
635

Recent developments in protein NMR technology have
provided spectral data that are highly amenable to analysis by
advanced computer software systems. Specific data collection
strategies, coupled with these computer programs, allow
automated analysis of extensive backbone and sidechain
resonance assignments and three-dimensional structures for
proteins of 50 to 200 amino acids.
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Abbreviations
2D two-dimensional
3D three-dimensional
COSY scalar coupling correlated spectroscopy
HSQC heteronuclear single quantum coherence correlated 

spectroscopy
NOE nuclear Overhauser effect
NOESY nuclear Overhauser effect correlated spectroscopy
rmsd root mean square deviation
TOCSY total scalar-coupling correlated spectroscopy

Introduction
A powerful feature of macromolecular structure analysis by
NMR spectroscopy is its potential for automation. It has
been recognized for some time that many of the interactive
tasks carried out by an expert during the process of spectral
analysis could, in principle, be carried out more efficiently
and rapidly by computational systems. With the advent of
multidimensional and triple-resonance strategies for deter-
mining resonance assignments and 3D structures, it
became increasingly clear that the quality and information
content of protein NMR spectra could allow largely auto-
mated analyses of assignments and structures for small
proteins. Over the past few years, this potential has been
realized to some degree and key steps in many production
structure analyses are now carried out using automated
methods. This advance has tremendous implications for
the growing role of NMR spectroscopy as a powerful and
accessible tool for biophysical chemistry, drug design and
structural genomics. In this review, we summarize recent
advances in automating the processes of determining 3D
structures of proteins from NMR data. 

Peak-picking algorithms
High-quality peak picking is crucial for successful auto-
mated spectral analysis. Programs that automate peak

picking must deal with the problem of identifying real
peaks and/or excluding artifactual peaks. Several high-
quality peak-picking programs have been described over
the past few years. Most allow for interactive validation
and editing by a user. AUTOPSY [1•] is a comprehensive
program for automating peak picking with facilities for
determining noise level, segmenting the spectra into
peak-containing regions, identifying well-separated
peaks, resolving spectral overlap and integrating peaks. It
is very robust and appears to have features that make it
well suited to preparing input for automated analysis pro-
grams. Schulte et al. [2] have described a Bayesian
statistical method that distinguishes between real and
artifactual peaks that have been automatically picked by
another program.

Automated analysis of resonance
assignments
Resonance assignments form the basis for characterizing
secondary structure, dynamics, intermolecular interactions
and 3D structures of proteins. Significant progress has
been made recently in the automated analysis of resonance
assignments [3•–5•,6••,7••,8•], particularly using triple-
resonance NMR data [9•]. Several laboratories are devel-
oping programs that automate either backbone or
complete resonance assignments using a variety of final
mapping methods (Table 1). These include programs
developed by Lukin et al. [6••], Leutner et al. [8•] and
Buchler et al. [4•], which use simulated-annealing-like
methods, by Bartels et al. (GARANT) [3•], which uses
genetic algorithms, and by Li and Sanctuary [5•] and
Zimmerman et al. (AutoAssign) [7••], which use rules-
based deterministic (best-first) algorithms.

Most automation programs use the same general analysis
scheme: step 1, filter peaks (filtering) and relate reso-
nances from different spectra (referencing); step 2, group
resonances into spin systems (grouping); step 3, identify
the amino acid type of spin systems (typing); step 4, find
and link sequential spin systems into segments (linking);
and step 5, map spin-system segments onto the primary
sequence (mapping). Different automation programs
implement each step with varying degrees of success;
however, the overall robustness is dictated by the perfor-
mance of the weakest step. Programs lacking key steps
show significant limitations in robustness [3•,10–12].
Some laboratories focus their attention on specific steps
of the scheme, providing computer-assisted assignment
programs that show possible results after grouping [10],
typing [13], linking [12,14•] or mapping (i.e. generating a
list of candidate assignments, instead of definitive
assignments) [11,15].
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Step 1 — filtering and referencing
All programs filter peaks. Intensity is the primary filtering
method used by all programs, either directly or indirectly.
Resonance consistency across spectra is another important
filtering method [3•–5•,6••,7••,8•,10]. Programs using mul-
tiple spectra generally reference the resonances across the
spectra. Some programs assume that the referencing is cor-
rect. Others calculate self-consistent referencing using
common isolated peaks found in multiple spectra [6••,7••].

Step 2 — grouping
Most programs also group resonances into spin systems
that are related to a single amino acid or dipeptide. Many
methods group resonances via common ‘root’ resonances
found in all or most of the spectra [4•,6••,7••,8•,10]. Some
grouping methods use bond patterns and/or bond-pattern
templates to group resonances into spin systems
[5•,10,11,15]. Bond-pattern methods are sensitive to
incomplete peak lists and overlap, however, and can fail
when peaks are missing. The program from Croft et al. [10]

uses a set of pruning rules to limit the list of possible spin
systems. The program from van Geerestein-Ujah et al. [12]
uses a maximum common subgraph isomorphism algo-
rithm to identify and group resonances into secondary
structure segments. GARANT [3•,16] groups peaks into a
graph representing peak relationships based upon com-
mon resonances.

Step 3 — typing
With the exception of GARANT [3•,16], all the automa-
tion programs classify amino acid spin systems with respect
to possible amino acid types. One common typing method
involves matching spin systems to bond-pattern templates
[4•,5•,10]; however, spin-system typing from bond-pattern
templates, like the bond-pattern methods described
above, is very sensitive to the completeness of the data.
Another common typing method involves statistical analy-
sis of chemical shifts, specifically the Cα and Cβ resonance
shifts [6••,7••,8•]. Programs from both Zimmerman et al.
[7••] and Lukin et al. [6••] use Bayesian statistical methods
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Figure 1

Automatic structure determination of basic
fibroblast growth factor. (a) Superposition of
10-NMR-derived structures of basic fibroblast
growth factor computed using the automated
analysis program AutoStructure (Y Huang,
R Tejero, GT Montelione, unpublished data) and
comparison with one structure (yellow) from the
ensemble determined by manual analysis of the
same data [42]. Backbone conformations are
shown only for residues 29–155, as the
N-terminal polypeptide segment is not well
defined in either the automated or manual
analysis. For this portion of the structure, the
backbone rmsds within the families of structures
determined by AutoStructure and manual
structural analysis are 0.6 Å and 0.3 Å,
respectively. The backbone rmsd between the
AutoStructure and manually determined NMR
structures is 0.7 Å. (b) Comparison of overall
chain folds, as determined by AutoStructure
and manual analysis.



combined with BioMagResDatabase statistics to classify
spin-system types. Several papers describe the improve-
ment of these statistical methods for spin-system typing by
including resonance-phase-labeled experiments [17–19],
spin-system edited experiments [20,21] and structural cor-
rections based on Cα and Cβ chemical shifts [22]. A
program from Huang et al. [13] types spin systems via a
neural network using 3D TOCSY-HSQC (total scalar-cou-
pling correlated spectroscopy — heteronuclear single
quantum coherence correlated spectroscopy) data.

Step 4 — linking
Most programs find and link sequential spin systems into
segments. There are two major linking methods: deter-
ministic best-first methods and energy optimization
algorithms, like simulated annealing. The deterministic
best-first methods require a one-time, all-to-all, full com-
parison between every spin system. With the results
sorted, the best (most reliable) links are established first,

thus reducing the size of the problem [5•,6••,7••,14•].
Optimization algorithms use a pseudo-energy function
with simulated annealing to evaluate potential connections
between nearest neighbor spin systems [4•,8•]. These
optimization algorithms are generally rather slow and can
be susceptible to becoming trapped in local minima that
correspond to incorrect assignment configurations.

Step 5 — mapping
The final step is mapping spin-system segments onto the
primary sequence. As with linking, the most common map-
ping methods are deterministic best-first methods [5•,7••]
and energy optimization algorithms (mostly derivatives of
simulated annealing) [3•,4•,6••,8•]. Frequently, the deter-
ministic best-first methods use constraint propagation and
other rule-based algorithms to improve accuracy and effi-
ciency [5•,7••]. Some simulated-annealing-like energy
optimization algorithms either simplify the mapping prob-
lem [6••] or smooth out the energy surface [4•] in order to
improve performance. Other energy optimization algo-
rithms, like genetic algorithms, naturally work well with
the choppy energy surfaces that arise from discreet
changes in mapping [3•]. The GARANT program [3•,16]
uses a genetic algorithm to map expected peaks to
observed peaks.

Each automation program has its own strengths and weak-
nesses arising from its specific implementation of the
general scheme. The program from Li and Sanctuary [5•]
performs automated complete resonance assignments.
The program can use any standard triple-resonance and
heteronuclear TOCSY and COSY (scalar coupling correlat-
ed spectroscopy) experiments; however, testing has
focused on the following experiments: HNCO, HNCA,
HCACO, HN(CO)CA, 15N-edited TOCSY-HMQC,
HCCH-COSY and HCCH-TOCSY. The program’s meth-
ods include grouping via bond-pattern templates applied
with a constraint partitioning algorithm, bond-pattern typ-
ing, and best-first linking and mapping. The reported
testing of the program was limited to one protein, the first
90 residues of chicken skeletal troponin C. The result of
the testing was the assignment of only about one-third of
the residues. This result reflects the brittleness of bond-
pattern methods. 

The AutoAssign program [7••] performs automated back-
bone resonance assignments. AutoAssign can analyze
input from eight triple-resonance experiments (although,
generally, only five or six are required): HNCO,
HN(CA)CO (not required), HNCACB, HN(CO)CACB,
HNCA, HN(CO)CA, HNHA (not required) and
HN(CO)HA (not required). AutoAssign’s methods include
intensity and resonance consistency filtering, isolated peak
referencing, root resonance grouping, CA/CB Bayesian sta-
tistics typing, best-first linking and a best-first constraint
propagation algorithm for mapping. Its testing has been
very rigorous and included real data sets for 11 different
proteins, with sizes ranging from 6 to 18.7 kDa. The results
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Table 1

Recently developed software for the automated analysis of
resonance assignments and/or 3D structures.

Program name Utility Applicable spectral data
or authors

Li and Complete Any HN-detected 
Sanctuary [5•] resonance triple-resonance experiment.

assignments Any heteronuclear TOCSY 
or COSY.

AutoAssign [7••] Backbone HNCO HN(CA)CO, HNCA, 
resonance HN(CO)CA, HNCACB, 
assignments HN(CO)CACB, HNHA, 

HN(CO)HA.

Lukin et al. [6••] Backbone HNCA, HN(CA)CO, HNHA, 
resonance HNCACB, COCAH, 
assignments HCA(CO)N, HNCO, 

HN(CO)CA, HN(CO)HA, 
CBCA(CO)NH.

PASTA [8•] Backbone Any experiment containing 
resonance only HN, NH, CA, CB,
assignments CO and HA resonances.

Buchler et al. [4•] Backbone HNCA, HN(CO)CA, HNHA, 
resonance HA(CO)NH, (H)CCH-TOCSY,
assignments (H)C(CACO)NH-TOCSY.

GARANT/ Complete Any NMR experiment
DYANA [3•,16,23•] resonance

assignments, 
3D structure 
determination.

NOAH/DYANA/ 3D structure 2D and/or 3D NOESY
DIAMOD determination
[27•,28,30••]

ARIA/ 3D structure 2D, 3D and/or 4D NOESY
X-PLOR [31••] determination

AutoStructure/ 3D structure 2D and/or 3D NOESY
DYANA/ determination
X-PLOR/CONGEN



of these tests were excellent. They have an average assign-
ment rate of 96% and the lowest average error rate (< 0.5%)
among the surveyed methods ([7••]; GT Montelione,
HNB Moseley, unpublished data).

The program from Lukin et al. [6••] also performs automated
backbone resonance assignments. The program uses input
from 10 experiments: HNCA, HN(CA)CO, HNHA,
HNCACB, COCAH, HCA(CO)N, HNCO, HN(CO)CA,
HN(CO)HA and CBCA(CO)NH. The program’s methods
include intensity and resonance consistency filtering, a
Bayesian statistics referencing, a Bayesian statistics approach
to root resonance grouping, CA/CB/CO/N Bayesian statistics
typing, best-first linking and simulated annealing mapping.
It has been tested on real data sets for three proteins: calmod-
ulin (148 residues), the CheY-binding domain of CheA (134
residues) and glutamine-binding protein (226 residues). The
results of these tests are also excellent, providing an average
assignment completeness of approximately 95% and an aver-
age error rate of approximately 2%.

The PASTA (Protein Assignment by Threshold Accepting)
program from Leutner et al. [8•] performs automated back-
bone resonance assignments. PASTA uses input from any
experiment containing only HN, N, CA, CB, CO and HA
resonances. PASTA’s methods include intensity and reso-
nance consistency filtering, root resonance grouping, CA/CB
random coil statistical typing and a threshold-accepting (sim-
ulated-annealing-like) algorithm for linking and mapping. Its
testing was rigorous and involved four different simulated
data sets (derived from published NMR data) and one real
data set (human nonpancreatic synovial phospholipase A2,
with 124 residues). Many subsets of the simulated data sets
were used to test PASTA’s robustness. The results from these
tests are excellent. PASTA had complete assignments, with
no errors for its one real data set. Furthermore, it assigned
over 90% of the simulated data sets with up to 50% of the sig-
nals missing. Its error rate was approximately 1%.

The program from Buchler et al. [4•] performs automated
backbone resonance assignments using input from six
experiments: HNCA, HN(CO)CA, HNHA, HA(CO)NH,
(H)CCH-TOCSY and (H)C(CACO)NH-TOCSY. The
program’s methods include intensity and resonance consis-
tency filtering, root resonance grouping, bond-pattern
typing and mean-field simulated annealing for linking and
mapping. Its testing was rigorous and included testing one
protein (the 172-residue peptide-binding domain of the
Escherichia coli heat-shock protein DnaK) and many data
subsets of this protein. The results for this protein when
using complete data were flawless; however, the program
shows significant brittleness when given more realistic,
imperfect data sets. Even 30% missing data can degrade
the performance to approximately 55% assignment with
reasonable data quality.

The GARANT program from Bartels et al. [3•,16] per-
forms complete resonance assignments using homologous

structures and/or homologous chemical shifts when avail-
able. The program uses input from any experiment, but
testing included homonuclear TOCSY, COSY and
NOESY (nuclear Overhauser effect correlated spec-
troscopy), heteronuclear NOESY and CBCA(CO)NH
data. The program’s methods include resonance consis-
tency filtering, common resonance grouping around
related resonances and mapping expected peaks to
observed peaks using genetic algorithms with annealed
recombination. Results have been reported for tests on
three real protein data sets: Tendamistat (R19L) (74
residues), Antp (C39S/W56S) homeodomain (68 residues)
and free cyclophilin A (165 residues) [16]. The results pro-
vide approximately 97% of the possible backbone
resonance assignments, with an approximately 11% error
rate. The sidechain assignments were roughly 80% com-
plete, with an unknown error rate. These results,
however, required chemical shifts from a homologous pro-
tein as additional input. GARANT also has been used in
the automated analysis of NOESY cross-peak assignments
in refining the 3D structure of the 150-residue peptide
deformylase from E. coli [23•].

Automated three-dimensional structure
determination
Significant progress has also been made in developing pro-
grams for automated 3D protein structure determination
(Table 1). In protein NMR spectroscopy, structure-genera-
tion calculations are generally carried out using the
following data as input: distance constraints based on the
analysis of multidimensional NOESY spectra; constraints
on dihedral angles derived from experimental and/or statis-
tical data, including NOESY, chemical shift and scalar
coupling constant data; and residual dipolar couplings. In
some cases, disulfide and/or hydrogen bond distance con-
straints that have been derived from other experimental
data are also included.

Several approaches have been described for identifying
backbone and/or sidechain dihedral-angle constraints
using simultaneous analysis of nuclear Overhauser effect
(NOE), scalar coupling and/or chemical shift data. Gippert
et al. [24•] have described two complementary approaches
involving a systematic search in torsion-angle space for the
generation of all conformations of polypeptides that satisfy
the local conformational constraints. Protein backbone φ
and ψ constraints have also been derived by comparing
experimental chemical shifts with a database of high-reso-
lution crystal structures for which resonance assignments
are available [25•,26]. These methods provide automated
approaches for generating both dihedral-angle constraints
and starting conformations that are consistent with these
local constraints.

One of the principal goals of automated structure determina-
tion programs involves the iterative analysis of
multidimensional NOESY data in order to refine and extend
the list of distance constraints. Owing to the extensive
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degeneracy of protein proton resonances, absolutely unam-
biguous assignments can only be made for a very small
fraction of 2D NOESY peaks. 13C- and 15N-edited 3D and
4D spectra provide some resolution of these proton reso-
nance degeneracies, particularly by the identification of
symmetric NOESY cross peaks. Even in these multidimen-
sional spectra, however, when using matching to chemical
shift data alone, most individual cross peaks are assigned to
several possible pairs of interacting hydrogen atoms. The
process of structural analysis and refinement involves resolv-
ing these ambiguities of NOESY cross-peak assignments.

A key aspect in the analysis of NOESY cross-peak ambi-
guities involves the ‘match tolerances’, used in matching
the resonance frequencies of peaks in the NOESY spectra
with frequencies in the resonance assignment table [27•].
If these tolerances are too loose, the number of potential
cross-peak assignments can become intractably large; if the
tolerances are too tight, it is possible to exclude the correct
candidate from the resonance assignment table. Ideally,
the spectra used for determining resonance assignments
should be collected using identical sample conditions as
for the NOESY spectra that will be analyzed. For practical
reasons, this is rarely the case and larger than optimal
‘match tolerance’ values are required to account for non-
systematic variations in chemical shifts between the
resonance assignment table and NOESY peak lists. 

The secondary structures and/or protein folds generated
during the initial cycles of the structure-refinement
process or during homology modeling can often be used to
resolve ambiguities in making NOESY cross peak assign-
ments. Consider, for example, a NOESY cross peak that is
assignable to one (or both) interactions A–B and A–C,
owing to the degeneracy of the resonance frequencies of
atoms B and C. If atoms A and B are nearby one another in
the partially refined protein structure, while the distance
between A and C is large, the cross peak can potentially be
assigned to the A–B, rather than the A–C, interaction.
Possible NOESY assignments are ‘ruled in’ if the corre-
sponding distance is less than a defined value (e.g. 5 Å) for
a certain percentage of the ensemble of structures com-
puted at each cycle of the iterative structural analysis.
Although generally quite useful, this reasoning can some-
times result in incorrect assignments when one or more of
these distances has a large variance among the set of struc-
tures computed in the current cycle of analysis. 

One successful strategy, used by the program NOAH, is
referred to as the ‘self-correcting distance geometry’
(SEDOC) method [27•,28]. For each ambiguous NOESY
cross peak, NOAH computes the violations associated with
each candidate assignment for each member of the ensem-
ble. These violations are then used to estimate Pvio, the
percentage of structures in which the corresponding dis-
tance constraint (plus a tolerance distance) is violated.
Values of Pvio are then used to ‘rule in’ and ‘rule out’ candi-
date NOESY cross-peak assignments. Incorrect assignments

made in  this process can, in principle, be identified as con-
sistent violations in the next cycle of structure calculations.
The NOAH analysis program has been combined with the
structure-generation programs DYANA [29] and DIAMOD
[30••] for the iterative analysis of NOESY cross-peak assign-
ments and structure refinement. Extensive tests have been
carried out on several real protein data sets [27•,28,30••].
Most of these tests have used a subset of manually assigned
tertiary NOEs to initiate the iterative analysis process. In
some cases, manually validated and manicured NOESY
peak lists and/or ‘adapted’ chemical shift lists adjusted man-
ually for each different NOESY spectrum were used in the
input [27•]. The automated method assigned 70–90% of all
the cross peaks in 2D or 3D NOESY spectra, which is, on
average, only 10% less than the corresponding manual
analyses, and generated 3D protein structures with back-
bone rmsds of 0.6 to 1.5 Å between automatically and
manually generated average structures. Using real homonu-
clear 2D NMR data for the 46-residue protein crambin
(S22/I25), together with a subset of manually assigned ter-
tiary NOEs, NOAH/DIAMOD automatically generated a
family of structures, the best 10 of which converged with a
backbone rmsd of 1.5 Å [30••]. These automatically gener-
ated structures are also quite similar to the structure of same
mutant of crambin as determined by X-ray crystallography,
with backbone rmsds between the X-ray and NMR struc-
tures of 2.2 Å for the whole molecule and 1.2 Å for nonloop
regions. Efforts to carry out the same automated analysis
without a subset of manually assigned constraints to initiate
the process provided a less reliable set of NOESY cross-
peak assignments, but resulted in similar 3D
structures [30••].

An alternative, and more widely used, approach for resolving
ambiguities in NOESY cross-peak assignments, Ambiguous
Restraints for Iterative Assignment (ARIA) [31••], has been
implemented as part of the X-PLOR structure-generation
program [32,33]. ARIA assigns ambiguous NOEs during the
structure calculation using a combination of ambiguous dis-
tance constraints and an iterative assignment strategy. An
ambiguous NOE corresponds to a summed distance D:

where the index i runs through all N candidate cross-peak
assignments and Di is the distance between the corre-
sponding pairs of protons [31••]. This distance D is then
restrained between upper and lower bounds determined
by the calibrated cross-peak intensity. In this way, every
possible NOESY assignment contributes to the constraint,
with weights that depend on the inverse-sixth power of the
corresponding distance in the partially refined structure.
All (assigned and ambiguous) NOEs can be used together
throughout the course of the structure refinement. In most
cases, ARIA is used together with an initial 3D protein
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structure that has been generated from manually assigned
NOEs. Although limited test results have been reported in
the literature, the ARIA approach has been recently used
successfully in several experimental structure determina-
tions and refinements [34–36]. Particularly robust results
have been obtained using 4D 13C-edited NOESY data
[35,36], which are difficult to analyze manually.

AutoStructure (Y Huang, R Tejero, GT Montelione,
unpublished data) is an expert system for automatic iter-
ative analysis of protein NOESY spectra and structure
generation using one or more of the structure-generation
programs DYANA [29], X-PLOR [32] or CONGEN [37].
AutoStructure uses rules for assignments that are similar
to those used by an expert to generate an initial protein
fold: the identification of secondary structural elements
using chemical shift, scalar coupling, amide hydrogen
exchange and automatically assigned NOESY data; the
use of symmetry features of 3D 13C-edited NOESY
spectra to resolve some NOESY assignment ambiguities;
distances computed for specific secondary structures to
‘rule in’ and ‘rule out’ candidate NOE assignments; and
contact maps generated from assigned NOESY data to
validate candidate assignments. Having generated an
initial fold using these processes, AutoStructure uses
iterative structure-generation calculations to assign addi-
tional NOEs using rules based on the distances between
the pairs of protons corresponding to the candidate
assignments. Consistently violated assignments based on
ambiguous NOEs are identified in cycles of the iterative
structure calculations and, where appropriate, reas-
signed. Figure 1 shows an example of an AutoStructure
result based on NOESY data, scalar couplings and a list
of hydrogen-bond pairs for the 155-residue protein basic
fibroblast growth factor. Similar results have been
obtained for a few other proteins using AutoStructure
and NMR data.

Conclusions
Recent developments enable the automated analysis of
NMR assignments and 3D structures for proteins rang-
ing from about 50 to 200 amino acids. Although progress
over the past few years is encouraging, more work is
required, even for small proteins, before automated
structural analysis is routine. In particular, general meth-
ods for the automated analysis of sidechain resonance
assignments are not yet well developed and there are, as
yet, no examples of completely automated protein
assignments and structural analyses. Moreover, little
work has focused on the specific problems associated
with nucleic acid structures. On the other hand, when
good quality data are available, automated analysis of
protein NMR data can be very rapid. Many of the reso-
nance assignment programs execute in tens of seconds
[7••] and automated structure refinements are being car-
ried out in tens of minutes using arrays of Pentium
processors for course-grain parallel calculations
(R Tejero, Y Huang, GT Montelione, unpublished data).

Future directions for the automated analysis of assign-
ments involve the development of approaches that require
fewer spectra for robust analysis and interactive methods
[38] for visually validating and editing the results of 
automated analysis engines. The high speed of the auto-
mated structural analyses suggests that it will be possible
to incorporate complete relaxation matrix calculations for
the improved calibration of distance constraints, energy
refinement and ensemble-averaging calculations as option-
al features of the automated refinement process. Residual
dipolar coupling data should also greatly enhance the effi-
ciency of the automated analysis process [39], particularly
in the initial determination of the protein fold, and also
provide higher resolution structures [39,40]. Overall, one
can expect that, in the next few years, automated analysis
of small-protein resonance assignments and 3D structures
will become routine in many laboratories and will con-
tribute significantly to the fields of molecular biophysics,
structural biology and structural genomics [41].
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