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The practical exploitation of the vast numbers of sequences in the gen-
ome sequence databases is crucially dependent on the ability to identify
the function of each sequence. Unfortunately, current methods, including
global sequence alignment and local sequence motif identi®cation, are
limited by the extent of sequence similarity between sequences of
unknown and known function; these methods increasingly fail as the
sequence identity diverges into and beyond the twilight zone of sequence
identity. To address this problem, a novel method for identi®cation of
protein function based directly on the sequence-to-structure-to-function
paradigm is described. Descriptors of protein active sites, termed ``fuzzy
functional forms'' or FFFs, are created based on the geometry and confor-
mation of the active site. By way of illustration, the active sites respon-
sible for the disul®de oxidoreductase activity of the glutaredoxin/
thioredoxin family and the RNA hydrolytic activity of the T1 ribonuclease
family are presented. First, the FFFs are shown to correctly identify their
corresponding active sites in a library of exact protein models produced
by crystallography or NMR spectroscopy, most of which lack the speci-
®ed activity. Next, these FFFs are used to screen for active sites in low-
to-moderate resolution models produced by ab initio folding or threading
prediction algorithms. Again, the FFFs can speci®cally identify the func-
tional sites of these proteins from their predicted structures. The results
demonstrate that low-to-moderate resolution models as produced by
state-of-the-art tertiary structure prediction algorithms are suf®cient to
identify protein active sites. Prediction of a novel function for the gamma
subunit of a yeast glycosyl transferase and prediction of the function of
two hypothetical yeast proteins whose models were produced via thread-
ing are presented. This work suggests a means for the large-scale func-
tional screening of genomic sequence databases based on the prediction
of structure from sequence, then on the identi®cation of functional active
sites in the predicted structure.
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Introduction

The Human Genome Project began with the
speci®c goal of obtaining the complete sequence of
the human genome and determining the biochemical
nature of each gene. To date, the project has been
quite successful, with sequencing of the human
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genome about 1.2% complete (J. Roach, http://
weber.u.washington.edu/~roach/human_genome_
progress2.html; Gibbs, 1995), and is on track for its
scheduled completion in the year 2005. Further-
more, the genomes of 14 organisms have been
sequenced and published, including Mycoplasma
genitalium (Fraser et al., 1995), Methanococcus jan-
naschii (Bult et al., 1996), Haemophilus in¯uenzae
(Fleischmann et al., 1995), Escherichia coli (Blattner
et al., 1997) and Saccharomyces cerevisiae Mewes
et al., 1997). Signi®cant progress has been made in
mapping and sequencing the genomes of model
eukaryotic organisms, such as mouse, Caenorhabdi-
tis elegans and Drosophila melanogaster.

One of the goals of the genome project is to
develop tools for comparing and interpreting the
resulting genomic information (Collins & Galas,
1993). Researchers must learn where each gene lies
and must understand the function of each gene or
gene product: is the nucleotide sequence a regulat-
ory region? Does the nucleotide segment produce a
gene product? Is the product active as an RNA or
a protein molecule? What function does the gene
product perform: does it bind to another molecule,
is it important for regulation of cellular processes,
does it catalyze a chemical reaction? The import-
ance of answering these questions has led to
research efforts directed towards understanding or
describing the function of each sequence, particu-
larly for protein sequences and open reading
frames (ORFs). Most often functional analysis is
done by sequence comparison to proteins of
known structure or function; however, because of
the lack of sequence similarity, these methods fail
on about half of the sequences available in the
sequence and genome databases (Delseny et al.,
1997; Dujon, 1996). Other approaches to function
prediction include comparison of the complete
(Himmelreich et al., 1997) microbial genomes
sequenced thus far and an analysis of gene cluster-
ing (Himmelreich et al., 1997: Tamames et al.,
1997). Some have proposed experimental methods
to accomplish aspects of function prediction on a
genome-wide basis (Fromont-Racine et al., 1997;
Sakaki, 1996). Here, in contrast, we present a novel
method for protein function prediction based on
the sequence-to-structure-to-function paradigm,
where the protein structure is ®rst predicted from
the sequence, then the active site is identi®ed
within the predicted structure. Thus, this method
requires only knowledge of the protein primary
sequence. As will be demonstrated, enzyme active
sites can be speci®cally identi®ed in structures pro-
duced by state-of-the-art prediction algorithms
where the atomic coordinates are not well de®ned.

Sequence alignment methods for
function identification

The most common method of function identi®-
cation from just the sequence is global or local
sequence alignment. This technique is based on
®nding the extent of sequence identity between a

given sequence and another whose function is
known. Signi®cant sequence identity is a strong
indicator that the proteins probably have similar
functions. Alignment methods such as BLAST
(Altschul et al., 1990), BLITZ (MPsrch; Sturrock &
Collins, 1993), and FASTA (Pearson & Lipman,
1988), among others, are currently the most power-
ful techniques for analyzing the many sequences
found in the genome databases. Today's methods
are robust, fast and powerful for determining the
relatedness of protein sequences, particularly when
the sequence identity is above 30% and the
relationship between proteins is unequivocal.

Limits to sequence alignment methods

A major problem with sequence alignment
methods for analysis of protein function arises
when the sequence similarity goes below the twi-
light zone of 25 to 30% sequence identity. Cur-
rently available programs cannot consistently
detect functional and structural similarities when
the sequence identity is less than 25% (Hobohm &
Sander, 1995). Matches with 50% amino acid iden-
tity over a 40 residue or shorter stretch of sequence
regularly occur by chance and relationships
between such proteins must be viewed with cau-
tion, unless other information is available (Pearson,
1996). In the worst case, protein sequences or ORFs
do not return signi®cant matches to any sequences
in the database. For instance, experiments showed
that an ORF from an intron in a cyanobacterium
tRNA (Biniszkiewicz et al., 1994) was found to pro-
duce a protein with endonuclease activity, but no
signi®cant match to known proteins was returned
from sequence database searches (D. A. Bonocora
& R. P. Shub, personal communication). With the
exponential growth in the number of available
sequences from the genome sequencing projects,
increasing numbers of sequences cannot be aligned
with certainty to known proteins on the basis of
their sequence alone, and this limits the ability to
assign a function to these sequences.

Functional identification using local
sequence motifs

To overcome some of the problems associated
with employing sequence alignments to determine
protein function, several groups have developed
databases of short sequence patterns or motifs
designed to identify a given function or activity of
a protein. These databases, notably Prosite (http://
expasy.hcuge.ch/sprot/prosite.html; Bairoch et al.,
1995), Blocks (http://www.blocks.fhcrc.org;
(Henikoff & Henikoff, 1991) and Prints (http://
www.biochem.ucl.ac.uk/bsm/dbbrowser/PRINT-
S/PRINTS.html; Attwood & Beck, 1994; Attwood
& Beck, 1994; Attwood et al., 1994, 1997), use short
stretches of sequence information to identify
sequence patterns that are speci®c for a given func-
tion; thus, they avoid the problems arising from
the necessity of matching entire sequences. Protein
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function can be identi®ed by either a single, local
sequence motif or a set of local motifs. Typically, a
local sequence pattern is developed by ®rst identi-
fying the functionally important residues from a
literature search. A set of proteins that are known
to belong to the family are aligned and, on this
basis, the minimal local sequence signature is
developed. This signature is then tested against the
sequence database and, if false positives are found,
the sequence alignment is used to identify con-
served residues that are then added to the signa-
ture. This process is iterated until a local signature
of some speci®city is derived. The Prints and Blocks
databases use multiple alignment representations
to improve the speci®city. Developers of the Blocks
database have automated the procedure for produ-
cing patterns (Henikoff & Henikoff, 1991). Any
newly determined sequence can be rapidly com-
pared to these dictionaries of patterns in Prosite,
Prints and Blocks, and if any matches are found,
the new sequence can be assigned to the corre-
sponding functional family. In practice, these
approaches are quite successful. As a result of their
utility and power, the Prosite, Prints and Blocks
databases are regularly used by the scienti®c com-
munity.

Conservation of three-dimensional structure in
protein active sites

While use of sequence signatures for protein
function prediction is very powerful, they still fail
to identify protein function for a variety of reasons,
all of which, in principle, stem from the fact that
the chemistry required for the functionality of pro-
tein active sites arises from their three-dimensional
structure. Thus, as sequences diverge, only those
residues required for the chemistry of the protein
activity will be absolutely conserved. The structure
of these active-site residues in three-dimensional
space should also be conserved. In general, local
sequence motifs will be unable to recognize such
conserved three-dimensional structure, especially if
it involves residues that are non-local in sequence.
Although the Prints (Attwood et al., 1994) and
Blocks (Henikoff & Henikoff, 1991) databases have
attempted to circumvent this problem by develop-
ing multiple local sequence signatures for a given
functional family, the three-dimensional structure
of the active site is still not represented by these
one-dimensional sequences. But, it is the three-
dimensional structure of active site residues that is
explicitly conserved, as illustrated by the following
examples.

The three-dimensional structure of urease was
recently compared to those of adenosine deami-
nase and phosphotriesterase (Holm & Sander,
1997b). Previous one-dimensional sequence com-
parison had failed to detect any relationships
between these proteins; however, comparison of
their three-dimensional structures showed conser-
vation of local structure around the active site,
although the global folds are different. This same

active-site geometry was then observed in an even
larger family of enzymes, with an even greater
diversity of overall tertiary structure, that are
involved in nucleotide metabolism (Holm &
Sander, 1997b). The geometry of the active site
would not be recognized by local sequence signa-
tures or by overall comparison of global tertiary
structures, but only from an analysis of the struc-
ture of the functional residues around the active
site. In another example, an analysis of the ribonu-
cleotide reductases from archaebacteria, eubacteria
and eukaryotes shows that critical cysteine resi-
dues in the catalytic domain of this enzyme are
conserved across all organismal boundaries (Tauer
& Benner, 1997). However, once again based on
sequence alignment alone, the ribonucleotide
reductases are not obviously related.

The more divergent the sequences are, the more
dif®cult it is to show a familial functional relation-
ship just by sequence comparison, even if the cata-
lytically important residues are invariant. At the
limit, proteins with completely different structures
can have similar functions. The bacterial and
eukaryotic serine proteases, having very different
protein structures and very similar active sites
(Branden & Tooze, 1991), illustrate this point. Local
sequence signatures would be unable to recognize
these proteins as belonging to the same functional
family because there would be no sequence simi-
larity other than the identity and relative orien-
tation of the speci®c active-site residues, which are
non-local in sequence.

Thus, based on the above data, one must ident-
ify the global fold of a protein and the speci®c geo-
metric arrangement of the active-site residues. In
other words, one needs to determine both the glo-
bal fold and the local structure of those residues
that are functionally important. Local sequence sig-
natures, although very powerful, may not be able
to recognize the active-site residues, because
sequence information is inherently one-dimen-
sional, while protein active sites are inherently
three-dimensional. But, a method based on identi-
fying the conserved structure found in protein
active sites could easily recognize the active-site
residues and could classify such proteins as
belonging to a given functional family.

The sequence-to-structure-to-function
paradigm and its application to
function prediction

In what follows, we describe such a method for
identi®cation of protein function based on the
sequence-to-structure-to-function paradigm. We
make the reasonable assumption that three-dimen-
sional information is important to the chemistry of
protein function; therefore, the active-site structure
of the residues responsible for that function will be
conserved and we can identify it. In this spirit, we
develop three-dimensional descriptors of speci®c
protein functions, termed fuzzy functional forms
or FFFs, based on the geometry, residue identity,
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and conformation of protein active sites. These
FFFs are based on known crystal structures of
members of the functional family and on exper-
imental data available from the literature. The idea
is similar in concept to that of Hellinga and
Richards, who developed three-dimensional
descriptors of metal-binding sites in order to intro-
duce novel binding sites into proteins (Hellinga
et al., 1991; Hellinga & Richards, 1991). Instead of
making the descriptors overly speci®c, however,
we explore how much they can be relaxed (i.e.
made ``fuzzy'') while still speci®cally identifying
the correct active sites in a database of known
structures. We then show that these fuzzy func-
tional descriptors developed on the basis of protein
models can identify protein active sites not only
from experimentally determined structures, but
also from predicted protein structures provided
either by ab initio folding algorithms or by thread-
ing algorithms. Thus, low-to-moderate resolution
structures produced by current structure predic-
tion algorithms are suf®cient to identify active sites
in these models. These results should allow us to
signi®cantly extend the analysis of functional
families further into and beyond the twilight zone
of sequence similarity, and should allow a more
extensive functional analysis of the rapidly
expanding genomic databases.

Here, the disul®de oxidoreductase activity of the
glutaredoxin/thioredoxin family and the RNA
hydrolytic activity of the T1 ribonuclease family are
presented as illustrations and proof-of-principle of
the method. First, however, to illustrate the need
for a new approach, we discuss the problems aris-
ing when local sequence signatures are used to
identify the disul®de oxidoreductase activity of
the glutaredoxin/thioredoxin family. Next, we
describe the development of the FFF for this
activity and demonstrate its speci®city in identify-
ing active sites in exact protein models. We then
show that the FFF can speci®cally identify active
sites in low-to-moderate resolution models pro-
duced by either ab initio folding or threading
algorithms. Based on the application of the glutare-
doxin/thioredoxin FFF to a threading model, a
prediction of a novel active site in the gamma sub-
unit of yeast glycosyl transferase and prediction of
the active sites for two hypothetical yeast proteins
whose functions have not been previously ident-
i®ed by either the Prosite, Prints or Blocks data-
bases are described. Finally, to demonstrate that
the result is not exclusive to the glutaredoxin/
thioredoxin family, we present some results for the
RNA hydrolytic active site of the T1 ribonuclease
family.

Results

Analysis of the performance of local sequence
motifs for identifying function

As mentioned in the Introduction, local sequence
signatures designed for function identi®cation

become increasingly less speci®c as the number of
sequences within a protein family increases. To
illustrate this point more fully, we performed an
analysis of the Prosite database (Release 13.0,
November, 1995). All instances of true positive,
false positive and false negative sequences, as
identi®ed by the Prosite developers, for each
family were collected and the results are plotted in
Figure 1. These data clearly demonstrate that local
sequence signatures perform quite well on many
families, especially when the number of sequences
found in a family is low. Of the 1152 patterns in
this release of Prosite, 908 (79%) of the patterns
were speci®c for their sequences (using the set of
true and false positives and negatives as identi®ed
by the Prosite developers). However, as the num-
ber of observed instances of a local pattern
increases, the number of false positives also tends
to increase. For 10.5% of the patterns, 90 to 99% of
the selected sequences were true positives, while
for the remaining 10.5% of the patterns, less than

Figure 1. Data for 1152 patterns found in the Prosite
database (Release 13.0). Fraction is the fraction of true
positives (open circles), false positives (®lled diamonds),
or false negatives (X) found out of the total number of
pattern occurrences. True positives, false positives and
false negatives are those identi®ed by the Prosite develo-
pers. A, All the data for 1152 patterns; B, the same data,
with an expanded view of the x-axis.
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90% of the selected sequences were true positives
(Figure 1).

However, the results illustrated in Figure 1 are
not the entire story. The data in Figure 1 were
compiled only from those true and false positives
and negatives identi®ed by the Prosite developers.
But identi®cation of true and false positives and
negatives can be ambiguous and can differ among
the Prosite, Blocks and Prints databases. The cur-
rent Prosite database (updated September 10, 1997)
lists 111 true positives, ®ve false positives and
one false negative for its thioredoxin sequence
signature (PS00194). The ®ve false positives
(YNC4_CAEEL, and POLG proteins from four
poxyviruses) are not found by the thioredoxin
sequence signature in either Blocks or Prints
(Table 1). Three other proteins (FIXW_RHILE,
GSBP_CHICK and RESA_BACSU) are identi®ed as
true positives in the Prosite database. Whether or
not they are, in fact, truly thioredoxins, they are
variously classi®ed by Prints and Blocks (Table 1).

Database searches can reveal other sequences
likely to belong to the thioredoxin family that are
not listed in the sequence motif databases. For
example, a keyword search of SwissProt (Bairoch
& Apweiler, 1996) via the Sequence Retrieval Sys-

tem (SRS) at EMBL (http://www.embl-heidel-
berg.de/srs5) using the word ``thioredoxin''
revealed seven additional sequences (Table 1) that
were identi®ed as being thioredoxins or probable
thioredoxins by the depositors of these sequences.
These sequences are variously classi®ed by Prosite,
Prints and Blocks (Table 1). One sequence,
Y039_MYCTU, is not recognized by any of these
motif databases, demonstrating that some proteins
possibly belonging to the thioredoxin family are
not found by any of the local sequence signature
databases. These results point out the need to
enhance or improve the identi®cation of function
from protein sequence so as to be able to comple-
tely analyze the exponentially increasing genomic
databases.

Finally, experimental evidence can suggest other
proteins that might belong to the thioredoxin
family. YME3_THIFE is a hypothetical 9.0 kDa
protein in the MOBE 30 region (ORF 8) in Thiobacil-
lus ferrooxidans. A clone containing this gene is able
to complement an E. coli thioredoxin mutant
(Rohrer & Rawlings, 1992), thereby providing
some experimental evidence that this hypothetical
protein might fall into the glutaredoxin/thioredox-
in family. A blast search of a non-redundant

Table 1. Classi®cation of possible thioredoxin sequences by the
Prosite, Prints and Blocks motif databases

Sequence recognized by
Prosite Prints Blocks

A. Sequences inconsistently classified by the three motif databases
FIXW RHILE X X
GSBP CHICK X X X
RESA BACSU X X(2)a X

B. Sequences found by keyboard search of SwissProt for ``thioredoxin''
DSBC HAEIN X
THIO CHLLT X(2)a X
THIO CHRVI X X
THIO RHORU X
YX09 MYCTU X
Y039 MYCTU
YB59 HAEIN X

C. Sequences with some experimental evidence
YME3 THIFEb X

D. False positives found by Prosite
YNC4 CAEEL X
POLG PVYC X
POLG PVYN X
POLG PVYHU X
POLG PVYO X

Prosite, recent Prosite database online; thioredoxin examples updated
9/10/97; http://expasy.hcuge.ch/cprot/prosite.html; Bairoch et al.
(1995).

Prints, search of PWL26.0 database; http://www.biochem.ucl.
ac.uk.bsm/dbbrowser/PRINTS/PRINTS.html; Bleasby et al. (1994).

Blocks, search of SwissProt32; http://www.blocks.fhcrc.org; Bairoch
& Apweiler (1996).

a Prints uses three different sequence signatures to recognize the
thioredoxins; (2) means that this sequence was recognized by only two
of the three signatures.

b A plasmid in E. coli expressing this gene product complements a
thioredoxin mutant, providing experimental evidence that this protein
may be a glutaredoxin or thioredoxin (Rohrer & Rawlings, 1992).
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sequence database (Genbank CDS translations,
PDB, SwissProt and PIR; http://www.ncbi.
nlm.nih.gov/BLAST/blast-databases.html) using
YME3_THIFE as the search sequence produces two
signi®cant matches and two sequence twilight zone
matches. The signi®cant matches are to a periplas-
mic hydrogenase from D. vulgaris (PHFL_DESVO)
and an open reading frame (ORF-R5) from
Anabaena. One of the two twilight zone matches
is to GLRX_METTH, a glutaredoxin-like protein
from Methanobacterium thermoautotrophicum. GLRX_
METTH itself exhibits signi®cant sequence simi-
larity to a number of thioredoxins. Examination of
the sequence alignment between GLRX_METTH
and YME3_THIFE shows that the active-site
cysteine residues are conserved. Thus, this
hypothetical protein, YME3_THIFE, is very weakly
similar to GLRX_METTH and probably belongs to
the glutaredoxin/thioredoxin family. Even though
YME3_THIFE can be identi®ed by weak sequence
similarity and there is experimental evidence that
it belongs to this family, the sequence is not ident-
i®ed as such by Prosite, because it contains only a
portion of either the glutaredoxin or thioredoxin
Prosite signatures (Figure 2). Furthermore, it is not
found by Prints, but is classi®ed as a glutaredoxin
(because of the weak sequence similarity found by
the BLAST alignment to GLRX_METTH) by Blocks
(Table 1). These examples further illustrate the
need to expand the ability to identify protein func-
tion from sequence, the power and utility of these
sequence signature databases notwithstanding.

Development of a FFF for the disulfide
oxidoreductase activity of the glutaredoxin/
thioredoxin protein family

The glutaredoxin/thioredoxin protein family is
composed of small proteins that catalyze thiol±dis-
ul®de exchange reactions via a redox-active pair of
cysteine residues in the active site (Yang & Wells,
1991a,b). While glutaredoxins and thioredoxins cat-
alyze similar reactions, they are distinguished by
their differential reactivity. Glutaredoxins contain a
glutathione-binding site, are reduced by gluta-
thione (which is itself reduced by glutathione
reductase), and are essential for the glutathione-
dependent synthesis of deoxyribonucleotides by
ribonucleotide reductase (Holmgren & Aslund,
1995). In contrast, thioredoxins are reduced directly

by the speci®c ¯avoprotein thioredoxin reductase
and act as more general disul®de reductases
(Holmgren & Bjornstedt, 1995). Ultimately, how-
ever, reducing equivalents for both proteins come
from NADPH. Protein disul®de isomerases (PDIs)
have been found to contain athioredoxin-like
domain and thus have a similar activity (Kemmink
et al., 1995, 1997).

The active site of the redoxin family contains
three invariant residues: two cysteines and a cis-
proline. Mutagenesis experiments have shown that
the two cysteine residues separated by two resi-
dues are essential for signi®cant protein function.
The side-chains of these two residues are oxidized
and reduced during the reaction (Bushweller et al.,
1992; Yang & Wells, 1991a). These two cysteine
residues are located at the N terminus of an
a-helix. Peptide studies have suggested that the
positive end of the helix macrodipole affects the
ionization of the cysteine residues and is thus con-
jectured to be important for protein function (Kor-
temme & Crieghton, 1995, 1996), although
alternative views have been expressed (Dyson et al.,
1997). Another unique feature of the redoxin
family is the presence of a cis-proline residue
located close to the two cysteine residues in struc-
ture, but not in sequence. While this proline resi-
due is structurally conserved in all glutaredoxin
and thioredoxin structures (Katti et al., 1995) and is
invariant in aligned sequences of known glutare-
doxins and thioredoxins, its functional importance
is unknown. Other residues, particularly charged
residues, have been shown to be important for the
speci®c thiol characteristics of the cysteine resi-
dues, but are not essential and can vary within the
family (Dyson et al., 1997).

The FFF for the disul®de oxidoreductase activity
of the glutaredoxin/thioredoxin family was built
as described in Methods and outlined in Figure 3.
The literature information incorporated into the
FFF is described above. The structure of the active
site was taken from the three-dimensional structur-
al comparison of bacteriophage T4 glutaredoxin,
1aaz (Eklund et al., 1992), human thioredoxin, 4trx
(Forman-Kay et al., 1990) and disul®de bond for-
mation protein, 1dsb (Martin et al., 1993). The
superposition of the active sites of these three pro-
teins is shown in Figure 4A, with the a-carbon dis-
tances between the relevant residues used to create
the FFF shown in Table 2. The set of a-carbon dis-

Figure 2. A comparison of the local sequences of GLRX_METTH, a ``glutaredoxin-like'' protein assigned to be a glu-
taredoxin by the Prosite sequence signature PS00195; YME3_THIFE, a protein not recognized by the Prosite or Prints
sequence signature; and the Prosite sequence signature for the glutaredoxins (Glrx, PS00195). The sequences are
aligned with the Glrx signature for easy comparison. The Prosite sequence signature for the thioredoxins (PS00194) is
presented. It can be seen that the YME3-THIFE sequence does not match the thioredoxin signature either.
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tances that de®ne the FFF and their location with
respect to the active site are indicated by dotted
lines. The following FFF was thus developed: two
cysteine residues separated by two residues and an
a-carbon distance of 5.5 (�0.5) AÊ . These cysteine
residues must be close to a proline residue. The
a-carbon distance from Cys(i) to the proline resi-
due is 8.5 (�1.5) AÊ and that from Cys(i � 3) is 6.5
(�1.5) AÊ . These three sets of distances comprise the
distances-only FFF of the glutaredoxin/thioredoxin
family. The de®nition of the FFF itself and the
speci®c geometric information used to create the
FFF are shown in Table 2. There is some evidence
that the cysteine residues must be at the N termi-
nus of a helix because of the effect of the helix
macrodipole on the sulfhydryl ionization
(Kortemme & Crieghton, 1995, 1996); however, this

evidence is disputed (Dyson et al., 1997), so this
characteristic is applied only if necessary.

Application of the glutaredoxin/thioredoxin
FFF to exact protein structures

The distances-only FFF (Figure 4 and Table 2) is
almost suf®cient to uniquely distinguish proteins
belonging to the glutaredoxin/thioredoxin family
from a data set of 364 non-redundant proteins
taken from the Brookhaven database. For this set
of 364 proteins, 13 have the sequence signature-
C-X-X-C-. Of these, only three, 1thx (thioredoxin),
1dsbA (protein disul®de isomerase, chain A) and
1prcM (photosynthetic reaction center, chain M)
have a proline residue within the distances speci-
®ed in Table 2. Of these three, only 1thx and 1dsb

Figure 3. Outline of the protocol for producing a FFF. Information from library searches, multiple sequence align-
ments, and examination of tertiary structures are used to identify residues that are functionally important. From
there, the FFF is de®ned and validated ®rst on high-resolution crystal and solution structures, then on low-to-moder-
ate resolution models of known structures, and ®nally on predicted models. At each of these steps, we ask whether
the FFF is unique and speci®c for the given activity. If it is not, the active-site residues are re-evaluated and
additional constraints are added to the FFF to make it more speci®c. This procedure was used to create the disul®de
oxidoreductase and T1 ribonuclease FFFs, as shown by the data presented in Table 2.
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have their cysteine residues positioned at or near
the N terminus of a helix. These two proteins are
the only two ``true positives'' in the test data set,
thereby showing that this simple FFF is quite
speci®c for identifying the disul®de oxidoreductase
active site of the glutaredoxin/thioredoxin protein
family. When the requirement that the cysteine
residues be at the N terminus of a helix is included,
then the 1prc-M site is also eliminated, making the
FFF absolutely speci®c for the glutaredoxin/thiore-
doxin disul®de oxidoreductase FFF.

To explore the ``fuzziness'' of this active-site
descriptor, the allowed variance in the Cys-Pro
and Cys-Cys a-carbon distances was uniformly
increased in increments of �0.1 AÊ . Upon increasing
the allowed distances by �0.1 AÊ , 1fjm (Goldberg
et al., 1995), a serine/threonine phosphatase, 1lct
(Day et al., 1993), a lactoferrin, and 1prc-C
(Deisenhofer et al., 1995), the C-chain of the photo-
synthetic reaction center, were also selected by the
distances-only FFF. The Cys-Cys-Pro site in 1fjm is
curiously similar to that found in the glutaredox-
in/thioredoxin family, including the proline resi-
due being in a cis-conformation, but the cysteine
residues are at the C terminus, not the N terminus,
of a helix. 1lct, an iron transport protein, contains a
proline residue near a cluster of metal-binding
cysteine residues and these are in a very irregular
structure, not in a helix. In 1prc-M, the Cys-Cys-
Pro structural motif is located along one face of a
transmembrane helix, near the C terminus of that
helix. In 1pcr-C, the Cys-Cys-Pro motif is located
in another very irregular region. Thus, even when
relaxed or fuzzy descriptors are used, all four pro-
teins found by the distances-only FFF are eliminated
when the helix requirement is included. When the
distance constraints are relaxed even further to
�0.3 AÊ , only one other protein, 2fd2 (Soman et al.,
1991), a ferredoxin, is selected. Ferredoxin is
another metal-binding protein. Again, the cysteine
residues are found in a non-regular structural
region, not in a helix. It is important to note that
when the cysteine residues are required to be at
the N terminus of a helix, all of these false posi-
tives are no longer recognized, even when the FFF
distance constraints are further relaxed by �0.3 AÊ

from the distances and their allowed variances
shown in Table 2.

Figure 4. A, Structure of the proteins used to describe
the disul®de oxidoreductase FFF, T4 glutaredoxin, laaz,
chain A (Eklund et al., 1992; gray ribbon), human thiore-
doxin, 4trx (Forman-Kay et al., 1990; blue ribbon) and
proline disul®de isomerase, 1dsb, chain A (Martin et al.,
1993; green ribbon), and an enlargement of the active
site of these proteins. The enlargement shows that the
active-site structure of these proteins is conserved,
although the structure of the rest of the proteins is very
different. The backbone atoms of the two cysteine resi-
dues and the cis-proline residue were superimposed and
the side-chains of the two cysteine residues (yellow) and
the proline residue (magenta) are shown as black ball
and stick models. The helix containing the cysteine resi-
dues is shown in orange and the N-terminal turn of this
helix is cyan. The two residues on either side of the pro-
line residues are shown as a gray ribbon. The Ca±Ca

distances taken from these proteins used to de®ne the
FFF are shown in Table 2 and are indicated in the

Figure by dotted lines. B, Sequence alignment of the
laaz (THIO_BPT4), 1dsb, chain A (DSBA_ECOLI) and
4trx (THIO_HUMAN), the three proteins used to create
the FFF, and 1ego (GLRl_ECOLI), the protein whose
structure was predicted using the MONSSTER ab initio
folding algorithm, The two cysteine residues and the cis-
proline residue involved in the active site and speci®-
cally selected by the FFF are shown in bold and under-
lined. The Figure was created using Pileup (Winsconsin
Package, Version 8, 1994, Genetics Computer Group).
Comparison of A and B shows that the active-site resi-
dues in these proteins are conserved in the structure,
but are not close in the sequence.
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Application of the glutaredoxin/thioredoxin
FFF to predicted protein models produced by
an ab initio folding algorithm

Current ab initio protein structure prediction
algorithms can often generate inexact models of
proteins or protein fragments with a 3 to 6 AÊ back-
bone coordinate root-mean-square deviation
(cRMSD) from the native structure (Aszodi et al.,
1995; Friesner & Gunn, 1996; Mumenthaler &
Braun, 1995; Ortiz et al., 1998; Smith-Brown et al.,
1993; Srinivasan & Rose, 1995). Is the glutaredox-
in/thioredoxin FFF suf®cient to identify the active
site of such an inexact model of a protein, or is
a high-resolution crystal or solution structure
required? The structure of E. coli glutaredoxin,
1ego (Xia et al., 1992), was predicted with a 5.7 AÊ

cRMSD of the a-carbon atoms by the MONSSTER
algorithm (Skolnick et al., 1997). Furthermore, the
sequence of this glutaredoxin exhibits less than
30% sequence identity with any of the three struc-
tures used to create the FFF (Figure 4B). The disul-
®de oxidoreductase FFF was applied to 25
``correct'' structures and 56 ``incorrect'' or ``mis-

folded'' structures generated by MONSSTER for
the 1ego sequence during the isothermal runs. The
distances-only FFF speci®cally selected all 25 ego-
like structures as belonging to the redoxin family
and rejected all 56 misfolded structures. A set of
267 correctly and incorrectly predicted structures
produced by the MONSSTER algorithm for ®ve
other proteins was then created. The distances-only
glutaredoxin/thioredoxin FFF was speci®c for the
correctly folded ego structures and did not recog-
nize any of the correctly or incorrectly folded struc-
tures of these other proteins. Inclusion of the more
speci®c criterion that the cysteine residues be at
the N terminus of a helix did not change these
results.

To further explore the allowed fuzziness of the
FFF as applied to these inexact models, the dis-
tance constraints were again relaxed. When the
allowed variance in the a-carbon distances shown
in Table 2 was relaxed by an additional �0.2 AÊ ,
the FFF was still absolutely speci®c for all correctly
folded 1ego structures. When the variance was
relaxed to �0.3 AÊ , the distances-only FFF picked
up two of the 56 misfolded 1ego structures, in

Table 2. The distance data used to derive each FFF, a description of each FFF, and comparison to test structures

Residues involved FFF definition Test
in FFF Distance in training proteins Mean SD FFF-DIST- FFF-Var- structure

A. Disulfide oxidoreductase FFF of the glutaredoxins/thioredoxins
1aazA 1aazB 1dsbA 1dsbB 4trx 1ego

Cys(i) Pro 7.93 8.15 7.47 7.70 10.55 8.360 1.25028 8.5 1.5 7.48
Cys(i�3) Pro 5.01 5.17 5.61 5.28 6.27 5.468 0.49932 6.5 1.5 5.60
Cys(i) Cys(i�3) 5.27 5.21 5.18 5.55 5.54 5.350 0.18097 5.5 0.5 5.33

B. RNA hydrolytic FFF of the T1 ribonucleases
1rtu 1fus 1rms 9rnt

His His* 15.20 16.70 15.97 15.950 0.6577 15.9 1.5 15.63
His Glu 5.36 5.84 5.71 5.637 0.2221 5.7 0.5 5.79
His* Glu 13.03 12.90 21.44 12.580 0.2773 12.6 1.0 11.95
Tyr Phe 13.03 16.40 16.62 16.580 0.1290 16.5 0.5 16.43
Tyr Arg 10.50 10.20 10.25 10.330 0.1473 10.3 0.5 10.29
Phe Arg 9.61 9.34 9.40 9.450 0.1418 9.5 0.5 9.59
His Tyr 4.87 5.02 5.13 5.007 0.1305 5.0 0.5 5.07
His Phe 14.47 15.60 15.28 15.120 0.5866 15.2 1.0 15.28
His Arg 10.44 11.30 10.94 10.900 0.4366 11.0 1.0 11.16
His* Tyr 16.06 16.10 15.86 16.010 0.1286 15.80 1.0 15.32
His* Phe 4.67 4.60 4.63 4.633 0.0351 4.6 0.5 4.64
His* Arg 8.72 8.79 8.50 8.670 0.1513 8.6 0.5 8.48
Glu Tyr 7.36 7.10 7.13 7.197 0.1422 7.2 0.5 7.24
Glu Phe 21.17 11.80 11.77 11.900 0.2309 11.9 0.5 11.96
Glu Arg 6.33 6.16 5.87 6.120 0.2326 6.1 0.5 6.00

The residues in each family used to de®ne the FFF are shown in Figures 4A and 7B. In the glutaredoxin/thioredoxin family, two
cysteine residues separated by two residues and a proline residue are used. In the T1 ribonucleases, six residues are used: the nucleo-
philic triad consisting of two histidine residues, His and His*, with the former (latter) closer to the N(C) terminus and a glutamic
acid residue, and the transition state for stabilization triad consisting of a tyrosine, an arginine and a large hydrophobic residue
(phenylalanine in 1rtu, 1fus and 1rms). For the T1 ribonucleases FFF, the ®rst three lines are the nucleophilic triad; the next three
lines are for the transition state stabilization triad; and the last nine lines are the distances between the two triads. Exact Ca±Ca dis-
tances for the relevant residues in the proteins used to de®ne each FFF are presented (1aazA, 1aazB, 1dsbA, 1dsbB and 4trx for the
glutaredoxin/thioredoxin family, and 1rtu, 1fus and 1rms for the T1 ribonuclease family). Mean is the mean of the a-carbon dis-
tances (in AÊ ) found in these structures; SD is the standard deviation for this distribution of distances. The columns FFF-DIST and
FFF-Var are the data that describe the FFF: DIST is the Ca±Ca distance and Var is the variation allowed in these interatomic dis-
tances. In most cases, DIST is close to the mean distance found in proteins used to de®ne the FFF (and is derived using the set of
364 PDB structures and is chosen to eliminate false positives, and Var is correlated with the standard deviation for the distribution
of distances found in the same set. In the last column, the distances for (A) 1ego (Xia et al., 1992) and (B) 9rnt (Martinez-Oyanedel
et al., 1991), the test proteins that were not used to de®ne the FFF but were used to test its de®nition, are given for comparison.
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addition to the 25 correctly folded structures.
When the allowed variance was further relaxed to
�0.5 AÊ , no additional incorrectly folded structure
was selected. These results demonstrate the speci-
®city and the uniqueness of the glutaredoxin/
thioredoxin disul®de oxidoreductase FFF for low
resolution models of protein structure by ab initio
folding algorithms.

Application of the glutaredoxin/thioredoxin
disulfide oxidoreductase to models built using
threading or inverse folding algorithms

The FFF concept can be applied to proteins that
have been folded by an ab initio folding algorithm,
but such state-of-the-art algorithms are too slow to
permit genome-wide screening. Thus, for large-
scale screening, it would be most useful if the FFFs
could be applied to three-dimensional protein
models produced by threading or inverse folding
algorithms. To be useful for genome-wide screen-
ing, the procedure must recognized proteins that
could not be detected by standard sequence anal-
ysis methods. Thus, we applied the disul®de
oxidoreductase FFF to several putative proteins
from the yeast genome database (Mewes et al.,
1997). The selected protein sequences were aligned

to a database of 301 non-homologous protein struc-
tures (Fischer et al., 1996) using an inverse folding
or threading algorithm (Jaroszewski et al., 1998).
Models were built using automatic scripts, as
described in Methods. Without further relaxation,
these models were screened using the glutaredox-
in/thioredoxin FFF.

A total of eight ORFs from the S. cerevisiae gen-
ome database were tested (Table 3). Six were ident-
i®ed by the combination of threading and FFF as
containing the disul®de oxidoreductase active site:
one protein is predicted to belong to the protein
disul®de isomerase family (S67190); one sequence
that the depositors identify as a hypothetical thior-
edoxin (YCX3_YEAST); one sequence, which has
no detectable sequence similarity to any glutare-
doxin or thioredoxin, identi®ed as the gamma sub-
unit of glycosyl transferase (OSTG_YEAST); and
three hypothetical proteins, one having very dis-
tant sequence similarity to glutaredoxin from rice
(S51382), one with very distant sequence similarity
(insigni®cant by the Blast score) to the glutaredoxin
from Methanococcus thermoautoformicum (S70116),
and one with no similarity to any glutaredoxin
or thioredoxin by Blast (YBR5_YEAST). Of these
six, only YCX3_YEAST, S67190, and S70116 were
identi®ed as a glutaredoxin or thioredoxin by at

Table 3. Results of the application of threading and the glutaredoxin/thioredoxin disul®de oxidoreductase FFF to
eight sequences from the yeast genome database

Sequence Blast PS P(PS) P(B) B Aligns Signif. Active-site res. Name

YCX3_YEAST X X X X X 2trxA 48.1 C55,C58,P98 Hypothetical thrx-like protein
2trxA 498.3
2trxA 101.2

S67190 X X X X X 2trxA 5464.9 C59,C62,P105 MPD1 prot
2trxA 1736.8
2trxA 2200.6

S70116 X X 1ego 7.6 C31,C34,P79 Hypothetical protein
2trxA 17.6
2trxA 13.5

S51382 X 1ego 7.8 C25,C28,P74 Hypothetical protein
2trxA 17.5
2trxA 16.0

YBR5 YEAST 1dsbA 29.0 C13,C16,P151 Hypothetical protein

OSTG YEAST 2trxA 25.6 C73,C76,P133 Glycosyl transferase g subunit
2trxA 43.7
2trxA 95.8

YEO4 YEAST X 2trxA 175.6 NF Hypothetical protein
2trxA 934.3 NF
2trxA 730.3 NF

YPRO82c X 2trxA 8.9 NF Hypothetical protein
2trxA 23.1 NF
2trxA 23.3 NF

The ®rst ®ve columns show if the function of the sequence could have been determined by sequence alignment or by the motifs
databases: Blast (signi®cant score by the gapped or Psi-Blast algorithm); PS, Prosite; P(PS), Prints scored by the Prosite method; P(B),
Prints scored by the Blocks method; B, Blocks. Aligns is the structure to which the threading algorithm aligned the sequence. Signif.
is the signi®cance score of the alignment. The ®rst entry of each group of three is the sequence-based scoring method; the second
entry is the sequence-structure scoring method; the third is the structure-structure scoring method (Jaroszewski et al., 1998; and see
Methods for a brief description). Note that YBR5_YEAST was aligned with 1ego, 2trxA or 1dsbA by only one scoring method; thus,
only one score is given. Active-site res. are the residues in the threading model that are identi®ed by the disul®de oxidoreductase
glutaredoxin/thioredoxin FFF as being active site residues. NF means that, although the sequence aligned with 1ego, 2trxA or
1dsbA, the FFF did not identify a disul®de oxidoreductase active site in this protein.
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least one of the motif databases. Two additional
sequences, YEO4_YEAST and YPRO82c, were
identi®ed by the threading algorithm as having the
glutaredoxin or thioredoxin structure, but were not
identi®ed by the FFF as containing the oxidoreduc-
tase active site. Both of these sequences exhibit
identi®able sequence similarity to glutaredoxins or
thioredoxins by the Blast algorithm (Table 3).

The threading algorithm (Jaroszewski et al.,
1998) aligns the sequences of all eight of these
ORFs to the structure of either 1ego (E. coli glutare-
doxin (Xia et al., 1992)), 2trx, chain A (E. coli thiore-
doxin (Katti et al., 1990)), or 1dsb, chain A (E. coli
protein disul®de isomerase (Martin et al., 1993))
from a database of 301 non-homologous proteins
(Fischer et al., 1996). The alignment ®t is strong, as
seven of the eight sequences were matched to
1ego, 2trx or 1dsb by all three scoring methods
used to assess the signi®cance of the threading
results (Table 3). For comparison, the signi®cance
scores reported in Table 3 can be compared to the
distribution of signi®cance scores for all yeast
sequences that aligned to 2trx, chain A (Figure 5).
Models were built based on the sequence-to-struc-
ture alignments and were screened with the FFF.
Sixteen of the models (one model for each scoring
method for YCX3_YEAST, S67190, S70116, S51382,
YBR5_YEAST and OSTG_YEAST) were found to
have the disul®de oxidoreductase active site
described by the distances-only FFF. The residues
predicted to be in the active sites of these proteins
are listed in Table 3.

This result is remarkable when one considers
that the sequence similarity between these proteins
is virtually non-existent. Several examples are
shown in Figure 6. In one case (S70116), standard
multiple sequence alignments even fail to correctly
align the proposed active-site residues when the
sequences are aligned with each other (Figure 6B).
The Prosite, Prints and Blocks motif databases var-
iously classify these proteins (Table 3). One
sequence (S570116) is recognized only by the
Blocks database; another sequence (S51382) is not
recognized by any of these sequence motif data-
bases. Furthermore, BLAST sequence alignment
algorithms do not ®nd a match for YBR5_YEAST
or OSTG_YEAST to any glutaredoxins or thiore-
doxins. Thus, the result for these two sequences
stands as a prediction of activity based on the dis-
ul®de oxidoreductase glutaredoxin/thioredoxin
FFF.

Finally, it must be shown that not all sequences
recognized by the threading algorithm contain the
disul®de oxidoreductase active site. In theory,
threading algorithms should recognize structure
only; consequently, they should be able to recog-
nize proteins with similar structures, but that do
not have the same function. Such proteins are
termed topological cousins. The FFF should allow
us to distinguish between functionally related pro-
teins and topological cousins. Two of the sequences
(YEO4_YEAST and YPRO82c) are found to align
with 2trx, chain A, by all three scoring methods
used by the threading algorithm (Table 3). Com-

Figure 5. The distribution of signi®cance scores for all sequences from the yeast genome that aligned with 2trx,
chain A, by the threading algorithm. The main graph shows the distribution for signi®cance scores of 1 to 200; the
inset graph shows the distribution for all signi®cance scores. Comparison of scores presented in Table 3 and this
histogram shows that sequences found to contain the disul®de oxidoreductase active site and those that do not con-
tain the active site have similar signi®cance scores. Thus, application of the FFF allows us to automatically distinguish
between proteins with similar active sites and those that are topological cousins. The threading algorithm and three
different scoring methods (®lled, open and cross-hatched bars) are described in detail by Jaroszewski et al. (1998) and
brie¯y described in Methods.
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parison of the scores reported in Table 3 to the dis-
tribution of scores shown in Figure 5 demonstrates
that these are relatively strong structural predic-
tions. Furthermore, both of these putative proteins
are found to align to thioredoxins by the BLAST
algorithm (Table 3), although the signi®cance score
of these sequence alignments is not high. However,
the disul®de oxidoreductase FFF does not ®nd the
correct active site in the three-dimensional models.
Analysis of the sequences by hand after the fact
demonstrates that neither sequence has the CXXC
sequence characteristic of the active site of this
family, thus it is unlikely that these proteins would
demonstrate the oxidoreductase activity. We have
thus shown that not all proteins that align with

1ego, 2trx or 1dsb by the threading algorithm exhi-
bit the disul®de oxidoreductase active site.

Taken together, these results demonstrate that
models produced by threading algorithms are
suf®cient for application of the FFF to the identi-
®cation of active sites in proteins. Application of
the FFF idea is an automatic method for dis-
tinguishing between functionally related proteins
and topological cousins. These results suggest a
means for large-scale functional analysis of the
genome databases using the sequence-to-structure-
function paradigm.

Development of a FFF for the T1 ribonuclease
protein family

To show that the FFF concept is applicable to
other active sites besides the glutaredoxin/thiore-
doxin disul®de oxidoreductase active site, a FFF
was built for the active site of the T1 ribonuclease
family. The T1 ribonucleases are a family of pro-
teins that include a number of ribonucleases such
as T1, T2, U2 and F1, and the distantly related
family of fungal ribotoxins. These proteins are
endoribonucleases that are generally speci®c for
purine, particularly guanine, bases (Steyaert, 1997).

The catalytic mechanism of the T1 ribonucleases
has been well studied (for a review, see Steyaert,
1997). Two histidines and a glutamic acid residue
are essential for the nucleophilic displacement of
the phosphate atoms. A tyrosine, a phenylalanine
(or another large hydrophobic residue) and an
arginine residue are responsible for stabilizing the
transition state of the reaction. These catalytic resi-
dues are located on various strands across one face
of a b-sheet. They are highlighted in the multiple
sequence alignment of T1 ribonucleases shown in
Figure 7A, and their proximity in three-dimen-
sional space is shown in Figure 7B. Neither Prosite,
Prints nor Blocks provides a sequence signature
with which to identify this family.

An analysis of three T1 ribonucleases whose
structures have been solved (1rms, Nonaka et al.,
1993; 1fus, Vassylyev et al., 1993; and 1rtu,
Noguchi et al., 1995) shows that the location of the
active-site residues in three-dimensional space is
very well conserved. Thus, a FFF based on the dis-
tances between appropriate a-carbon atoms was
developed from these distances, plus or minus a
small variance. The exact values used to create the
FFF and the distances and variances for the FFF
itself are given in Table 2.

Application of the T1 ribonuclease FFF to
``exact'' protein structures

When applied to three-dimensional structures,
the T1 ribonuclease FFF was implemented in three
stages: ®rst the structure is searched for the residue
triad involved in nucleophilic displacement (His-
His-Glu); second, the structure is searched for the
residue triad involved in transition state stabiliz-
ation (Tyr-Hydrophobic-Arg); third, if both triads

Figure 6. Sequence alignment of four proteins from
the Saccharomyces cerevisiae genome with each other and
with the target structures 1ego (Xia et al., 1992; GLRl_
ECOLI) and 2trx (Katti et al., 1990; THIO_ECOLI; see
Table 3. The threading program matched S51382 and
S70116, both hypothetical proteins, to 1ego (A); the
threading program matched YCX3_YEAST, a hypotheti-
cal thioredoxin-like protein, S67190, a protein that is pre-
dicted to be related to the protein disul®de isomerases,
S51382 and S70116 to 2trx (B). (Different scoring func-
tions matched S51382 and S70116 to different templates,
thus they are shown in both alignments; see Table 3). In
B, only the ®rst 150 residues of S67190 that align with
2trx are shown. The cysteine and proline residues ident-
i®ed by the FFF as being part of the disul®de oxido-
reductase active site (see Figure 4A and Table 2) are
shown in bold type. Alignments were produced by the
Pileup multiple sequence alignment program (Wisconsin
package, Version 8, 1994, Genetics Computer Group)
using the standard parameters.
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are found, the relative positions of the two triads
are checked based only on the distances between
a-carbon atoms. Application of the FFF to the 364
non-homologous PDB protein structures yields
only one structure that contains both residue triads
in the correct juxtapositions: 9rnt (Matinez-Oyane-
del et al., 1991), the only true positive in the test
data set. Increasing the allowed variation for each
distance by �0.5 AÊ yields no additional protein,
demonstrating that this FFF is speci®c for struc-
tures of the T1 ribonuclease family solved to atomic
resolution, even when the distance restraints are
made increasingly fuzzy.

Application of the T1 ribonuclease FFF on
low-to-moderate resolution protein models

To test the applicability of the T1 ribonuclease
FFF to inexact, predicted models, the nine ribonu-
clease sequences listed in Table 4 and Figure 7A
were threaded through 301 non-homologous pro-
teins, as described in Methods. All nine sequences
were matched as the highest score to the 9rnt struc-
ture by all three scoring methods. Models were
built for all 27 (nine sequences times three scoring
methods) sequence-to-structure alignments and all
27 models were screened by the T1 ribonuclease
FFF. All 27 models were found to contain both T1

ribonuclease active-site triads in the correct
locations in the structure (Table 3).

To test the method on more distantly related
sequences, models of three ribotoxin sequences
were built. Ribotoxins are a small family of pro-
teins found in the Aspergillus fungi family. They
cleave RNA in the ribosome, thus inactivating the
ribosome and ultimately killing the cell (Kao &
Davies, 1995). The RNA cleavage is carried out
by a mechanism quite similar to that found in the
T1 ribonucleases (Campos-Olivas et al., 1996). The

Figure 7. A, Sequence alignment of nine ribonucleases
and three ribotoxins in the T1 family. The ®rst nine
sequences are ribonucleases; the last three are ribotoxins
with their leader sequences attached (RNAS_ASPGI,
a-sarcin; RNCL_ASPCL, clavin; RNMG_ASPRE, restric-
tocin). The six residues involved in the catalytic mechan-
ism are shown in bold. The ®rst four sequences are
those found in the PDB database and were used to cre-
ate or to test the FFF (see Tables 2 and 4). The other T1

ribonucleases were found by searching the SwissProt32
database (Bairoch & Apweiler, 1996) with BLAST

(Altschul et al., 1990) using RNT1_ASPOR as the search
sequence. The ribonucleases were selected as the most
signi®cant matches to RNT1_ASPOR. All sequences,
both ribonucleases and ribotoxins, were aligned using
the Pileup multiple sequence alignment tool from the
Wisconsin GCG package. B, A view looking along the
approximate plane of the b-sheet that contains the active
site of 9rnt (Martinez-Oyanedel et al., 1991). The His-
His-Glu involved in nucleophilic displacement are
shown as magenta ball and stick models; the Tyr-
Hydrophobic-Arg side-chains involved in transition
state stabilization are shown as light green ball and
stick models. The strands of the sheet (as identi®ed by
the crystallographer) are shown as a light blue ribbon.
The set of a-carbon distances that de®ne the FFF corre-
sponding to the His-His-Glu distances are indicated by
the magenta lines and the corresponding distances for
those residues involved in transition state stabilization
are shown by green lines. Comparison of A and B
shows that the active-site residues are close in three-
dimensional space, but not close in the one-dimensional
sequence.
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three selected ribotoxins, a-sarcin (RNAS_ASPGI),
clavin (RNCL_ASPCL) and restrictocin (mitogillin,
RNMG_ASPRE), can be aligned with the T1 ribo-
nucleases by multiple sequence alignment algor-
ithms (Figure 7A), but the degree of sequence
identity between the ribotoxins and the T1 ribonu-
cleases is quite low (less than 35% pairwise
sequence identity). Furthermore, a Blast (Altschul
et al., 1990) search of SwissProt (Bairoch &
Apweiler, 1996) using the sequence of 9rnt as the
search sequence does not yield any of these ribo-
toxin sequences. The structure of restrictocin (Yang
& Moffat, 1996) was solved and recently released;
that of a-sarcin (Campos-Olivas et al., 1996) was
solved, but has not yet been released to the public
databases.

The three ribotoxin sequences, including their
signal sequences, were threaded through 301 non-
homologous protein structures (Fischer et al., 1996).
As with the T1 ribonucleases, each ribotoxin
sequence aligned with 9rnt as the highest-scoring
sequence by all three scoring methods, although
the alignment scores were much lower than those
for the T1 ribonucleases themselves (Table 4). Nine
models (three sequences times three scoring
methods) were built based on the sequence-to-
structure alignments produced by the threading
program. All nine models contained both the
nucleophilic and the transition state stabilization
triads and were recognized by the T1 ribonuclease
FFF. The identi®ed active-site residues are pre-
sented in Table 4. This result again demonstrates
that models of distantly related proteins can be
built on sequence-to-structure alignments pro-
duced by a threading algorithm. Active sites
within these low-to-moderate resolution models
can be recognized by the FFF.

None of the T1 ribonuclease sequences has yet
been folded by the MONSSTER algorithm; how-
ever, as a control, this FFF was tested on a data-

base of correctly and incorrectly folded structures
produced by MONSSTER and used to test the glu-
taredoxin/thioredoxin FFF. None of these struc-
tures was found to contain the T1 RNase active
site, even when the allowed variance in the dis-
tance was uniformly increased by �0.5 AÊ over
those variances shown in Table 2.

Discussion

With the advent of the genome sequencing pro-
jects, the number of known protein sequences is
exponentially increasing; however, the sequence of
a protein is virtually useless without some knowl-
edge of both its structure and its function. The
most common methods for predicting protein func-
tion from sequence are to look for homologous
proteins in the sequence databases by standard
sequence alignment protocols, or to look for local
sequence signatures that match those found in the
appropriate functional databases such as Prosite,
Blocks and Prints.

Here, we have demonstrated the utility of a new
method for predicting protein function based on
the three-dimensional structure of the active site.
This method is based on the sequence-to-structure-
to-function paradigm, because the structure of the
protein is ®rst predicted from its sequence, then
the active site of the protein is identi®ed in the pre-
dicted model. We have shown here that active-site
descriptors, termed FFFs, work to identify the
active-site residues both in high-resolution (exact)
and low-to-moderate resolution (inexact or pre-
dicted) protein structures.

Advantages of using geometric descriptors to
identify protein active sites

Because the method is based on three-dimen-
sional structures of protein active sites, it has the

Table 4. Results of application of threading and the T1 ribonuclease FFF to nine ribonuclease
sequences from various organisms and three ribotoxin sequences from the Aspergillus fungi family

Sequence Signif. Active-site Res. (H H E Y Phob R)

RNT1 ASPOR (9rnt) 132104. 645277, 4334 40 92 58 38 100 77
RNF1 FUSMO (1fus) 2358, 6673, 428 30 90 57 37 98 75
RNMS ASPSA (1rms) 12586, 38926, 1244 39 91 57 37 99 76
RNU2 USTSP (1rtu) 122, 332, 61.0 41 101 62 39 110 85
RNC2 ASPCL 18638, 88768, 1321 40 92 58 38 100 77
RNPB PENBR 6650, 26930, 810 38 90 56 36 98 75
RNPC PENCH 5977, 21676, 764 38 90 56 36 98 75
RNN1 NEUCR 11840, 47527, 946 40 92 58 38 100 77
RNU1 USTSP 677, 1690, 132 37 92 57 35 100 76
RNAS ASPGI (a-sarcin) 26.4, 72.5, 14.8 77 164 123 75 172 148
RNCL ASPCL (clavin) 26.1, 82.2, 13.3 77 164 123 75 172 148
RNMG ASPRE (restrictocin) 21.1, 91.2, 15.8 76 163 122 74 171 147

Signif. is the signi®cance score of the alignment. The ®rst entry of the group of three is the sequence-based
scoring method; the second entry is the sequence-structure scoring method; the third is the structure-structure
scoring method. All sequences aligned with the 9rnt structure. Active-site res. are the residues in the threading
model that are identi®ed by the RNA hydrolysis T1 ribonuclease FFF as being active-site residues. The ®rst
group (H H E) is the triad involved in the nucleophilic catalysis; the second group (Y Phob R) is involved in
transition state stabilization (see the text for more details). For the ribotoxins, the residue numbering includes
the leader sequence, as shown in Figure 7A.
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following advantages (each is discussed in further
detail in the following paragraphs): (1) it is appli-
cable even when the degree of sequence identity
between two proteins is not signi®cant; (2) it can,
in principle, treat the case of proteins having two
different global folds, but similar sites and associ-
ated function; (3) it distinguishes between proteins
with similar folds (topological cousins) and those
that belong to a given functional family; and (4) in
addition to assigning a given protein to a func-
tional family, the method produces a map or
model of the protein active site.

The examples presented in the Introduction
suggest that functionally important residues are
often non-local in sequence and important func-
tional relationships cannot always be extracted
from standard sequence comparisons. As the
sequence and structural databases grow ever lar-
ger, examples such as these will become increas-
ingly more common. Motif databases such as
Prosite (Bairoch et al., 1995), Blocks (Henikoff &
Henikoff, 1991) and Prints (Attwood & Beck, 1994;
Attwood et al., 1994, 1997), while very powerful,
are limited in scope because they are restricted to
one-dimensional sequence information. FFFs,
because they are based on the three-dimensional
structure of the active site, should be able to ident-
ify the similar function in these families, as was
shown here for the oxidoreductase activity of the
glutaredoxin/thioredoxin family (Table 3) and the
RNA hydrolytic activity of the T1 ribonucleases
(Table 4). We have shown several cases where the
FFF was able to identify an active site when the
sequence identity between the two sequences was
in the twilight zone. We have predicted the active
site and associated activity in one case where the
sequence identity is insigni®cant and the function
is not identi®ed by Prosite, Prints or Blocks.
Finally, we predicted the activity in two cases where
neither BLAST nor the motif databases predict the
glutaredoxin/thioredoxin active site (Table 3).

In the extreme case, however, two proteins
might have similar active sites even though their
tertiary structures are completely different, as
found for the mammalian and bacterial serine pro-
teases (Branden & Tooze, 1991). In such a case,
sequence alignment or local sequence signatures
would be unable to recognize the functional simi-
larity. The method presented here has the advan-
tage that it should be able to recognize the active-
site similarity in such cases. Such cases will be
examined in the future.

The third advantage of the method is that it can
distinguish between topological cousins and pro-
teins having similar function. The number of
known folds is not increasing as quickly as the
number of solved structures. For instance, the
structural family of the a/b barrel proteins is quite
large; however, the members of this family can
have quite disparate functions. This has led some
researchers to suggest that there are a limited num-
ber of protein folds (Godzik, 1997; Holm & Sander,
1997a; Orengo et al., 1994; Wang, 1996), a statement

that bodes well for prediction of protein structure
by threading or inverse folding-based approaches.
However, while this observation might increase
the chances of predicting a structure via threading,
it decreases our ability to predict the function of
that same protein via threading. If many different
proteins with differing functions fold into similar
structures, simple structure prediction will tell us
nothing whatsoever about the function of the pro-
tein. The results for YEO4_YEAST and YPRO82c
demonstrate that the FFF can provide a method for
automatic distinction between functionally related
and topological cousins. Thus, a library of FFFs
would greatly expand the utility of current thread-
ing algorithms and allow us to predict protein
function, as well as structure, via threading
approaches.

Use of the sequence-to-structure-to-function
paradigm for prediction of protein function confers
one further set of advantages: the predicted struc-
ture produces a model of the protein and the FFF
identi®es the exact location of the active site in
both the sequence and its predicted structure. In
contrast, standard sequence analysis methods,
being inherently one-dimensional, do not automati-
cally provide a model of the active site. Once the
protein's function is predicted by sequence hom-
ology, a model of the active site can be built by
homology modeling based on the sequence align-
ment, provided that the structure of a related pro-
tein is known. In the FFF paradigm, the procedure
is inverted: ®rst, a model structure is built, then it
is scanned for possible location of the active site.
Once the location of the active site is identi®ed, the
active site and the model can be further studied for
possible similarities to or differences from other
active sites of the same protein family. For example,
once a predicted structure is identi®ed as having the
redoxin disul®de oxidoreductase activity, the struc-
ture can be analyzed in more detail to see if it
belongs to the thioredoxin or the glutaredoxin sub-
families or to another, as yet unidenti®ed, subfamily.
Examples of active-site residues predicted by the
FFFs described here are presented in Tables 3 and 4.
Finally, the sequence whose function is newly
assigned can now be used to scan the sequence data-
bases for other homologous sequences that are com-
patible with the predicted function.

Disadvantages of using geometric descriptors
for identifying protein active sites

The FFF approach suffers from several disadvan-
tages. First, a structure of the protein must be
available. This is not as great a disadvantage as it
might seem, because we have shown here that
low-resolution models produced by current predic-
tion algorithms are still useful for active-site pre-
diction using this method. Protein structure
prediction tools and algorithms will only improve,
but even at this stage, useful models can still be
produced. A second disadvantage is that the
resulting model might actually be incorrect, i.e. it
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is misfolded, either globally or locally. Such an
incorrect structure could cause misidenti®cation of
an active site, with either a false positive or a false
negative result, depending on the particular case.
As the method is further tested, such situations
will undoubtedly be observed. The ®nal and major
disadvantage is that the active site responsible for
the protein's function must have been previously
observed and studied. Otherwise, using the current
method, it is not possible to build a FFF. However,
we will start by building a library of FFFs with the
many active sites that have been well studied and
whose structures are known. Even if our approach
is limited to previously identi®ed active sites, the
ability to predict proteins that have these active
sites will still be very useful and will extend the
limits of function prediction from sequence much
further into the twilight zone.

Conclusions and Future Directions

Here, we have shown that simple, relaxed geo-
metric and conformational descriptors (FFFs) of the
active sites of proteins are suf®cient to select pro-
teins containing speci®c activities from a large set
of high-resolution models. We have shown that the
two developed FFFs are speci®c for low-resolution
models created either by ab initio folding algor-
ithms or by threading algorithms. Finally, we have
presented an example where the FFF predicts the
function of two proteins from the yeast genome
whose structures were predicted by a threading
algorithm and whose function could not be ident-
i®ed by local signature databases or by Blast. This
work increases the utility of the genomic sequence
databases and demonstrates that predicted models,
even those at low resolution, can be used for pro-
tein function prediction. Thus, it paves the way for
the functional screening of the genomic databases
based on the sequence-to-structure-to-function
paradigm, provided that the active-site geometry
and conformation is found in a previously solved
structure.

In the future, we plan to expand the library of
FFFs to include many more active sites, focusing
on those activities that are not easily identi®able
by local sequence motifs. We will include the pep-
tide hydrolytic active site of the serine proteases in
the expanded FFF library to show that FFFs can
identify similar active sites even when the global
fold is completely different. The threading results
presented here suggest that screening of complete
genomes for function might be feasible, and this,
too, will be attempted. Analysis of complete gen-
omes will provide more detailed analysis on the
success and failure rate of this method.

Methods

Description of how to build an FFF

The FFFs are built from the three-dimensional struc-
tural arrangements of functionally important residues on

the basis of the biochemistry of the known function.
These geometric descriptors should be inherently more
exact than local sequence signatures, because they
encode structural as well as minimal sequence infor-
mation and, thus, they will be more descriptive of the
actual chemistry involved in the protein function. A gen-
eral outline of how to build a FFF is shown in Figure 3.

The ®rst step is to perform a literature search to gather
biochemical evidence about which residues are function-
ally important. Next, a series of functionally related pro-
teins with known structures are selected. These putative
functionally important residues are superimposed in
space, and their relative geometries (distances, angles)
between a-carbon atoms and side-chain centers of mass
are recorded. Common secondary structures are ident-
i®ed, if there is evidence in the literature for the import-
ance of such conformations. Structural superposition and
multiple sequence alignment can help identify other resi-
dues that might be important, but these should be used
only if experimental evidence suggests a functional sig-
ni®cance. The procedure is iterative. After identi®cation
of conserved residues, another literature search can be
done to analyze the relative functional importance of
these conserved residues and structures. We aim to use
only those residues shown to be functionally important
or conserved across a large set of proteins exhibiting the
activity of interest.

Once a set of geometric and conformational con-
straints for a speci®c function has been identi®ed, they
are implemented in the form of a computer algorithm.
The program searches experimentally determined pro-
tein structures from the protein structural databank
(Abola et al., 1987) for sets of residues that satisfy the
speci®ed constraints. The constraints are implemented
stepwise, so that structures that are eliminated by each
criterion can be evaluated at each step along the way. If
the constraint set misses any proteins known to exhibit
the function under investigation, the structure of the
missed protein is analyzed and the FFF modi®ed. If the
FFF selects proteins that are not known to display the
function, then the structure of these ``false positive''
examples is compared to the known functional sites.
Again, the FFF is modi®ed to eliminate the false posi-
tives, although some false positives could prove to be
interesting if they identify a previously unrecognized
activity in a protein.

At this stage, a tentative FFF is generated that can be
applied to structures of varying quality (Figure 3). While
the FFF is initially tuned to high-resolution structures, it
might be loosened to accommodate ambiguities inherent
in lower-resolution models. Ideally, such fuzziness
should not degrade the performance on high-resolution
structures. Thus, the extent of fuzziness is ascertained by
the performance on exact (i.e. a set of high-resolution)
structures and on low-resolution models of known
structure.

Using this method, FFFs were created for the disul®de
oxidoreductase activity of the glutaredoxin/thioredoxin
family and the RNA hydrolytic activity of the T1 ribonu-
clease family. The information from the literature about
the enzymatic reaction mechanism used to create these
FFFs is described in Results. For the disul®de oxido-
reductase FFF, 1aaz chains A and B (Eklund et al., 1992),
1dsb chain A (Martin et al., 1993) and 4trx (Forman-Kay
et al., 1990) were used to de®ne the active-site geometric
information. For the T1 ribonuclease FFF, 1rtu (Noguchi
et al., 1995), 1fus (Vassylyev et al., 1993) and 1rms
(Nonaka et al., 1993) were used to de®ne the active site.
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The ®nal a-carbon to a-carbon distances and their
allowed variances that describe the ®nal FFFs are com-
piled in Table 2. Most often, these distances are similar
to the average distances for proteins used to de®ne the
FFF and the allowed variance correlates with the stan-
dard deviation (see Table 2 for examples). The FFFs
themselves and their application to actual and predicted
structures are described in more detail in Results.

Description of the threading or inverse
folding algorithm

In an inverse folding approach, one ``threads'' a probe
sequence through different template structures and
attempts to ®nd the most compatible structure for a
given sequence. The threading program used here is that
created and distributed by Godzik and co-workers
(Jaroszewski et al., 1998). Brie¯y, the sequence-to-struc-
ture alignments are performed by a ``local-global'' ver-
sion of the Smith-Waterman algorithm (Waterman,
1995). The alignments are then ranked by three different
scoring methods (Jaroszewski et al., 1998). The ®rst, SQ,
is based on a sequence-sequence type of scoring. In this
sequence-based method, the Gonnet mutation matrix
was used to optimize gap penalties, as described by
Vogt and Argos (Vogt et al., 1995). The second method,
BR, is a sequence-structure scoring method that is based
on the pseudo-energy from the probe sequence
``mounted'' in the structural environment in the template
structure. The pseudo-energy term re¯ects the statistical
propensity of successive amino acid pairs (from the
probe sequence) to be found in particular secondary
structures within the template structure. The third meth-
od, TT, is a structure-structure scoring method, whereby
information from the known template structure is com-
pared to the predicted secondary structure of the probe
sequence. The secondary structure prediction scheme for
the probe sequence was the nearest-neighbor algorithm
(L. Rychlewski & A. Godzik, unpublished). The version
used here achieves an average three-state prediction
accuracy of 74%.

Once we have computed scores for the sequence-to-
structure alignments, the statistical signi®cance of each
score must be determined. To determine this signi®-
cance, the distribution of scores is ®t to an extreme value
distribution and the raw score is compared to the chance
of obtaining the same score when comparing two unre-
lated sequences, as described by Godzik and co-workers
(Jaroszewski et al., 1998). Tables 3 and 4 report the
signi®cance score of the top sequence-to-structure
alignments, rather than the raw score.

Once the alignment of the probe sequence-to-template
structure has been determined, a three-dimensional
model must be built. Scripts utilizing the automatic mod-
eling tools provided by Modeller4 (Sali & Blundell, 1993)
were developed (L. Jaroszewski, K. Pawlowski & A.
Godzik, unpublished). These scripts automatically pro-
duce all-atom coordinate ®les for the three-dimensional
model built from the sequence-to-structure alignment
provided by the threading algorithm. The FFF was
applied directly to these structures without any further
enhancement, energy calculations or molecular mech-
anics simulations of the model.

Description of MONSSTER, the ab initio
folding algorithm

Some predicted structures were produced using a
method for the ab initio prediction of protein structures

at low resolution (Ortiz et al., 1998; Skolnick et al., 1997).
Predicted structures used for the FFF analysis were
taken directly from the set of correctly and incorrectly
folded proteins produced by this procedure. Brie¯y, the
procedure can be divided into two parts: restraint deri-
vation using information extracted from multiple
sequence alignment and structure assembly/re®nement
using an improved version of the MONSSTER algorithm,
which uses a high coordination lattice-based Ca rep-
resentation for the folding of proteins (Skolnick et al.,
1997), modi®ed to incorporate the expected accuracy and
precision of the predicted tertiary restraints (Ortiz et al.,
1998).

For each protein sequence, 10 to 40 independent simu-
lated annealing simulations from a fully extended initial
conformation were carried out (assembly runs). Struc-
tures were then clustered and all low-energy structures
were subjected to low-temperature, isothermal re®ne-
ment. The predicted fold is that of lowest average
energy. The FFFs were tested on a series of correctly and
incorrectly folded structures produced during the assem-
bly and isothermal runs for proteins 1ego (Xia et al.,
1992), 1poh (Jia et al., 1993), 1ubq (Vijay-Kumar et al.,
1987) and 1cis (Osmark et al., 1993).
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