
Chapter 3

FORWARD KINEMATICS:

THE

DENAVIT-HARTENBERG

CONVENTION

In this chapter we develop the forward or configuration kinematic equa-
tions for rigid robots. The forward kinematics problem is concerned with
the relationship between the individual joints of the robot manipulator and
the position and orientation of the tool or end-effector. Stated more formally,
the forward kinematics problem is to determine the position and orientation
of the end-effector, given the values for the joint variables of the robot. The
joint variables are the angles between the links in the case of revolute or
rotational joints, and the link extension in the case of prismatic or sliding
joints. The forward kinematics problem is to be contrasted with the inverse
kinematics problem, which will be studied in the next chapter, and which
is concerned with determining values for the joint variables that achieve a
desired position and orientation for the end-effector of the robot.

3.1 Kinematic Chains

As described in Chapter 1, a robot manipulator is composed of a set of
links connected together by various joints. The joints can either be very
simple, such as a revolute joint or a prismatic joint, or else they can be more
complex, such as a ball and socket joint. (Recall that a revolute joint is like
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a hinge and allows a relative rotation about a single axis, and a prismatic
joint permits a linear motion along a single axis, namely an extension or
retraction.) The difference between the two situations is that, in the first
instance, the joint has only a single degree-of-freedom of motion: the angle of
rotation in the case of a revolute joint, and the amount of linear displacement
in the case of a prismatic joint. In contrast, a ball and socket joint has two
degrees-of-freedom. In this book it is assumed throughout that all joints
have only a single degree-of-freedom. Note that the assumption does not
involve any real loss of generality, since joints such as a ball and socket joint
(two degrees-of-freedom) or a spherical wrist (three degrees-of-freedom) can
always be thought of as a succession of single degree-of-freedom joints with
links of length zero in between.

With the assumption that each joint has a single degree-of-freedom, the
action of each joint can be described by a single real number: the angle of
rotation in the case of a revolute joint or the displacement in the case of a
prismatic joint. The objective of forward kinematic analysis is to determine
the cumulative effect of the entire set of joint variables. In this chapter
we will develop a set of conventions that provide a systematic procedure
for performing this analysis. It is, of course, possible to carry out forward
kinematics analysis even without respecting these conventions, as we did
for the two-link planar manipulator example in Chapter 1. However, the
kinematic analysis of an n-link manipulator can be extremely complex and
the conventions introduced below simplify the analysis considerably. More-
over, they give rise to a universal language with which robot engineers can
communicate.

A robot manipulator with n joints will have n+ 1 links, since each joint
connects two links. We number the joints from 1 to n, and we number the
links from 0 to n, starting from the base. By this convention, joint i connects
link i− 1 to link i. We will consider the location of joint i to be fixed with
respect to link i− 1. When joint i is actuated, link i moves. Therefore, link
0 (the first link) is fixed, and does not move when the joints are actuated.
Of course the robot manipulator could itself be mobile (e.g., it could be
mounted on a mobile platform or on an autonomous vehicle), but we will
not consider this case in the present chapter, since it can be handled easily
by slightly extending the techniques presented here.

With the ith joint, we associate a joint variable, denoted by qi. In the
case of a revolute joint, qi is the angle of rotation, and in the case of a
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Figure 3.1: Coordinate frames attached to elbow manipulator.

prismatic joint, qi is the joint displacement:

qi =

{

θi : joint i revolute
di : joint i prismatic

. (3.1)

To perform the kinematic analysis, we rigidly attach a coordinate frame
to each link. In particular, we attach oixiyizi to link i. This means that,
whatever motion the robot executes, the coordinates of each point on link
i are constant when expressed in the ith coordinate frame. Furthermore,
when joint i is actuated, link i and its attached frame, oixiyizi, experience
a resulting motion. The frame o0x0y0z0, which is attached to the robot
base, is referred to as the inertial frame. Figure 3.1 illustrates the idea of
attaching frames rigidly to links in the case of an elbow manipulator.

Now suppose Ai is the homogeneous transformation matrix that ex-
presses the position and orientation of oixiyizi with respect to oi−1xi−1yi−1zi−1.
The matrix Ai is not constant, but varies as the configuration of the robot
is changed. However, the assumption that all joints are either revolute or
prismatic means that Ai is a function of only a single joint variable, namely
qi. In other words,

Ai = Ai(qi). (3.2)

Now the homogeneous transformation matrix that expresses the position
and orientation of ojxjyjzj with respect to oixiyizi is called, by convention,
a transformation matrix, and is denoted by T i

j . From Chapter 2 we see
that

T i

j = Ai+1Ai+2 . . . Aj−1Aj if i < j
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T i

j = I if i = j (3.3)

T i

j = (T j

i )−1 if j > i.

By the manner in which we have rigidly attached the various frames
to the corresponding links, it follows that the position of any point on the
end-effector, when expressed in frame n, is a constant independent of the
configuration of the robot. Denote the position and orientation of the end-
effector with respect to the inertial or base frame by a three-vector O0

n

(which gives the coordinates of the origin of the end-effector frame with
respect to the base frame) and the 3× 3 rotation matrix R0

n, and define the
homogeneous transformation matrix

H =

[

R0

n O0

n

0 1

]

. (3.4)

Then the position and orientation of the end-effector in the inertial frame
are given by

H = T 0

n = A1(q1) · · ·An(qn). (3.5)

Each homogeneous transformation Ai is of the form

Ai =

[

Ri−1

i Oi−1

i

0 1

]

. (3.6)

Hence

T i

j = Ai+1 · · ·Aj =

[

Ri
j Oi

j

0 1

]

. (3.7)

The matrix Ri
j expresses the orientation of ojxjyjzj relative to oixiyizi

and is given by the rotational parts of the A-matrices as

Ri

j = Ri

i+1
· · ·Rj−1

j . (3.8)

The coordinate vectors Oi

j are given recursively by the formula

Oi

j = Oi

j−1 +Ri

j−1
Oj−1

j , (3.9)

These expressions will be useful in Chapter 5 when we study Jacobian ma-
trices.

In principle, that is all there is to forward kinematics! Determine the
functions Ai(qi), and multiply them together as needed. However, it is pos-
sible to achieve a considerable amount of streamlining and simplification by
introducing further conventions, such as the Denavit-Hartenberg represen-
tation of a joint, and this is the objective of the remainder of the chapter.
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3.2 Denavit Hartenberg Representation

While it is possible to carry out all of the analysis in this chapter using an
arbitrary frame attached to each link, it is helpful to be systematic in the
choice of these frames. A commonly used convention for selecting frames of
reference in robotic applications is the Denavit-Hartenberg, or D-H conven-
tion. In this convention, each homogeneous transformation Ai is represented
as a product of four basic transformations

Ai = Rz,θi
Transz,di

Transx,ai
Rx,αi

(3.10)

=











cθi
−sθi

0 0
sθi

cθi
0 0

0 0 1 0
0 0 0 1





















1 0 0 0
0 1 0 0
0 0 1 di

0 0 0 1





















1 0 0 ai

0 1 0 0
0 0 1 0
0 0 0 1





















1 0 0 0
0 cαi

−sαi
0

0 sαi
cαi

0
0 0 0 1











=











cθi
−sθi

cαi
sθi
sαi

aicθi

sθi
cθi
cαi

−cθi
sαi

aisθi

0 sαi
cαi

di

0 0 0 1











where the four quantities θi, ai, di, αi are parameters associated with link
i and joint i. The four parameters ai, αi, di, and θi in (3.10) are generally
given the names link length, link twist, link offset, and joint angle,
respectively. These names derive from specific aspects of the geometric
relationship between two coordinate frames, as will become apparent below.
Since the matrix Ai is a function of a single variable, it turns out that three
of the above four quantities are constant for a given link, while the fourth
parameter, θi for a revolute joint and di for a prismatic joint, is the joint
variable.

From Chapter 2 one can see that an arbitrary homogeneous transforma-
tion matrix can be characterized by six numbers, such as, for example, three
numbers to specify the fourth column of the matrix and three Euler angles
to specify the upper left 3×3 rotation matrix. In the D-H representation, in
contrast, there are only four parameters. How is this possible? The answer
is that, while frame i is required to be rigidly attached to link i, we have
considerable freedom in choosing the origin and the coordinate axes of the
frame. For example, it is not necessary that the origin, Oi, of frame i be
placed at the physical end of link i. In fact, it is not even necessary that
frame i be placed within the physical link; frame i could lie in free space —
so long as frame i is rigidly attached to link i. By a clever choice of the origin
and the coordinate axes, it is possible to cut down the number of parameters
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Figure 3.2: Coordinate frames satisfying assumptions DH1 and DH2.

needed from six to four (or even fewer in some cases). In Section 3.2.1 we
will show why, and under what conditions, this can be done, and in Section
3.2.2 we will show exactly how to make the coordinate frame assignments.

3.2.1 Existence and uniqueness issues

Clearly it is not possible to represent any arbitrary homogeneous transforma-
tion using only four parameters. Therefore, we begin by determining just
which homogeneous transformations can be expressed in the form (3.10).
Suppose we are given two frames, denoted by frames 0 and 1, respectively.
Then there exists a unique homogeneous transformation matrix A that takes
the coordinates from frame 1 into those of frame 0. Now suppose the two
frames have two additional features, namely:

(DH1) The axis x1 is perpendicular to the axis z0

(DH2) The axis x1 intersects the axis z0

as shown in Figure 3.2. Under these conditions, we claim that there exist
unique numbers a, d, θ, α such that

A = Rz,θTransz,dTransx,aRx,α. (3.11)

Of course, since θ and α are angles, we really mean that they are unique to
within a multiple of 2π. To show that the matrix A can be written in this
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form, write A as

A =

[

R0

1
O0

1

0 1

]

(3.12)

and let ri denote the ith column of the rotation matrix R0

1
. We will now

examine the implications of the two DH constraints.

If (DH1) is satisfied, then x1 is perpendicular to z0 and we have x1·z0 = 0.
Expressing this constraint with respect to o0x0y0z0, using the fact that r1 is
the representation of the unit vector x1 with respect to frame 0, we obtain

0 = x0

1 · z
0

0 (3.13)

= [r11, r21, r31]
T
· [0, 0, 1]T (3.14)

= r31. (3.15)

Since r31 = 0, we now need only show that there exist unique angles θ and
α such that

R0

1
= Rx,θRx,α =







cθ −sθcα sθsα

sθ cθcα −cθsα

0 sα cα






. (3.16)

The only information we have is that r31 = 0, but this is enough. First,
since each row and column of R0

1
must have unit length, r31 = 0 implies that

r211 + r221 = 1,

r232 + r233 = 1 (3.17)

Hence there exist unique θ, α such that

(r11, r21) = (cθ, sθ), (r33, r32) = (cα, sα). (3.18)

Once θ and α are found, it is routine to show that the remaining elements of
R0

1
must have the form shown in (3.16), using the fact that R0

1
is a rotation

matrix.

Next, assumption (DH2) means that the displacement between O0 and
O1 can be expressed as a linear combination of the vectors z0 and x1. This
can be written as O1 = O0 + dz0 + ax1. Again, we can express this relation-
ship in the coordinates of o0x0y0z0, and we obtain

O0

1 = O0

0 + dz0

0 + ax0

1 (3.19)
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=







0
0
0






+ d







0
0
1






+ a







cθ
sθ

0






(3.20)

=







acθ
asθ

d






. (3.21)

Combining the above results, we obtain (3.10) as claimed. Thus, we see
that four parameters are sufficient to specify any homogeneous transforma-
tion that satisfies the constraints (DH1) and (DH2).

Now that we have established that each homogeneous transformation
matrix satisfying conditions (DH1) and (DH2) above can be represented
in the form (3.10), we can in fact give a physical interpretation to each
of the four quantities in (3.10). The parameter a is the distance between
the axes z0 and z1, and is measured along the axis x1. The angle α is the
angle between the axes z0 and z1, measured in a plane normal to x1. The
positive sense for α is determined from z0 to z1 by the right-hand rule as
shown in Figure 3.3. The parameter d is the distance between the origin

xi

αi zi−1

xi

θi

zi−1

xi−1

zi

Figure 3.3: Positive sense for αi and θi.

O0 and the intersection of the x1 axis with z0 measured along the z0 axis.
Finally, θ is the angle between x0 and x1 measured in a plane normal to z0.
These physical interpretations will prove useful in developing a procedure for
assigning coordinate frames that satisfy the constraints (DH1) and (DH2),
and we now turn our attention to developing such a procedure.



3.2. DENAVIT HARTENBERG REPRESENTATION 79

3.2.2 Assigning the coordinate frames

For a given robot manipulator, one can always choose the frames 0, . . . , n in
such a way that the above two conditions are satisfied. In certain circum-
stances, this will require placing the origin Oi of frame i in a location that
may not be intuitively satisfying, but typically this will not be the case. In
reading the material below, it is important to keep in mind that the choices
of the various coordinate frames are not unique, even when constrained by
the requirements above. Thus, it is possible that different engineers will
derive differing, but equally correct, coordinate frame assignments for the
links of the robot. It is very important to note, however, that the end re-
sult (i.e., the matrix T 0

n) will be the same, regardless of the assignment of
intermediate link frames (assuming that the coordinate frames for link n

coincide). We will begin by deriving the general procedure. We will then
discuss various common special cases where it is possible to further simplify
the homogeneous transformation matrix.

To start, note that the choice of zi is arbitrary. In particular, from (3.16),
we see that by choosing αi and θi appropriately, we can obtain any arbitrary
direction for zi. Thus, for our first step, we assign the axes z0, . . . , zn−1 in
an intuitively pleasing fashion. Specifically, we assign zi to be the axis of
actuation for joint i + 1. Thus, z0 is the axis of actuation for joint 1, z1 is
the axis of actuation for joint 2, etc. There are two cases to consider: (i) if
joint i + 1 is revolute, zi is the axis of revolution of joint i + 1; (ii) if joint
i+ 1 is prismatic, zi is the axis of translation of joint i+ 1. At first it may
seem a bit confusing to associate zi with joint i + 1, but recall that this
satisfies the convention that we established in Section 3.1, namely that joint
i is fixed with respect to frame i, and that when joint i is actuated, link i

and its attached frame, oixiyizi, experience a resulting motion.

Once we have established the z-axes for the links, we establish the base
frame. The choice of a base frame is nearly arbitrary. We may choose the
origin O0 of the base frame to be any point on z0. We then choose x0, y0 in
any convenient manner so long as the resulting frame is right-handed. This
sets up frame 0.

Once frame 0 has been established, we begin an iterative process in which
we define frame i using frame i− 1, beginning with frame 1. Figure 3.4 will
be useful for understanding the process that we now describe.

In order to set up frame i it is necessary to consider three cases: (i) the
axes zi−1, zi are not coplanar, (ii) the axes zi−1, zi intersect (iii) the axes
zi−1, zi are parallel. Note that in both cases (ii) and (iii) the axes zi−1 and
zi are coplanar. This situation is in fact quite common, as we will see in
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Figure 3.4: Denavit-Hartenberg frame assignment.

Section 3.3. We now consider each of these three cases.

(i) zi−1 and zi are not coplanar: If zi−l and zi are not coplanar, then
there exists a unique line segment perpendicular to both zi−1 and zi such
that it connects both lines and it has minimum length. The line containing
this common normal to zi−1 and zi defines xi, and the point where this line
intersects zi is the origin Oi. By construction, both conditions (DH1) and
(DH2) are satisfied and the vector from Oi−1 to Oi is a linear combination
of zi−1 and xi. The specification of frame i is completed by choosing the
axis yi to form a right-hand frame. Since assumptions (DH1) and (DH2) are
satisfied the homogeneous transformation matrix Ai is of the form (3.10).

(ii) zi−1 is parallel to zi: If the axes zi−1 and zi are parallel, then there are
infinitely many common normals between them and condition (DH1) does
not specify xi completely. In this case we are free to choose the origin Oi

anywhere along zi. One often chooses Oi to simplify the resulting equations.
The axis xi is then chosen either to be directed from Oi toward zi−1, along
the common normal, or as the opposite of this vector. A common method
for choosing Oi is to choose the normal that passes through Oi−1 as the xi

axis; Oi is then the point at which this normal intersects zi. In this case, di

would be equal to zero. Once xi is fixed, yi is determined, as usual by the
right hand rule. Since the axes zi−1 and zi are parallel, αi will be zero in
this case.

(iii) zi−1 intersects zi: In this case xi is chosen normal to the plane
formed by zi and zi−1. The positive direction of xi is arbitrary. The most
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natural choice for the origin Oi in this case is at the point of intersection of
zi and zi−1. However, any convenient point along the axis zi suffices. Note
that in this case the parameter ai equals 0.

This constructive procedure works for frames 0, . . . , n − l in an n-link
robot. To complete the construction, it is necessary to specify frame n.
The final coordinate system onxnynzn is commonly referred to as the end-
effector or tool frame (see Figure 3.5). The origin On is most often

Note: currently rendering

a 3D gripper...

y
n
≡ s

O
n

O0

z0

y0
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x
n
≡ n

z
n
≡ a

Figure 3.5: Tool frame assignment.

placed symmetrically between the fingers of the gripper. The unit vectors
along the xn, yn, and zn axes are labeled as n, s, and a, respectively. The
terminology arises from fact that the direction a is the approach direction,
in the sense that the gripper typically approaches an object along the a

direction. Similarly the s direction is the sliding direction, the direction
along which the fingers of the gripper slide to open and close, and n is the
direction normal to the plane formed by a and s.

In contemporary robots the final joint motion is a rotation of the end-
effector by θn and the final two joint axes, zn−1 and zn, coincide. In this
case, the transformation between the final two coordinate frames is a trans-
lation along zn−1 by a distance dn followed (or preceded) by a rotation of
θn radians about zn−1. This is an important observation that will simplify
the computation of the inverse kinematics in the next chapter.

Finally, note the following important fact. In all cases, whether the joint
in question is revolute or prismatic, the quantities ai and αi are always
constant for all i and are characteristic of the manipulator. If joint i is pris-
matic, then θi is also a constant, while di is the ith joint variable. Similarly,
if joint i is revolute, then di is constant and θi is the ith joint variable.
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3.2.3 Summary

We may summarize the above procedure based on the D-H convention in the
following algorithm for deriving the forward kinematics for any manipulator.

Step l: Locate and label the joint axes z0, . . . , zn−1.

Step 2: Establish the base frame. Set the origin anywhere on the z0-axis.
The x0 and y0 axes are chosen conveniently to form a right-hand frame.

For i = 1, . . . , n− 1, perform Steps 3 to 5.

Step 3: Locate the origin Oi where the common normal to zi and zi−1

intersects zi. If zi intersects zi−1 locate Oi at this intersection. If zi
and zi−1 are parallel, locate Oi in any convenient position along zi.

Step 4: Establish xi along the common normal between zi−1 and zi through
Oi, or in the direction normal to the zi−1 − zi plane if zi−1 and zi
intersect.

Step 5: Establish yi to complete a right-hand frame.

Step 6: Establish the end-effector frame onxnynzn. Assuming the n-th joint
is revolute, set zn = a along the direction zn−1. Establish the origin
On conveniently along zn, preferably at the center of the gripper or at
the tip of any tool that the manipulator may be carrying. Set yn = s

in the direction of the gripper closure and set xn = n as s × a. If
the tool is not a simple gripper set xn and yn conveniently to form a
right-hand frame.

Step 7: Create a table of link parameters ai, di, αi, θi.

ai = distance along xi from Oi to the intersection of the xi and zi−1

axes.

di = distance along zi−1 from Oi−1 to the intersection of the xi and
zi−1 axes. di is variable if joint i is prismatic.

αi = the angle between zi−1 and zi measured about xi (see Figure
3.3).

θi = the angle between xi−1 and xi measured about zi−1 (see Figure
3.3). θi is variable if joint i is revolute.

Step 8: Form the homogeneous transformation matrices Ai by substituting
the above parameters into (3.10).
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Step 9: Form T 0

n = A1 · · ·An. This then gives the position and orientation
of the tool frame expressed in base coordinates.

3.3 Examples

In the D-H convention the only variable angle is θ, so we simplify notation
by writing ci for cos θi, etc. We also denote θ1 + θ2 by θ12, and cos(θ1 + θ2)
by c12, and so on. In the following examples it is important to remember
that the D-H convention, while systematic, still allows considerable freedom
in the choice of some of the manipulator parameters. This is particularly
true in the case of parallel joint axes or when prismatic joints are involved.

Example 3.1 Planar Elbow Manipulator

Consider the two-link planar arm of Figure 3.6. The joint axes z0 and

y0

x0

θ1

x1

x2

θ2

y1

y2

a1

a2

Figure 3.6: Two-link planar manipulator. The z-axes all point out of the
page, and are not shown in the figure.

z1 are normal to the page. We establish the base frame o0x0y0z0 as shown.
The origin is chosen at the point of intersection of the z0 axis with the page
and the direction of the x0 axis is completely arbitrary. Once the base frame
is established, the o1x1y1z1 frame is fixed as shown by the D-H convention,
where the origin O1 has been located at the intersection of z1 and the page.
The final frame o2x2y2z2 is fixed by choosing the origin O2 at the end of link 2
as shown. The link parameters are shown in Table 3.1. The A-matrices are
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Table 3.1: Link parameters for 2-link planar manipulator.

Link ai αi di θi

1 a1 0 0 θ∗1
2 a2 0 0 θ∗2

∗ variable

determined from (3.10) as

A1 =











c1 −s1 0 a1c1
s1 c1 0 a1s1
0 0 1 0
0 0 0 1











. (3.22)

A2 =











c2 −s2 0 a2c2
s2 c2 0 a2s2
0 0 1 0
0 0 0 1











(3.23)

The T -matrices are thus given by

T 0

1
= A1. (3.24)

T 0

2
= A1A2 =











c12 −s12 0 a1c1 + a2c12
s12 c12 0 a1s1 + a2s12
0 0 1 0
0 0 0 1











. (3.25)

Notice that the first two entries of the last column of T 0

2
are the x and y

components of the origin O2 in the base frame; that is,

x = a1c1 + a2c12 (3.26)

y = a1s1 + a2s12

are the coordinates of the end-effector in the base frame. The rotational part
of T 0

2
gives the orientation of the frame o2x2y2z2 relative to the base frame.

⋄

Example 3.2 Three-Link Cylindrical Robot
Consider now the three-link cylindrical robot represented symbolically by

Figure 3.7. We establish O0 as shown at joint 1. Note that the placement of
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Figure 3.7: Three-link cylindrical manipulator.

Table 3.2: Link parameters for 3-link cylindrical manipulator.

Link ai αi di θi

1 0 0 d1 θ∗1
2 0 −90 d∗2 0
3 0 0 d∗3 0

∗ variable

the origin O0 along z0 as well as the direction of the x0 axis are arbitrary.
Our choice of O0 is the most natural, but O0 could just as well be placed
at joint 2. The axis x0 is chosen normal to the page. Next, since z0 and
z1 coincide, the origin O1 is chosen at joint 1 as shown. The x1 axis is
normal to the page when θ1 = 0 but, of course its direction will change since
θ1 is variable. Since z2 and z1 intersect, the origin O2 is placed at this
intersection. The direction of x2 is chosen parallel to x1 so that θ2 is zero.
Finally, the third frame is chosen at the end of link 3 as shown.

The link parameters are now shown in Table 3.2. The corresponding A
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and T matrices are

A1 =











c1 −s1 0 0
s1 c1 0 0
0 0 1 d1

0 0 0 1











(3.27)

A2 =











1 0 0 0
0 0 1 0
0 −1 0 d2

0 0 0 1











A3 =











1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1











T 0

3
= A1A2A3 =











c1 0 −s1 −s1d3

s1 0 c1 c1d3

0 −1 0 d1 + d2

0 0 0 1











. (3.28)

⋄

Example 3.3 Spherical Wrist

θ5

θ4

z5

x4

z4

θ6

To gripper

x5

z3,

Figure 3.8: The spherical wrist frame assignment.

The spherical wrist configuration is shown in Figure 3.8, in which the
joint axes z3, z4, z5 intersect at O. The Denavit-Hartenberg parameters are
shown in Table 3.3. The Stanford manipulator is an example of a manipula-
tor that possesses a wrist of this type. In fact, the following analysis applies
to virtually all spherical wrists.
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Table 3.3: DH parameters for spherical wrist.

Link ai αi di θi

4 0 −90 0 θ∗4
5 0 90 0 θ∗5
6 0 0 d6 θ∗6

∗ variable

We show now that the final three joint variables, θ4, θ5, θ6 are the Euler
angles φ, θ, ψ, respectively, with respect to the coordinate frame o3x3y3z3. To
see this we need only compute the matrices A4, A5, and A6 using Table 3.3
and the expression (3.10). This gives

A4 =











c4 0 −s4 0
s4 0 c4 0
0 −1 0 0
0 0 0 1











(3.29)

A5 =











c5 0 s5 0
s5 0 −c5 0
0 −1 0 0
0 0 0 1











(3.30)

A6 =











c6 −s6 0 0
s6 c6 0 0
0 0 1 d6

0 0 0 1











. (3.31)

Multiplying these together yields

T 3

6
= A4A5A6 =

[

R3

6
O3

6

0 1

]

(3.32)

=











c4c5c6 − s4s6 −c4c5s6 − s4c6 c4s5 c4s5d6

s4c5c6 + c4s6 −s4c5s6 + c4c6 s4s5 s4s5d6

−s5c6 s5s6 c5 c5d6

0 0 0 1











.

Comparing the rotational part R3

6
of T 3

6
with the Euler angle transforma-

tion (2.51) shows that θ4, θ5, θ6 can indeed be identified as the Euler angles
φ, θ and ψ with respect to the coordinate frame o3x3y3z3.
⋄
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Example 3.4 Cylindrical Manipulator with Spherical Wrist

Suppose that we now attach a spherical wrist to the cylindrical manipula-
tor of Example 3.3.2 as shown in Figure 3.9. Note that the axis of rotation of

d3

θ1

d2

θ5

θ4 θ6 n s

a

Figure 3.9: Cylindrical robot with spherical wrist.

joint 4 is parallel to z2 and thus coincides with the axis z3 of Example 3.3.2.
The implication of this is that we can immediately combine the two previous
expression (3.28) and (3.32) to derive the forward kinematics as

T 0

6
= T 0

3
T 3

6
(3.33)

with T 0

3
given by (3.28) and T 3

6
given by (3.32). Therefore the forward

kinematics of this manipulator is described by

T 0

6
=











c1 0 −s1 −s1d1

s1 0 c1 c1d3

0 −1 0 d1 + d2

0 0 0 1





















c4c5c6 − s4s6 −c4c5s6 − s4c6 c4s5 c4s5d6

s4c5c6 + c4s6 −s4c5s6 + c4c6 s4s5 s4s5d6

−s5c6 s5c6 c5 c5d6

0 0 0 1











(3.34)

=











r11 r12 r13 dx

r21 r22 r23 dy

r31 r32 r33 dz

0 0 0 1










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where

r11 = c1c4c5c6 − c1s4s6 + s1s5c6

r21 = s1c4c5c6 − s1s4s6 − c1s5c6

r31 = −s4c5c6 − c4s6

r12 = −c1c4c5s6 − c1s4c6 − s1s5c6

r22 = −s1c4c5s6 − s1s4s6 + c1s5c6

r32 = s4c5c6 − c4c6

r13 = c1c4s5 − s1c5

r23 = s1c4s5 + c1c5

r33 = −s4s5

dx = c1c4s5d6 − s1c5d6 − s1d3

dy = s1c4s5d6 + c1c5d6 + c1d3

dz = −s4s5d6 + d1 + d2.

Notice how most of the complexity of the forward kinematics for this
manipulator results from the orientation of the end-effector while the ex-
pression for the arm position from (3.28) is fairly simple. The spherical
wrist assumption not only simplifies the derivation of the forward kinemat-
ics here, but will also greatly simplify the inverse kinematics problem in the
next chapter.

⋄

Example 3.5 Stanford Manipulator

Consider now the Stanford Manipulator shown in Figure 3.10. This
manipulator is an example of a spherical (RRP) manipulator with a spherical
wrist. This manipulator has an offset in the shoulder joint that slightly
complicates both the forward and inverse kinematics problems.

We first establish the joint coordinate frames using the D-H convention
as shown. The link parameters are shown in the Table 3.4.

It is straightforward to compute the matrices Ai as

A1 =











c1 0 −s1 0
s1 0 c1 0
0 −1 0 0
0 0 0 1











(3.35)
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z1

θ2

θ1

z0

a

θ4

d3

z2

θ5

θ6 n
s

x0, x1

Note: the shoulder (prismatic joint) is mounted wrong.

Figure 3.10: DH coordinate frame assignment for the Stanford manipulator.

Table 3.4: DH parameters for Stanford Manipulator.

Link di ai αi θi

1 0 0 −90 ⋆

2 d2 0 +90 ⋆

3 ⋆ 0 0 0
4 0 0 −90 ⋆

5 0 0 +90 ⋆

6 d6 0 0 ⋆

∗ joint variable

A2 =











c2 0 s2 0
s2 0 −c2 0
0 1 0 d2

0 0 0 1











(3.36)

A3 =











1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1











(3.37)

A4 =











c4 0 −s4 0
s4 0 c4 0
0 −1 0 0
0 0 0 1











(3.38)
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A5 =











c5 0 s5 0
s5 0 −c5 0
0 −1 0 0
0 0 0 1











(3.39)

A6 =











c6 −s6 0 0
s6 c6 0 0
0 0 1 d6

0 0 0 1











(3.40)

T 0

6
is then given as

T 0

6
= A1 · · ·A6 (3.41)

=











r11 r12 r13 dx

r21 r22 r23 dy

r31 r32 r33 dz

0 0 0 1











(3.42)

where

r11 = c1[c2(c4c5c6 − s4s6) − s2s5c6] − d2(s4c5c6 + c4s6)

r21 = s1[c2(c4c5c6 − s4s6) − s2s5c6] + c1(s4c5c6 + c4s6)

r31 = −s2(c4c5c6 − s4s6) − c2s5c6

r12 = c1[−c2(c4c5s6 + s4c6) + s2s5s6] − s1(−s4c5s6 + c4c6)

r22 = −s1[−c2(c4c5s6 + s4c6) + s2s5s6] + c1(−s4c5s6 + c4c6)

r32 = s2(c4c5s6 + s4c6) + c2s5s6 (3.43)

r13 = c1(c2c4s5 + s2c5) − s1s4s5

r23 = s1(c2c4s5 + s2c5) + c1s4s5

r33 = −s2c4s5 + c2c5

dx = c1s2d3 − s1d2 + +d6(c1c2c4s5 + c1c5s2 − s1s4s5)

dy = s1s2d3 + c1d2 + d6(c1s4s5 + c2c4s1s5 + c5s1s2)

dz = c2d3 + d6(c2c5 − c4s2s5). (3.44)

⋄

Example 3.6 SCARA Manipulator
As another example of the general procedure, consider the SCARA ma-

nipulator of Figure 3.11. This manipulator, which is an abstraction of the
AdeptOne robot of Figure 1.11, consists of an RRP arm and a one degree-
of-freedom wrist, whose motion is a roll about the vertical axis. The first
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Figure 3.11: DH coordinate frame assignment for the SCARA manipulator.

Table 3.5: Joint parameters for SCARA.

Link ai αi di θi

1 a1 0 0 ⋆

2 a2 180 0 ⋆

3 0 0 ⋆ 0
4 0 0 d4 ⋆

∗ joint variable

step is to locate and label the joint axes as shown. Since all joint axes are
parallel we have some freedom in the placement of the origins. The origins
are placed as shown for convenience. We establish the x0 axis in the plane
of the page as shown. This is completely arbitrary and only affects the zero
configuration of the manipulator, that is, the position of the manipulator
when θ1 = 0.

The joint parameters are given in Table 3.5, and the A-matrices are as
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follows.

A1 =











c1 −s1 0 a1c1
s1 c1 0 a1s1
0 0 1 0
0 0 0 1











(3.45)

A2 =











c2 s2 0 a2c2
s2 −c2 0 a2s2
0 0 −1 0
0 0 0 1











(3.46)

A3 =











1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1











(3.47)

A4 =











c4 −s4 0 0
s4 c4 0 0
0 0 1 d4

0 0 0 1











. (3.48)

The forward kinematic equations are therefore given by

T 0

4
= A1 · · ·A4 =











c12c4 + s12s4 −c12s4 + s12c4 0 a1c1 + a2c12
s12c4 − c12s4 −s12s4 − c12c4 0 a1s1 + a2s12

0 0 −1 −d3 − d4

0 0 0 1











.(3.49)

⋄
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3.4 Problems

1. Verify the statement after Equation (3.18) that the rotation matrix R
has the form (3.16) provided assumptions DH1 and DH2 are satisfied.

2. Consider the three-link planar manipulator shown in Figure 3.12. Derive

Figure 3.12: Three-link planar arm of Problem 3-2.

the forward kinematic equations using the DH-convention.

3. Consider the two-link cartesian manipulator of Figure 3.13. Derive

Figure 3.13: Two-link cartesian robot of Problem 3-3.

the forward kinematic equations using the DH-convention.

4. Consider the two-link manipulator of Figure 3.14 which has joint 1
revolute and joint 2 prismatic. Derive the forward kinematic equations
using the DH-convention.

5. Consider the three-link planar manipulator of Figure 3.15 Derive the
forward kinematic equations using the DH-convention.
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Figure 3.14: Two-link planar arm of Problem 3-4.

Figure 3.15: Three-link planar arm with prismatic joint of Problem 3-5.

6. Consider the three-link articulated robot of Figure 3.16. Derive the
forward kinematic equations using the DH-convention.

7. Consider the three-link cartesian manipulator of Figure 3.17. Derive
the forward kinematic equations using the DH-convention.

8. Attach a spherical wrist to the three-link articulated manipulator of
Problem 3-6 as shown in Figure 3.18. Derive the forward kinematic
equations for this manipulator.

9. Attach a spherical wrist to the three-link cartesian manipulator of
Problem 3-7 as shown in Figure 3.19. Derive the forward kinematic
equations for this manipulator.

10. Consider the PUMA 260 manipulator shown in Figure 3.20. Derive
the complete set of forward kinematic equations, by establishing appro-
priate D-H coordinate frames, constructing a table of link parameters,
forming the A-matrices, etc.
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Figure 3.16: Three-link articulated robot.

Figure 3.17: Three-link cartesian robot.

11. Repeat Problem 3-9 for the five degree-of-freedom Rhino XR-3 robot
shown in Figure 3.21. (Note: you should replace the Rhino wrist with
the sperical wrist.)

12. Suppose that a Rhino XR-3 is bolted to a table upon which a coordi-
nate frame osxsyszs is established as shown in Figure 3.22. (The frame
osxsyxzs is often referred to as the station frame.) Given the base
frame that you established in Problem 3-11, find the homogeneous
transformation T s

0
relating the base frame to the station frame. Find

the homogeneous transformation T s
5

relating the end-effector frame to
the station frame. What is the position and orientation of the end-
effector in the station frame when θ1 = θ2 = · · · = θ5 = 0?

13. Consider the GMF S-400 robot shown in Figure 3.23 Draw the sym-
bolic representation for this manipulator. Establish DH-coordinate
frames and write the forward kinematic equations.
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Figure 3.18: Elbow manipulator with spherical wrist.

Figure 3.19: Cartesian manipulator with spherical wrist.
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Figure 3.20: PUMA 260 manipulator.
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Figure 3.21: Rhino XR-3 robot.
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Figure 3.22: Rhino robot attached to a table. From: A Robot Engineering

Textbook, by Mohsen Shahinpoor. Copyright 1987, Harper & Row Publish-
ers, Inc
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Figure 3.23: GMF S-400 robot. (Courtesy GMF Robotics.)
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