oxygen atoms had its binding point in the cavity
then both syn lone-pairs were available for ligand bind-
ing.

Hydrogen atoms were added to the ligand and hydro-
gen bond donors, and acceptors within the ligand were
identi®ed. Prior to docking, the ligand was fully mini-
mised using the MAXIMIN2 module, available within
SYBYL (Clark et al., 1989). Lone-pairs were added at ap-
propriate geometry. All acyclic single non-terminal
bonds were marked as rotatable. In order to ensure that
there was no bias for the original coordinates when
docking, a random translation was applied to the ligand
and random rotations were applied round ligand rotata-
ble bonds.

The chromosome representation

A similar representation to that described by Jones
et al. (1995a) was employed. Conformation information
was encoded by two binary strings: one for the protein
and one for the ligand, where each byte in the string en-
coded an angle of rotation about a rotatable bond. Thus
each torsion was allowed to vary between ÿ180� and
180� in step-sizes of 1.4�. Unlike the encoding used by
Jones et al. (1995a), Gray-coding was not employed, as it
was found to disrupt crossover. Two integer strings en-
coded mappings, suggesting possible hydrogen bonds
between the protein and the ligand. The ®rst of these
strings encoded a mapping from acceptors in the ligand
to donor hydrogen atoms in the protein, such that if V
was the integer value at position P on the string, then
the Pth acceptor in the ligand was mapped to the Vth
donor hydrogen in the protein. V could also be a null
value, indicating that the acceptor was not mapped to
any protein hydrogen. In a similar manner, the second
string encoded a mapping from donor hydrogen atoms
in the ligand to acceptors within the ligand. On decoding
a chromosome, GOLD utilised least-squares ®tting to
form as many of these hydrogen bonds as possible.

The fitness function

The ®tness function was evaluated in six stages
as follows. (1) A conformation of the ligand and
protein active site was generated. (2) The ligand
was placed within the active site using a least-
squares ®tting procedure. (3) A hydrogen bonding
energy H Bond Energy, was obtained for the complex.
(4) A pairwise energy, Complex Energy, was obtained
for the steric energy of interaction between the protein
and the ligand. (5) Molecular mechanics expressions
were used to generate the term Internal Energy which
was a measure of the internal energy of the ligand. (6)
The energy terms were summed together to give a ®nal
®tness score.

With the exception that binary-coding was now pre-
ferred to Gray-coding, the methods described by Jones
et al. (1995a) were used to generate the active site and
ligand conformations.

For every donor hydrogen atom a virtual ®tting point
was created colinear with the bond at a distance of 2.9 AÊ

from the donor. Fitting points were created at the centre
of each acceptor. Although acceptors were now used in
preference to lone-pairs as ®tting points for generating
hydrogen-bond motifs, the same two-pass least-squares
®tting technique described by Jones et al. (1995a) was
used to dock the ligand within the active site. When the
second pass of least-squares ®tting was applied, those
pairs of points that were less than 1.5 AÊ apart were used.
If three such pairs could not be found, the three closest
pairs of points were used.

In order to determine the hydrogen-bonding energy of
the complex, each possible combination of donor-hydro-
gen atom and acceptor was examined in turn to see
whether or not a bond had been formed. The geometrical
arrangement of donor hydrogen ®tting point, acceptor
and any lone-pairs was examined, and a weight between
0 and 1 assigned to the potential bond. The full bond en-
ergy between the donor and acceptor was then scaled by
this weight (this full bond energy, Epair, is described by
Jones et al. (1995a) and discussed later). The weight is the
product of two terms: a distance weight and an angle
weight. Let wt be the weight of the hydrogen bond, such
that wt � distance_wt � angle_wt.

The distance weight is a function of d, the distance
between the donor hydrogen ®tting point and the ac-
ceptor. If d was less than 0.25 AÊ then distance_wt was 1
and if d was greater than max_distance then d was 0.
Otherwise d lay in the interval (0.25, max_distance), in
which case d was linearly rescaled to the interval (0, 1)
and squared to give distance_wt. max_distance was 4.0 AÊ

when the GA started, 1.5 AÊ after the application of
75,000 genetic operations and varied linearly between
these bounds. The rationale behind varying max_dis-
tance over the course of a GA run was to allow long-
range contacts between donors and acceptors to con-
tribute to the ®tness score at the beginning of a GA
run (in the expectation that they would evolve into
good hydrogen bonds), while ensuring that all hydro-
gen bonds that contributed to the ®tness of the ®nal
solution were close contacts.

The hydrogen-bond directional preference of acceptors
is listed in Table 6. If the acceptor had no lone-pair direc-
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Table 7. Ionisation potentials and polarisabilities for
SYBYL atom types

SYBYL atom types
Ionisation potential

(eV)
Polarisability

(1025cm3)

C.3 14.61 13.8
C.2 C.ar C.cat 15.62 13.8
C.1 17.47 13.8
N.3 18.93 8.4
N.2 N.ar 22.10 8.4
N.1 23.91 8.4
N.am N.pl3 19.72 8.4
N.4 33.29 8.4
O.3 24.39 5.4
O.2 26.65 5.4
O.co2 35.12 5.4
S.3 S.o S.o2 15.50 29.4
S.2 17.78 29.4
P.3 16.78 40.6
H 13.60 4.0
F 20.86 3.7
CL 15.03 21.8
BR 13.10 31.2
I 12.67 49.0
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tional preference then angle_wt was 1.0. If the acceptor
had hydrogen bond directionality in the plane of the
lone-pairs then angle_wt was a function of �, the angle
between the donor, donor hydrogen atom and the plane
of the lone-pairs. If � was greater than 60 then angle_wt
was set to 0 and if � was less than 20 then � was set to
1.0. Otherwise � lay in the interval (20, 60), in which
case it was linearly rescaled to (1, 0) and squared to give
angle_wt. Finally, if the acceptor had a directional prefer-
ence along the lone-pair, then, for each acceptor lone-
pair the hydrogen-bond angle between the two vectors
donor, donor hydrogen atom and lone-pair, acceptor
was determined. angle_wt was a function of �, the lar-
gest hydrogen-bond angle between the donor hydrogen
atom and any of the acceptors lone pairs. If � was great-
er than 160 then angle_wt was 1.0 and if � was less than
60 then angle_wt was set to 0. Otherwise, �lay in the in-
terval (160, 60), in which case it was linearly rescaled to
(1, 0) and squared to give angle_wt.

The energy H_Bond_Energy was the sum of all individ-
ual bond energies found from all combinations of ligand
donor hydrogen atom and protein acceptor and all com-
binations of ligand acceptor and protein donor hydrogen
atom.

Following the placement of the ligand into the active
site of the protein, a 4-8 potential with linear cut-off
(similar in form to that used by Surles et al. (1994)) was
used to determine the energy of interaction between the
ligand and the protein. The 4-8 potential was of the
form:

Eij � A

d8
ij

ÿ B

d4
ij

where Eij was the energy of interaction between two
atoms and dij was the distance between them. The choice
of the parameters A and B is described below. This form
of pairwise interaction was chosen because it is much
softer than the standard 6-12 potential. Adjustments
were made to Eij if the two atoms were involved in a hy-
drogen bond. Eij was zero for the interaction between a
donor hydrogen atom and an acceptor, while the dis-
tance between the donor and acceptor is scaled by a fac-
tor of 1.43. This was equivalent to reducing the van der
Waals radii (Clark et al., 1989) of donor and acceptor by
70%. All pairwise interaction energies of ligand and pro-
tein atoms in close contact (a cut-off distance of 1.5 times
the sum of the van der Waals radii of the two atoms was
employed) were summed to give Complex_Energy.

Let ÿkij be the minimum energy of interaction be-
tween two atoms i and j. For interaction energies, Eij,
greater than scale � kij the linear cut-off was applied. The
gradient of the cut-off was such that Eij was
1.5 � scale � kij when dij was zero. This cut-off value was
expressed in terms of kij not for any physical reason, but
rather to enable the use of ef®cient lookup tables. The
parameter scale varied throughout the GA run. After the
application of 75,000 genetic operators it was set to
120.0, at the beginning of the GA run it was 1.0 and in-
between it was varied on a logarithmic scale. This scal-
ing was employed so that the GA was encouraged to
form close interactions with the protein early in the
course of a GA run, while ensuring that there was no
steric clash when the algorithm terminated.

The 4-8 potential was parameterised to reproduce the
minimum of the more usual 6-12 potential. The energy
of association between two molecules can be represented
using a Lennard-Jones 6-12 potential, where the second
term accounts for the attractive dispersion energy be-
where Ix is the ionisation potential of atom x (in eV) and
ax is the polarisability (in 1025cm3). Table 7 lists these
parameters for the common SYBYL atom types. Ionis-
ation potentials were taken from Hinze & Jaffe (1962)
and atom-centred polarisabilities were determined using
the method devised by Glen (1994). C was chosen so
that Eij was at a minimum when dij was equal to ri � rj,
or the sum of the van der Waals radii of the two atoms.
The parameters A and B were chosen so that the 4-8 po-
tential used by GOLD had the same minimum as the
Lennard-Jones 6-12 potential.

This potential proved to be particularly effective in re-
producing experimental ligand binding modes. A 4-8 po-
tential with a linear cut-off is much softer than the 6-12
potential that is traditionally used, allowing the GA to
form close contacts with the protein more easily.
Figure 10 shows the different forms of the following po-
tentials: the 6-12 carbon-carbon (C.3-C.3) interaction
used in the Tripos force®eld (Clark et al., 1989); the C.3-
C.3 interaction used in GOLD; and the oxygen-oxygen
(O.3-O.3) interaction used in GOLD. It can be seen that
the C-C potential used in GOLD is both softer and dee-
per than that used in the Tripos force®eld. Additionally,
the depth of the well for O.3-O.3 interactions is much
less than for C.3-C.3 interactions and is shallower than in
the Tripos force®eld (the minimum energy is
0.078 kcal molÿ1 in GOLD and 0.12 in the Tripos force-
®eld). In general, the van der Waals potential used in
GOLD will favour close contacts between hydrophobic
groups. This is perhaps not surprising in view of the
close relationship between polarisability and hydropho-
bicity.

The term Internal_Energy was a sum of the ligand ster-
ic and torsional energies. The steric energy was deter-
mined using a 6-12 potential of the form:

Eij � C

d12
ij

ÿ D

d6
ij

where C and D were calculated as described above. The



Figure 10. The form of the 4-8 potential used within
GOLD.

Figure 11. New donor and acceptor types and associ-
ated fragments used in hydrogen bonding energy deter-
mination.
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Tripos force®eld torsional potential used was of the
form:

Eijkl � 1

2
Vijkl

�
1� nijkl

jnijklj cos�jnijklj � oijkl�
�

where Eijkl was the torsional energy associated with four
consecutively bonded atoms i, j, k, l; o was the torsional
angle; n was the periodicity; and V the barrier to rotation
(the last two parameters are taken from Clark et al.
(1989)).

The ®nal ®tness score was determined by a sum of all
the energy components. The ®tness score was given by:

ÿH Bond Energyÿ �Internal Energy� Complex Energy�

The genetic operators

Rather than manipulate one large population of
chromosomes a distributed environment known as the
island model was employed. This involves several sub-
populations and the migration of individual chromo-
somes between the subpopulations (Starkweather et al.,
1990; Tanese, 1989). The island model and migration op-
erator were implemented as described in Jones et al.
(1995b). As observed by Jones et al. (1995b) the island
model did not improve the effectiveness of the GA, but
an improvement was seen in its ef®ciency. Five sub-
populations were used, each containing 100 individuals.

The GA made use of three genetic operators: cross-
over, mutation and migration. Crossover and mutation
are described by Jones et al. (1995a). The migration oper-
ator (described by Jones et al., 1995b) copied an individ-
ual from one island to a neighbouring island. Operators
were chosen using roulette-wheel selection based on op-
erator weights. These weights were chosen so that cross-
over and mutation were applied with equal probability
and migration was applied 5% of the time. After the ap-
plication of 100,000 genetic operations the algorithm ter-
minated, outputting the highest scoring docking.

As Jones et al. (1995a), selection was based on linear-
normalised ®tness scores and, in order to prevent prema-
ture convergence, a low selection pressure of 1.1 was
used (the selection pressure represents the relative prob-
ability that the best individual will be chosen as a parent
compared with the average individual). The technique of
nicheing (Goldberg & Deb, 1989) was used to further in-
crease population diversity. When adding an individual
to the population, nicheing involved comparing the indi-
vidual against every member of the population to deter-
mine if any members inhabited the same niche as the
new individual, which corresponded here to examining
the docked ligands associated with two chromosomes to
determine if they shared a niche. This was the case if the
r.m.s. distance between all donors and acceptors in both
ligand dockings was less than 1.0 AÊ . If more than one in-
dividual was found in the same niche as the new
chromosome then the new chromosome replaced the
least-®t chromosome in the niche, rather than the least-®t
chromosome in the population.

Calculation of hydrogen-bond energies

The hydrogen-bond energy between a donor and an
acceptor is an important component of the ®tness func-
tion, since each hydrogen-bonding pair contributes to
the overall energy of binding. As described by Jones et al.
(1995a) hydrogen bond energies between donor and ac-
ceptor types were precalculated using model fragments
and accounting for water-displacement. Initially the
donor (d) and the acceptor (a) are in solution, but on
coming together (da) water (w) is stripped off. Therefore
to simulate the interaction energy, Epair is composed of
four terms:

Epair � �Eda � Eww� ÿ �Edw � Eaw�:
Jones et al. (1995a) describe the generation of hydrogen-
bonding energies for six donor and 12 acceptor types.
However, searches of the CSD reveal that covalently
bound halogens rarely accept hydrogen bonds. Thus Cl,
Br and F are no longer counted as acceptors and the as-
sociated fragments CL, BR and F were removed from the
set of fragments. In continuing the development of the
algorithm we have added two metal ions (Mg and Zn)
and three acceptor types. Within GOLD, metal ions that
coordinate electronegative atoms are modelled in an ana-
logous fashion to donors (see below). The new acceptor
types are: amide oxygen (O2N), N�Oÿ2 nitro group
(ONO2) and deprotonated nitrogen (NACID). The ®rst
two acceptor types are based around the SYBYL O.2
atom types while the NACID acceptor is represented by
a N.pl3 atom singly bonded to only two neighbours. The
methods described by Jones et al. (1995a) were used to
calculate hydrogen-bond energies. The fragments used
within the modelling experiments are illustrated in
Figure 11, where the atoms coordinating the metal ions
were similar to those observed in protein structures. It
was assumed that the metal ions both had a formal
charge of �2, giving the total fragment charge for MG as



Table 8. Coordination energies for metals and hydrogen-bonding energies for new acceptor types

Energy (kcal molÿ1)

Donor or metal Acceptor Donor or metal Acceptor Complex Bond

N4 O2N ÿ24.784 ÿ7.955 ÿ39.569 ÿ8.732
NPL3 O2N ÿ4.427 ÿ7.955 ÿ11.024 ÿ.544
N3DA O2N ÿ1.147 ÿ7.955 ÿ5.206 1.994
NAM O2N ÿ5.919 ÿ7.955 ÿ14.521 ÿ2.549
O3DA O2N ÿ33.236 ÿ7.955 ÿ42.200 ÿ2.911
N2DA O2N ÿ10.005 ÿ7.955 ÿ15.992 .066
N4 NACID ÿ24.784 3.122 ÿ24.025 ÿ4.265
NPL3 NACID ÿ4.427 3.122 ÿ2.788 ÿ3.385
N3DA NACID ÿ1.147 3.122 6.984 3.107
NAM NACID ÿ5.919 3.122 ÿ5.696 ÿ4.801
O3DA NACID ÿ33.236 3.122 ÿ34.187 ÿ5.975
N2DA NACID ÿ10.005 3.122 ÿ6.442 ÿ1.461
N4 ONO2 ÿ24.784 11.604 ÿ18.679 ÿ7.401
NPL3 ONO2 ÿ4.427 11.604 9.106 .027
N3DA ONO2 ÿ1.147 11.604 15.100 2.741
NAM ONO2 ÿ5.919 11.604 5.898 ÿ1.689
O3DA ONO2 ÿ33.236 11.604 ÿ21.913 ÿ2.183
N2DA ONO2 ÿ10.005 11.604 4.635 1.134
MG N2DA ÿ95.340 ÿ10.356 ÿ99.107 4.687
MG O2 ÿ95.340 ÿ21.092 ÿ106.459 8.071
MG OCO2 ÿ95.340 ÿ22.926 ÿ130.455 ÿ14.091
MG N1 ÿ95.340 ÿ3.408 ÿ100.328 ÿ3.482
MG N3A ÿ95.340 ÿ13.432 ÿ93.791 13.079
MG O3A ÿ95.340 ÿ2.923 ÿ79.361 17
MG N2A ÿ95.340 ÿ2.802 ÿ102.587 ÿ6.347
MG N3DA ÿ95.340 ÿ2.041 ÿ92.878 2.601
MG O3DA ÿ95.340 ÿ34.695 ÿ140.749 ÿ12.616
MG NACID ÿ95.340 3.122 ÿ65.876 24.44
MG O2N ÿ95.340 ÿ7.955 ÿ86.008 15.385
MG ONO2 ÿ95.340 11.604 ÿ125.826 ÿ43.992
ZN N2DA 39.270 ÿ10.356 36.181 5.365
ZN O2 39.270 ÿ21.092 8.993 ÿ11.087
ZN OCO2 39.270 ÿ22.926 1.335 ÿ16.911
ZN N1 39.270 ÿ3.408 38.178 .414
ZN N3A 39.270 ÿ13.432 8.619 ÿ19.121
ZN O3A 39.270 ÿ2.923 26.565 ÿ11.684
ZN N2A 39.270 ÿ2.802 29.903 ÿ8.467
ZN N3DA 39.270 ÿ2.041 27.970 ÿ11.161
ZN O3DA 39.270 ÿ34.695 ÿ5.103 ÿ11.58
ZN NACID 39.270 3.122 28.300 ÿ15.994
ZN O2N 39.270 ÿ7.955 23.996 ÿ9.221
ZN ONO2 39.270 11.604 44.939 ÿ7.837

Dielectric constant � 1.0; water dimer energy � ÿ 1.902.
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ÿ1 and ZN as �1. The values in Table 9 are energies in
kcal molÿ1 obtained using gas-phase molecular mech-
anics (Clark et al., 1989) with PM3 Mulliken (Stewart,
1992) charges and a dielectric constant of 1.0. A special
fragment was not used for a deprotonated nitrogen atom
that was also a donor. In the event that an acidic nitro-
gen atom was also a donor it used the hydrogen-bond
energies obtained using the NPL3 donor fragment. The
energy of interaction between the MG and ONO2 frag-
ment was highly attractive, due to an electrostatic inter-
action between the nitrogen atom in the ONO2 fragment
and one of the coordinating acid groups. Because this
value seemed unreasonably attractive an empirical value
of ÿ10 kcal molÿ1 was used in preference.

In addition to Zn and Mg, the metal ions Fe, Mn and
Ca occur commonly in protein crystal structures. As
semi-empirical methods such as MOPAC (Stewart, 1992)
are not reliably parameterised for these metals we were
unable to obtain good charges for the determination of
metal coordination energies. The empirical energies
listed in Table 9 were used by the GA for these metals.
In the algorithm described by Jones et al. (1995a) we
treated the nitrogen atoms in all lysine residues as sol-
vated and used a separate set of hydrogen-bonding ener-
gies for these donors. With the new pairwise energy
term this rather arbitrary approach was found to be un-
necessary, since if the ligand were to bind to a solvent-
exposed lysine residue it could not then form close con-
tacts with the active site. Thus, in the algorithm de-
scribed here, lysine groups donated using the gas-phase
energies calculated for N4 fragment.

In order to obtain more accurate hydrogen-bonding
energies an attempt was made to recalculate values of
Epair using inter-molecular perturbation theory (IMPT:
Hayes & Stone, 1984). Unfortunately this method pro-
duced bond energies that were far too attractive (J.P.M.
Lommerse, personal communication). The implication
must be that the bond energies produced for the algor-
ithm, using molecular mechanics with PM3 Mulliken
charges, are of questionable accuracy, since a much high-
er level of theory has produced results that are much
less acceptable. In a separate study, Mitchell & Price
(1991) used the IMPT method to estimate amide..amide



Table 9. Empirical coordination energies for Zn, Fe and
Mn metal ions

Acceptor Energy (kcal molÿ1)

N2DA, N1, O3 0
N2, O2, N3, N3DA, O2N,
ONO2 ÿ10.0
OCO2, O3DA, NACID ÿ15.0

Table 10. Metal ion coordination distances

Metal Ion Coordination distance

Mg 2.09
Zn 2.05
Mn 1.98
Fe 2.06
Ca 2.44
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hydrogen-bond energies and emphasised that care must
be taken in extrapolating results from small model sys-
tems to interactions with peptides and proteins. Thus, it
would appear that the bond energies used within the
program should not be taken literally, but should be re-
garded as empirical parameters that are effective in elu-
cidating ligand binding modes. It is clear that the issue
of solvation is very complicated, but the effect of the sol-
vent may be better modelled using a larger bath of many
water molecules, rather than the single water molecule
in our simple dimer systems. However, this could be
done only with signi®cant computational costs.

Extensions to the algorithm

In order to be able to better predict binding modes for
a wide variety of protein-ligand complexes several exten-
sions were made to the basic algorithm described above.

Metal ions

A large number of observed protein-ligand inter-
actions involve metal ion coordination. In order to pre-
dict these binding modes, common metal ion
coordination geometries have been incorporated into the
software.

As described above, energies for the coordination of
electronegative atoms to positively charged metal ions
have been added to the program, to enable it to dock
ligands into proteins containing Mg, Mn, Zn, Fe or Ca
ions. These ions are observed in protein crystal struc-
tures coordinating to electronegative atoms in predomi-
nantly tetrahedral or octahedral geometry (Glusker,
1991). The positively charged metal ions were modelled
in a similar fashion to hydrogen bond donors. The co-
ordination geometry (tetrahedral or octahedral) of a
metal ion was determined as follows: coordinating
atoms within the protein were located and coordinating
positions identi®ed, where a coordinating position could
be either a coordinating atom or the mid-point between
two coordinating electronegative atoms bonded to a
common atom (for example a carboxylic acid group, or a
coordinating water molecule). This enabled the program
to recognise the bifurcated coordination of tetrahedral
zinc and the EF hands that bind calcium (Glusker, 1991).
Coordination angles between the metal and pairs of co-
ordinating positions were measured: coordination angles
of over 135� were assumed to indicate octahedral geome-
try and were counted as 90�; if the mean coordination
angle was between 60� and 105� then octahedral geome-
try was assigned; while if the angle was between 105�
and 135� then the metal ion showed tetrahedral geome-
try. Two exceptions were made to these rules: ®rst Ca
ions were assumed to be octahedral. Ca ions typically
have coordination numbers of 6 to 10, so do not form tet-
rahedral geometry (Glusker, 1991). With the ability to re-
cognise bifurcated metal liganding GOLD will correctly
model most of these cases. Second, Fe ions coordinated
by three or more sulphur atoms were assigned tetrahe-
dral geometry (in the ferrodoxins, sulphur atoms coordi-
nate Fe ions in a distorted tetrahedral geometry
(Glusker, 1991)).

Table 10 shows metal ion coordination distances.
These were determined from the CSD using mean oxy-
gen-metal contact distances. A set of idealised coordi-
nation positions was ®tted onto the metal ion, and those
positions that were available for ligand binding deter-
mined. Within the chromosome string, ligand acceptors
were allowed to map to metal coordination positions.
When decoding such a chromosome, the 3D coordinates
of the position were used as a virtual ®tting point. A co-
ordination energy was then determined, using the
methods described above for hydrogen bonding.

Small ligand model

If a ligand has fewer than three donor hydrogen
atoms and acceptors, then docking by least-squares ®t-
ting will not be possible. Additionally, docking may be
unreliable if the ligand has a small number of polar
groups, especially since some of these may be solvated
in reality. Thus GOLD utilised an alternative encoding
when docking ligands with fewer than ®ve donors and
acceptors.

One integer value and six bytes were added to the
chromosome encoding. The integer value was con-
strained to lie between 1 and the number of donor hy-
drogen atoms and acceptors in the ligand. The
chromosome was decoded as follows: the ®rst three
bytes were decoded to generate rotations between 0 and
360�, these being applied to the ligand around the x, y
and z axes, respectively. Next, the integer was used to
pick one of the mappings between the ligand and the
protein. This mapping was then decoded by placing the
appropriate acceptor on the donor hydrogen ®tting
point. The ®nal three bytes were then decoded to pro-
duce relaxation distances between ÿ0.5 AÊ and 0.5 AÊ ,
which were applied as translations to the ligand along
the x, y and z axes. Following this process the ligand
was docked in the active site. In the case that the ligand
had only one acceptor or donor hydrogen atom, the ad-
ditional integer value was not required. Unfortunately, if
the ligand has no polar group GOLD is currently unable
to perform a docking.

While this feature enabled the algorithm to produce
answers for ligand with few polar groups, the additional
encoding did not appear to be as effective in docking
ligands as the least-squares ®tting process. In fact, it is
not clear that crossover can perform well on the ad-
ditional binary encoding, whereas it clearly provides a
highly effective mechanism for exchanging hydrogen-
bond motifs.
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Ligand cyclic flexibility

Free corner ¯ipping was encoded into the algorithm
(Goto & Osawa, 1989), in order to allow for limited cyc-
lic ¯exibility of the ligand. This technique allows the cor-
ner atoms of rings to ¯ip above and below their
neighbours. For example, a ring in a boat conformation
can ¯ip a corner into a chair conformation. Each free cor-
ner was encoded as an additional bit in the binary string
encoding ligand conformations. If a bit was set when de-
coding this string, then the corresponding free corner
was ¯ipped. The technique of free corner ¯ipping within
a binary string genetic algorithm is comprehensively de-
scribed by Payne & Glen (1993).

Because bioactive conformations for small acyclic
rings are often known with some reliability, and corner
¯ipping can serve only to increase the complexity of the
docking problem, corner ¯ipping was turned off by de-
fault but was available as an option to the user. Those
examples for which corner-¯ipping was used are listed
in Results.

Covalently bound inhibitors

A modi®cation to the algorithm was required to dock
covalently bound inhibitors. Rather than attempt to elu-
cidate covalent binding, the user was required to select
covalent binding as an option and to inform the software
of the protein and ligand atoms to be joined by a co-
valent bond. This was achieved by identifying the pro-
tein atom that would bind to the ligand (for example, a
serine oxygen atom). This atom was then included in the
ligand input ®le, appropriately bonded to the rest of the
ligand. On docking, the least-squares ®tting routine was
modi®ed to ensure that the protein atom in the ligand
®le was overlaid to its equivalent in the protein active
site. Two energy terms were then added to Complex_E-
nergy: the ®rst was a torsional term to account for the
torsional energy for the bond linking the protein to the
ligand (this was identical with the SYBYL torsional term
described above); the second was an angle bending term
to ensure that the bond angle between the two bonds
linking the ligand and the protein was correct. This
second term was taken from the Tripos force®eld and
was of the form:

Eijk � kijk � �oÿ yijk�2

where i,j and k are the three atoms forming the bond
angle, ois the measured angle and kijk and yijk are par-
ameters of the force®eld (Clark et al., 1989).

If the covalently bound inhibitor being docked had
less than ®ve donors and acceptors then mappings be-
tween the ligand and the protein were not included in
the chromosome. Three bytes were added to the binary
string encoding the protein conformation. The three
bytes were decoded to give rotations about the x, y, and
z axes. These were applied to the ligand, which was then
docked by forming the covalent bond.
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