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ABSTRACT: Several problems in computational chemistry, structural molecular
biology, and biological chemistry can be solved by symbolic-numerical algorithms. We
introduce suitable algebraic tools and then survey their usage in concrete applications.
In particular, questions on molecular structure can be modeled by systems of
polynomial equations, mainly by drawing on techniques from robot kinematics.
Resultant-based algorithms, including sparse resultants and their matrix formulae, are
described in order to reduce the solving of polynomial systems to numerical linear
algebra. As an illustration, we focus on computing all conformations of cyclic molecules
and on matching pharmacophores under distance constraints; in both cases, the number
of independent degrees of freedom is relatively small. We summarize some existing
results as well as sketch some original work. Both lead to complete and accurate
solutions for those problems in the sense that our algorithms output all solutions with
sufficiently high precision for the needs of biochemical applications. © 2005 Wiley
Periodicals, Inc. Int J Quantum Chem 106: 190–210, 2006
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1. Introduction

I dentifying molecular structure is a critical ques-
tion in molecular biology and biological chem-

istry, because the activity of a molecule strongly
depends on its three-dimensional structure and
geometric complementarity to other molecules.
Over the past few decades, the use of computer
tools has gained considerable importance in areas
such as pharmaceutical drug design, molecular
modeling, and docking. This article analyzes sym-
bolic-numerical computational methods for model-
ing geometric problems concerning molecules as
algebraic systems, as well as algorithms for solving
these systems.

We sketch a general methodology for modeling
such problems in algebraic terms so that the result-
ing polynomial system has small dimension. We
provide a brief introduction to powerful algorithms
for studying basic properties of systems of simul-
taneous polynomial equations, in particular for
counting and computing their common roots. From
the solutions one can compute the conformers that
satisfy the requirements of the initial geometric
problem. We illustrate the application of these tools
to computing the conformations of ring molecules
and solving pharmacophore-like distance con-
straints. In both cases, we enumerate all possible
solutions to the molecular problem, which provides
a complete and rigorous way to study the three-
dimensional structure. The illustrative applications
are based on our earlier studies [1–4].

We emphasize problems with relatively few de-
grees of freedom, usually up to 10 or 20. In these
cases, we strive for a procedure for equation solv-
ing with the following characteristics:

Efficiency: Certain applications demand real time
performance, for instance, when the problem at
hand is a subproblem of a larger question to be
solved repeatedly.

Robustness: The algorithm should be able to com-
pute all real solutions.

Accuracy: The input data obtained from experi-
ments or sensors may not be exact. As a result, the
algorithm for equation-solving should be well con-
ditioned.

Our tools, based on advanced system-solving meth-
ods, will satisfy all these goals.

Solving algebraic systems is a well-studied task of
high current research interest. Methods for this prob-
lem can be distinguished in two large families,

namely algebraic and numerical algorithms whose
boundaries, nonetheless, are unclear. The first family
includes Gröbner bases and resultants; in both cases,
a numerical subtask is typically executed at the end.
Purely numerical approaches include Newton-based
iterative methods, exclusion algorithms, and homo-
topy continuation. A full account of different alterna-
tives is beyond the scope of this work.

We present resultants of polynomial systems
and how they are expressed by matrices, which are
called resultant matrices. We concentrate on matri-
ces of the Sylvester (and Macaulay) type, including
techniques for exploiting the sparsity of the input
equations. The principal merits of algorithms based
on resultants and their matrices are their complete-
ness and accuracy, compared with purely numeri-
cal techniques, and their speed, compared with
purely symbolic algorithms. Furthermore, result-
ant-based methods can handle approximate inputs
or inputs of limited accuracy and produce the best
possible output under some measure.

The size of Sylvester-type resultant matrices is
exponential in the number of unknowns, i.e., the
number of equations. But in system solving, the
operations carried out online include only numeri-
cal operations on the resultant matrices. The matrix
construction phase can be executed off-line, with
symbolic polynomial coefficients. Hence, for sys-
tems with dimension up to 10, resultant matrices
seem to be the method of choice, since they com-
bine the veracity of symbolic algorithms with the
speed of numerical linear algebra. We have in mind
systems with equations of moderate total degree,
typically up to 4 or 6, characterized by some spar-
sity of the polynomials.

Let us now go back to our original problems,
dealing with the molecular structure. Most alge-
braic approaches deal with the problem of comput-
ing the molecular structure under a set of con-
straints imposed on it. A feature that is common to
all of them is the reduction of the geometric con-
straints to a set of algebraic equations, which are
then attacked with various methods. This means
that, in general, there are two different stages,
which vary according to the problem in question
and according to the modeler’s choices: the model-
ing part and the equation-solving part. The overall
procedure can be outlined as follows:

Input: The physical description of a molecule in
terms of point coordinates, distances, and/or an-
gles and a set of constraints imposed on the molec-
ular structure.
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Output: A complete description of every possible
conformation (alternatively, we may simply output
a bound on the number of possible conformations)

There are several major steps:

1. Formulate the problem in terms of polynomial
equations. This can be done either with an al-
gorithmic methodology like the one described
in the sequel, or with an ad hoc approach, suit-
able for the particular problem at hand.

2. Optionally compute bounds on the number of
possible common solutions. In most cases, we
focus on the real solutions, which have a di-
rect interpretation for the physical problem.

3. Use some matrix-based elimination methods,
such as those sketched below, to reduce the
nonlinear polynomial system to an eigenprob-
lem of an appropriate matrix. An alternative
is to use symbolic computation, such as Gröb-
ner bases or resultants, to reduce the polyno-
mial system to the solution of a single univar-
iate polynomial.

4. Numerically solve the eigenproblem or com-
pute the roots of the univariate polynomial. In
both cases, with some post-processing, one
can retrieve all roots of the initial polynomial
system.

5. From the (real) roots of the system, construct
the corresponding molecular conformations.

This procedure will be illustrated for two concrete
problems related to molecular conformations,
solved by tools relying on resultants and linear
algebra operations.

An overview of this article follows. Section 2
points to related work. Section 3 discusses model-
ing of molecular structure in algebraic terms. Sec-
tion 4 examines our symbolic and numerical algo-
rithms for studying and solving systems of
polynomial equations. In Section 5 we focus on
determining the structure of ring molecules as an
illustration of resultant methods. Section 6 dis-
cusses original contributions to the problem of sat-
isfying pharmacophore-like distance constraints. A
summary of our contributions concludes this study
in Section 7.

2. Related Work

Many methods have been proposed for solving
problems of geometric nature concerning molecular

structure. In most cases, the final goal is to compute
all or some of the conformations satisfying a set of
prescribed geometric constraints, (e.g., Refs. [5–9]).
To achieve this goal, one has to conduct an efficient
search the conformational space of the molecule at
hand, a task for which various heuristic, analytical,
and hybrid techniques have been developed.

In particular, there are several approaches in
molecular modeling, whose roots can be traced
back in robot kinematics, a research area that stud-
ies the motion of articulated mechanisms. The main
premise for this interaction is the observation that
various structural requirements on molecules can
be modeled as macroscopic kinematic constraints.
The relationship of molecules to robots is obvious,
once bonds are thought of as rigid joints and atoms
as the links or articulations of the mechanism. In
kinematic terms, the molecule is equivalent to a
serial mechanism in which each pair of consecutive
axes intersects at a link. As in robotics, a suitable
modeling methodology can help formulate the con-
straints imposed on the molecular structure as
polynomial equations. Thereafter, their solution can
be achieved with several tools originating from
symbolic algebra and numerical linear algebra. This
approach will be further discussed below.

Formalizing the rigidity constraints into alge-
braic terms may be harder than one imagines, es-
pecially because we try to minimize the dimension
of the resulting polynomial system. Direct ap-
proaches exist for specific problems. For instance,
using Euclidean geometry and the “flap” angles,
small ring molecules have been modeled optimally
in Refs. [2, 9] (cf. Section 5.1). The latter paper
proposes an object-oriented implementation, in
MAPLE, of geometric objects so as to automate the
derivation of algebraic equations from geometric
constraints. Distance geometry is a very general
and powerful approach for studying rigidity.
Among other things, it provides a rather general
modeling approach, which again leads to algebraic
systems [2, 10–12] (cf. Section 5.1).

Constraints entailed by rings have been exten-
sively studied by Go� and Scheraga during the 1970s
[13, 14]. These investigators established the main
viewpoint, namely of considering the values of
bond lengths and bond angles as fixed, while let-
ting only the torsional dihedral angles vary. This
simplification significantly reduces the problem
complexity, while, at a first level of approximation,
yields conformations close to energy minima. In
solving the resulting algebraic systems, several ad
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hoc methods have been proposed (see Refs. [11,
12]).

The main contribution of Ref. [4] is the use of
matrix methods for efficiently solving the closure
problem for cyclic molecules with 6–8 rotational
degrees of freedom. The authors use a result con-
cerning the inverse kinematics of a serial mecha-
nism with six revolute joints [15] and reduce the
ring closure problem to the eigenproblem of an
appropriate matrix. Extending to molecules with
more than six varying dihedrals has been ap-
proached by a grid search of the space of the two
last dihedrals, each grid point giving rise to a six-
dimensional subproblem [4, 13].

In Ref. [2], the authors approach the same prob-
lem, namely ring closure for molecules with 5–7
atoms. Thereby, they apply modern algebraic algo-
rithms based on three different types of resultant
matrices: Bézout resultant, sparse (or toric) result-
ant and simple Sylvester resultants in cascade. They
provide a case analysis for their algebraic tools and
compare the accuracy of output, as well as the
speed of solution. They also study the stability of
the resulting molecular conformations.

The computation of all conformations of a tri-
peptide loop, constrained to dock exactly on an
existing protein scaffold, is another problem that
has been attacked with algebraic methods. Wede-
meyer and Scheraga [16] use geometrical argu-
ments to formulate the problem as a polynomial
system. By applying Sylvester resultants in cascade,
they reduce the system to a univariate polynomial
equation. Other approaches to the same problem,
demonstrating alternative modeling and solution
methodologies, as well as search techniques to deal
with loops longer than three residues, are described
in Refs. [17, 18].

Zhang et al. [19] propose an algebraic approach
for a problem closely related to molecular docking:
the computation of conformations that place certain
atoms of a molecule in some prescribed positions in
space. Using a modeling algorithm described in
Ref. [20] they formulate the problem as an algebraic
system. They solve the latter with an efficient sub-
division algorithm, aiming only at the real roots.

Incorporating energy minimization into the con-
formational analysis is the final objective. In most
cases, it is suggested to perform it independently,
after the geometric constraints have been satisfied
(e.g., Refs. [7, 21]). However, LaValle et al. [22]
propose an algorithm for computing conformations
of both acceptable geometry, according to some
constraints, and low energy. Although they do not

actually use algebraic solution tools, but adopt a
heuristic minimization strategy instead, their mod-
eling is once again based on robot kinematics.

Finally, we should mention that apart from the
algebraic methods discussed above, there are
plenty of different, mainly optimization-oriented
approaches for the solution of geometric constraints
imposed on small molecules. Many of these ap-
proaches have been developed in the context of
chemical database screening; for a review, we refer
to Ref. [6]. In general, they explore the conforma-
tional space with different strategies, seeking to
minimize an appropriate cost function.

3. Molecular Modeling

This section draws upon the theory and algo-
rithms of inverse kinematics in robotics to derive
robust procedures for modeling problems related to
molecular structure in algebraic terms. The inverse
kinematics problem for general serial mechanisms
has been a fundamental problem in robotics litera-
ture for more than three decades [23]. Robot ma-
nipulators are modeled as a rigid serial chain con-
sisting of revolute and prismatic joints. The position
and orientation of the end effector are a direct func-
tion of the joint variables. In most robotics applica-
tions, we are given the pose of the end effector, and
the problem of inverse kinematics corresponds to
computing the joint displacements for that pose.

We model the molecular chain as a rigid struc-
ture. In particular, we adopt two widely used sim-
plifications to describe the conformational space of
the molecules [24]. First, we consider the atoms to
be points, whose positions can be uniquely identi-
fied in a three-dimensional (3D) coordinate system.
These points are interconnected with a set of bonds,
forming the so-called molecular graph. Second, we
assume that the conformational flexibility of a mol-
ecule is only due to the ability of its parts to rotate
about the axes defined by the single covalent bonds.
This means that the bond lengths and angles are
constrained to have some fixed values, while cer-
tain torsional angles are allowed to vary, account-
ing for the conformational flexibility of the mole-
cule. From this point of view, the molecule looks
like a macroscopic robotic mechanism with revo-
lute joints. This has been a key observation for
several approaches that successfully applied ideas
from robotics on the study of molecules.

Let us now present a general methodology that
has been used in several approaches, e.g. [4, 17, 19,
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22]. It is based on the idea of attaching several local
coordinate systems on appropriate points of the
molecule. As a first step, the molecule is split into
rigid parts, i.e., groups of atoms that do not contain
any rotating bonds, and therefore behave as rigid
bodies. For example, the peptide bond defines a
rigid part of a protein. Furthermore, we may con-
sider rings to be rigid, as they have limited confor-
mational flexibility or, in general, we can consider
any fragment of the molecule rigid whose flexibility
is not of interest to us. The idea of splitting the
molecule into rigid atom groups was formalized in
Ref. [20].

Having defined the rigid parts, we proceed by
attaching on each a local coordinate system. Each
atom belonging to the group has fixed and known
coordinates with respect to the local system. The
idea of the construction is illustrated in Figure 1. Let
us consider two atoms, X and Y, and the corre-
sponding local frames FX and FY. The general goal
is to compute matrix R that transforms the coordi-
nates of an arbitrary point from frame FY to frame
FX. Matrix R is the product of matrices R1, . . . , Rn,
each corresponding to a stepwise coordinate trans-
formation along the bond path connecting the two
atom groups. Each matrix Ri depends on the corre-
sponding torsional angle ti, which makes matrix R a
function of all angles t1, . . . , tn. Obviously, each Ri

also depends on the relative position and orienta-
tion of the local frames, but since we fix a standard
way to place them on the molecule, the only vari-
ables left undetermined are the torsional angles. In
summary, to compute R as a function of the tor-
sional angles, one needs a convention to place the
local frames and a corresponding formula to com-
pute the Ri values. This allows us to cast a geomet-
ric constraint involving the atoms X and Y as a
trigonometric equation, containing the torsional an-
gles as unknowns (cf. Section 6.1).

A standard method to attach the local coordinate
systems on the molecule is the Denavit–Hartenberg
convention (cf. Ref. [23]). We briefly sketch it below,

for the case illustrated in Figure 2, where all bonds
of the molecular chain are rotating. The case de-
picted in Figure 3 is somewhat different, since the
peptide bond is regarded as rigid. This affects the
placement of the local frames, but the basic idea
and the transformation matrices remain essentially
the same. Although we use terminology from the
robotics literature, the molecular problem is equiv-
alent, except that it is described using chemical
bonds, bond lengths, and bond angles, as opposed
to links, length of the links, and joint angles. Each
link is represented by the line along its joint axis
and the common normal to the next joint axis. In the

FIGURE 1. Coordinate transformations along the mo-
lecular chain.

FIGURE 2. Denavit–Hartenberg formalism for a mo-
lecular chain with all bonds rotating.

FIGURE 3. Denavit–Hartenberg formalism for a pep-
tide unit. The peptide bond is considered rigid.
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case of parallel joints, any of the common normals
can be chosen. The links of the manipulator are
numbered from 1 to n. The base link is 1, and the
outermost link or hand is n. A coordinate system is
attached to each link with which to describe the
relative arrangements among the various links. The
coordinate system attached to the ith link is num-
bered i.

The 4 � 4 transformation matrix relating the (i �
1)st coordinate system to the ith coordinate system
is [23]:

Ri � �
cos ti �sin ti cos �i sin ti sin �i ki cos ti

sin ti cos ti cos �i �cos ti sin �i ki sin ti

0 sin �i cos �i di

0 0 0 1
�,

where ti is the ith joint rotation angle, �i is the twist
angle between the axes of joints i and i � 1, ki is the
length of link i � 1, and di is the offset distance at
joint i.

For a given robot with revolute joints, we are
given the �i, di, and ki values. For the inverse kine-
matics problem, we are also given the pose of the
end-effector, attached to link n. This pose is de-
scribed with respect to the base link or link 1. We
represent this pose by matrix Rhand. Hence, the
problem of inverse kinematics corresponds to com-
puting the joint angles, t1, t2, . . . , tn such that

R1R2· · ·Rn � Rhand � �
r11 r12 r13 s1

r21 r22 r23 s2

r31 r32 r33 s3

0 0 0 1
�.

The left-hand side entries of the matrix equation
given above are functions of the sines and cosines
of the joint angles. Furthermore, this matrix equa-
tion corresponds to 12 scalar equations. Since the
matrix formed by the first 3 rows and 3 columns of
Rhand is orthonormal, only 6 of the 12 equations are
independent. Thus, the problem of inverse kine-
matics of general manipulators with n joints corre-
sponds to solving 6 equations for n unknowns.

The trigonometric equations can be transformed
to algebraic by applying the half-tangent substitu-
tion on the sines and cosines and eliminating the
denominators:

sin ti �
2xi

1 � xi
2 cos ti �

1 � xi
2

1 � xi
2 ,

where xi � tan�ti

2�. (1)

For n � 6, the given system of equations has a
finite number of solutions. In particular, it has been
shown that the total number of solutions is 16 for
6R manipulators [25]. An ad hoc resultant formu-
lation, exploiting sparsity, has been presented in
Ref. [26], and it has been used in designing a real-
time algorithm taking tens of milliseconds on the
workstations used in Ref. [15]. However, in many
instances, there are no real solutions to the problem.
In such cases, we are interested in a pseudo-inverse
kinematic version of the problem, which corre-
sponds to the “closest real solution.” It is defined in
the following manner: Find the joint angles that
minimize the Euclidean distance between the actual
position of the end-effector and the desired posi-
tion, given the orientation. This reduces to a con-
strained optimization problem. However, the min-
imizing function as well as the constraints are
algebraic. For a chain with n links, computing the
global minima reduces to six equations in n un-
knowns as well. No good algorithms are known for
solving the pseudo-inverse kinematics problem.

Zhang and Kavraki [20] present a way of placing
the local frames producing an alternative parame-
trization of the transformation matrices. We adopt
this modeling formalization in Section 6.1 for cast-
ing the distance constraints as algebraic equations.
One axis, say ŵi, of frame Fi coincides with the bond
connecting the two neighboring atom groups, while
the other two axes, ûi and v̂i, are arbitrarily chosen
so as to define an orthonormal system. This con-
struction yields the following transformation ma-
trix. Vectors Qi and Qi�1 appearing in the formula
define the positions of the frame origins:

Ri � �
ûi�1 � ûi ûi�1 � v̂i ûi�1 � ŵi ûi�1 � (Qi � Qi�1)
v̂i�1 � ûi v̂i�1 � v̂i v̂i�1 � ŵi v̂i�1 � (Qi � Qi�1)
ŵi�1 � ûi ŵi�1 � v̂i ŵi�1 � ŵi ŵi�1 � (Qi � Qi�1)

0 0 0 1
��

cos ti �sin ti 0 0
sin ti cos ti 0 0

0 0 1 0
0 0 0 1

�.
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4. Algebraic and Numerical
Algorithms

This section presents a brief overview of alge-
braic and numerical techniques used for studying
and solving algebraic systems.

4.1. ROOT COUNTING

A first step in the analysis of a polynomial sys-
tem consists of studying the geometry of common
roots and in finding an accurate bound for the
number of common solutions. We consider the al-
gebraic closure of the given coefficient field, which
is typically the field of complex numbers. Let us use
the following system, to be encountered in Section
5, as an illustrative example:

f1 � �11 � �12x2
2 � �13x3

2 � �14x2x3 � �15x2
2x3

2 � 0

f2 � �21 � �22x3
2 � �23x1

2 � �24x3x1 � �25x3
2x1

2 � 0

f3 � �31 � �32x1
2 � �33x2

2 � �34x1x2 � �35x1
2x2

2 � 0.

(2)

The classical theory provides the bound by Bézout’s
theorem on the number of isolated roots in the
projective complex space, which is simply the prod-
uct of the polynomials’ total degrees [27]. The
bound given by Bézout’s theorem here is 4 � 4 �
4 � 64.

This bound is too large, for the system has a very
special shape. Most importantly, each fi does not
contain xi. In addition, not all monomials of degree
4 in the remaining two variables are present, since
the degree of each equation in each variable is
bounded by 2. In other words, regarding only the
total degree overestimates the total number of so-
lutions. The phenomenon of “sparse” polynomials
arises in several real-world applications, including
those related to molecular structure, but also in
robot kinematics and vision, in computer-aided de-
sign, and in geometric modeling. The fact that cer-
tain terms are missing can be exploited by the the-
ory of sparse (or toric) variable elimination.

Sparse elimination theory, starting with Bern-
stein’s theorem (or BKK bound) [27, 28], exploits
the monomial (or term) structure of the polynomi-
als, when roots at projective infinity are of no inter-
est. In this model of sparseness, let us consider each
three-dimensional exponent vector, corresponding
to a nonvanishing monomial in x1, x2, x3, as a point

in �3. The convex hull of all points is the Newton
polytope of the polynomial. The mixed volume of 3
polytopes C1, C2, C3 � �3 is a real-valued function
that generalizes Euclidean volume. A complete ac-
count of sparse elimination, including equivalent
definitions for mixed volume in general dimension,
and an efficient algorithm for its computation, can
be found in Refs. [1, 27, 29] and references therein.

In our case the polytopes Ci are squares of size 2.
Bernstein’s theorem bounds the number of com-
mon roots with no zero coordinates by the mixed
volume of the Newton polytopes. The mixed vol-
ume of the present system is 16, so Bernstein’s
theorem states that the number of complex isolated
roots of system (2), counting multiplicities, with
x1 � 0, x2 � 0, x3 � 0 is at most 16. In fact, this
bound is optimal, as shown in Section 5.2 by exhib-
iting an example of system (2) with 16 solutions,
which are all real.

This bound is, in our case, equivalent to a variant
of Bézout’s theorem for multi-homogeneous poly-
nomials, known as the m-Bézout bound (see Ref.
[27]). If we homogenize each equation with respect
to each variable x1, x2, x3, we obtain a system of 3
multi-homogeneous equations with roots in �1 �
�1 � �1, where �1 is the projective space of dimen-
sion 1. The degree vectors of these equations are (0,
2, 2), (2, 0, 2), (2, 2, 0). We can bound the number of
isolated roots by the coefficient of h1h2h3 in the
polynomial (2h1 � 2h2)(2h1 � 2h3)(2h2 � 2h3), which
also yields 16. In general, the bound provided by
the mixed volume is tighter than, or equal to, the
m-Bézout bound, which is never looser than the
classical Bézout bound.

4.2. SYSTEM SOLVING BY RESULTANTS

Resultants reduce the nonlinear problem, such as
the one in the previous section, to a question in
linear algebra. Matrix computations are then suffi-
cient. Hence we also refer to this procedure as a
linearization of the input problem in terms of ma-
trices and determinants. An important feature of
our method is precisely that it reduces to matrix
operations for which powerful and accurate imple-
mentations already exist in the public domain. A
more detailed introduction to these methods can be
found in Refs. [27, 28, 30].

Recall that the resultant expresses the solvability
of an overconstrained system of n � 1 polynomials
in n unknowns. The resultant is itself a polynomial
in the coefficients of the system such that it vanishes
exactly when the coefficients are specialized so as
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for the overconstrained system to have a common
root. More information on different kinds of result-
ants can be found in Refs. [27, 28].

Let us now concentrate on well-constrained sys-
tems of n polynomial equations in n unknowns,
which is the main object of our study and, in par-
ticular, on zero-dimensional sets of solutions. The
same formulation is extendible to higher dimen-
sional sets. The overall approach has the following
stages:

1. Given a well-constrained polynomial system,
define an overconstrained system such that
the resultant of the latter will allow us to
compute all roots of the original system. This
shall be examined in depth in Section 4.3.

2. Define a matrix expressing the resultant of the
overconstrained system. Ideally, we would
like to have a matrix whose determinant
equals the resultant, just as in the univariate
or linear case. Otherwise, we may express the
resultant as the ratio of two determinants, or,
in general, obtain a matrix whose determinant
is a nontrivial multiple of the resultant.

3. Given the resultant matrix, obtain a square
matrix whose eigenvalues correspond to a co-
ordinate in every solution vector. The rest of
the coordinates are obtained by the eigenvec-
tors of the matrix, because they contain the
values of certain monomials at the roots.
There must be sufficiently many such mono-
mials so as to derive all root coordinates. Root
finding is therefore reduced to an eigende-
composition and then existing algorithms are
employed from numerical linear algebra; see
Section 4.4.

Let us first survey methods for constructing the
resultant matrix of an overconstrained system (cf.
Refs. [27, 28]). A first class of methods is based on
Sylvester, or Macaulay-type, matrices, which rely
on the idea that the system is generic in some sense
and whose entries are linear in the polynomial co-
efficients. In the classical context, the resultant’s
degree is a function of the classical Bézout bound,
i.e., the product of total degrees. In particular, the
specific matrix named after Macaulay is defined for
homogenized polynomials (obtained by intro-
ducing a homogenization variable), and its size
depends again on Bézout’s bound. This formula
expresses the resultant as the ratio of two determi-

nants, where the numerator is the Macaulay matrix
itself, and the denominator a well-defined subma-
trix. This rational formula has been extended to the
case of sparse resultants. For more details, see Ref.
[28] and the references therein.

In sparse elimination, the sparse resultant has a
degree dependent on the mixed volume of the
Newton polytopes of the equations. The sparse re-
sultant approach generalizes the well-known Syl-
vester resultant for two univariate polynomials into
several multivariate polynomials as well as Macaul-
ay’s algorithm for dense polynomials. Several algo-
rithms have been proposed for constructing sparse
resultant matrices whose determinant is a non-
trivial multiple of the sparse resultant and which
express multiplication in the quotient ring. The size
of these matrices scales with mixed volume. In fact,
the optimal size of a Sylvester-type matrix equals
the sum of the mixed volumes of all well-con-
strained n � n systems, where n is the number of
variables in the overconstrained system.

The second class of methods makes fewer gener-
icity assumptions. The constructed matrices gener-
alize the constructions proposed by Bézout for the
resultant of two polynomials in one variable as
early as 1779 and are typically smaller than sparse
resultant matrices but the coefficients are no longer
linear in the coefficients of the input polynomials.
This technique can be used for any polynomials,
either homogeneous or not, including sparse poly-
nomials.

The matrices we obtain from the Sylvester and
Macaulay-type formulae are typically sparse; more-
over, they exhibit a structure that generalizes To-
eplitz structure, hence they are called quasi-To-
eplitz [31]. This reduces the complexity of the linear
algebra by almost one order of magnitude in terms
of matrix dimension. Matrices coming from the
Bézout, or Dixon, formulae are dense but are also
characterized by some type of structure [32].

4.3. DEFINING AN OVERCONSTRAINED
SYSTEM

Let us now sketch the two existing approaches in
order to define an overconstrained algebraic system
from a well-constrained one. We focus on Sylvester-
type resultant matrices; we also indicate how to
recover all common roots of the well-constrained
system, given an algorithm to construct such ma-
trices:
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M � �
c11 c12 c13 0 0 0 0 0 0 0 0 0 0 0 0 0
0 c11 c12 c13 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 c11 c12 c13 0 0 0 0 0 0 0 0 0
0 0 0 0 0 c11 c12 c13 0 0 0 0 0 0 0 0

c31 0 c32 0 0 c33 0 0 c34 0 c35 0 0 0 0 0
0 c31 0 c32 0 0 c33 0 0 c34 0 c35 0 0 0 0
0 0 0 0 c31 0 c32 0 0 c33 0 0 c34 0 c35 0
0 0 0 0 0 c31 0 c32 0 0 c33 0 0 c34 0 c35

c21 0 0 0 c22 0 0 0 c23 0 0 0 0 0 0 0
0 c21 0 0 0 c22 0 0 0 c23 0 0 0 0 0 0
0 0 c21 0 0 0 c22 0 0 0 c23 0 0 0 0 0
0 0 0 c21 0 0 0 c22 0 0 0 c23 0 0 0 0
0 0 0 0 c21 0 0 0 c22 0 0 0 c23 0 0 0
0 0 0 0 0 c21 0 0 0 c22 0 0 0 c23 0 0
0 0 0 0 0 0 c21 0 0 0 c22 0 0 0 c23 0
0 0 0 0 0 0 0 c21 0 0 0 c22 0 0 0 c23

� .

Given is a system of n equations in n unknowns,

F1� x1, x2, . . . , xn� � 0
F2�x1, x2, . . . , xn� � 0

···
Fn�x1, x2, . . . , xn� � 0.

(3)

The first approach “hides” one variable of the well-
constrained system in the coefficient field; let the
hidden variable be x1. The resultant, R(x1), is ob-
tained by eliminating the variables x2, x3, . . . , xn

from the above equations. This yields a polynomial
in x1, whose roots correspond to the x1 coordinate
of each solution of the given multivariate system.
The degree of the resultant is equal the total num-
ber of nontrivial solutions of the given system of
equations and in general, corresponds to the Bern-
stein (or BKK) bound for sparse systems and
Bézout’s bound for dense polynomial systems.

In principle, the hidden variable must take dis-
crete values among the different solutions, for rea-
sons of numerical accuracy. For example, if we
consider variable x3 as part of the coefficient field,
the three equations of system (2) can be viewed as
bivariate:

f1 � c11 � c12x2 � c13x2
2 � 0,

f2 � c21 � c22x1 � c23x1
2 � 0,

f3 � c31 � c32x2
2 � c33x1x2 � c34x1

2 � c35x1
2x2

2 � 0. (4)

The resultant matrix of this system has entries cij,
which are quadratic polynomials in x3. The sparse

resultant has total degree in the coefficients equal to
the sum of the mixed volumes of the bivariate
well-constrained subsystems. Each of the three
mixed volumes (in x1, x2) is equal to 4; therefore, the
sparse resultant degree is 12 in the ci, j. This equals
the dimension of the optimal Sylvester-type matrix.
The 16 � 16 matrix M is shown above; it is the
resultant matrix constructed by both greedy and
incremental algorithms, described in Refs. [29,b].
Matrix M expresses a quadratic matrix polynomial
in x3, and its determinant is a multiple of the sparse
resultant. Solving this determinant for x3 gives us
the values of x3 at the roots, but determinant calcu-
lation is numerically ill-conditioned and is there-
fore to be avoided.

The key observation is that each kernel vector of
M expresses the evaluation of the following vector
of monomials at the roots of x1, x2. The monomial
vector is precisely the sequence of monomials in-
dexing the columns of M:

�1, x2, x2
2, x2

3, x1, x1x2, x1x2
2, x1x2

3, x1
2, x1

2x2, x1
2x2

2,

x1
2x2

3, x1
3, x1

3x2, x1
3x2

2, x1
3x2

3	.

To recover the value of x1, x2 at the roots, it
suffices to divide certain vector entries. For in-
stance, to find the value of x2, we divide the second
entry by the first. However innocuous this opera-
tion may seem, the choice of which entries to use is
an important numerical issue that has to be studied
further. Results vary significantly according to this
choice.
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But how do we recover such a vector? It can be
shown (see Section 4.4) that it can be computed via
a matrix eigendecomposition, which is well condi-
tioned numerically. For the particular example, the
standard procedure constructs a 32 � 32 compan-
ion matrix whose eigenvalues and eigenvectors are
the x3 values and the kernel vectors of M. Since
there are 32 eigenvalue and eigenvector pairs, ex-
actly one-half of them will not correspond to solu-
tions.

The second way to define an overconstrained
system is to add a polynomial of our choice to
system (3). This is the u-resultant approach, where
the new polynomial is linear in the variables. Spe-
cifically, we append polynomial

Fn�1� x1, x2, . . . , xn� � u0 � u1x1 � · · · � unxn

to the given system of equations. The resultant is
obtained by eliminating the variables x1, . . . , xn

from the n � 1 equations and is a polynomial in u0,
u1, . . . , un. Given resultant matrix M, whose entries
are polynomials in the ui’s, the resultant corre-
sponding to its determinant can be factored into
linear factors of the form [27, 28]:

det�M� � �
i�1

k

��i0u0 � �i1u1 � · · · � �inun�,

where k is the total number of nontrivial solutions
and (�i0, �i1, �i2, . . . , �in) are the projective coordi-
nates of a solution of the given system (3) of equa-
tions.

As an illustrative example, we keep using system
(2). If we choose polynomial u0 � u1x1, with u0, u1

indeterminate, the mixed volumes of the three-
polynomial systems are 4, 4, 4, 16; hence the sparse
resultant degree is 4 in the variables �i,1, . . . , �i,5, 16
in the variables u0, u1 and its total degree is 28. The
incremental algorithm was applied and the smallest
matrix found is of size 48. Typically, u1 will take
some random value; then, finding all common roots
of the original system is reduced to factoring the
resultant as a polynomial in u. Alternatively, sys-
tem solving can again be reduced to an eigende-
composition, or to univariate polynomial solving
by means of the primitive element method [33], also
known as rational univariate representation.

4.4. SYSTEM SOLVING BY
EIGENDECOMPOSITIONS

In this section, we show how system solving
reduces to computing eigenvalues and eigenvec-
tors, given a resultant matrix; for more information
see Refs. [27, 28, 34–37, a, c]. In general, resultants
linearize a nonlinear polynomial system.

In practice, matrix operations will be carried out
by efficient numerical linear algebra software such
as LAPACK, which is used in the sparse-resultant
solver in Ref. [1]. One of the advantages of LA-
PACK is that it implements state-of-the-art algo-
rithms, offering the choice of a tradeoff between
speed and accuracy, and provides efficient ways for
computing estimates on the condition numbers and
error bounds [38].

Resultant matrices take a well-constrained sys-
tem of nonlinear polynomial equations, and reduce
it to a linear system of the form

M� x1��1, x2, . . . , xn, . . . , x2
d, x3

d, . . . , xn
d	T

� �0, 0, . . . , 0	T, (5)

where matrix M(x1) is a square matrix and its en-
tries are polynomials in x1; the latter can be some
hidden variable or parameter u0. The entries of the
vector consist of power products of x2, x3, . . . , xn.
The actual arrangement of the power products of
these variables is a function of the degrees of the
polynomials and the formulation of resultant being
used. The above example refers to the case of Ma-
caulay matrices, where all products up to a certain
degree are present. In the case of sparse resultants,
the monomials correspond to integer points inside
some convex polytope in n-dimensional space [b].

In any case, the linearization of the problem has
the property that for any given solution (�1, �2, . . . ,
�n), of the given system, M(�1) is a singular matrix
and the vector in its kernel is obtained by substi-
tuting x1 � �1, x2 � �2, . . . , xn � �n in the vector
consisting of power products in Eq. (5). We use this
property along with those of matrix polynomials to
compute the common solution of the polynomial
equations.

The resultant matrix M(x1) can be expressed as a
matrix polynomial:

M� x1� � M0 � M1x1 � M2x2 � · · · � Mlx1
l , (6)

where the Mi are m � m numeric matrices and l is
the maximum degree of x1 in any term of M(x1). All
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Mi have the same order, say m � m. The determi-
nant of M(x1) corresponds exactly to the resultant
of the given equations.

Expression (6) is a matrix polynomial, and the
problem of computing the roots of the original sys-
tem of polynomial equations corresponds to com-
puting generalized eigenvalues and eigenvectors of
a matrix polynomial. The given matrix polynomial
is regular, if the univariate polynomial det[M(x1)] is
not identically zero. Otherwise, it is called singular.

The eigenvalues of a matrix polynomial consists
of finite and infinite eigenvalues. In particular,
when rank Ml � m, the determinant of M(x1) is a
polynomial of degree ml, and all the eigenvalues of
M(x1) are finite. When rank Ml 
 m, the degree of
det[M(x1)], say k, is less than ml. In this case, M(x1)
has k finite eigenvalues and (ml � k) infinite eigen-
values. In most applications we are only interested
in computing the affine solutions of the original
system of polynomial equations. Therefore, we are
interested in computing the finite eigenvalues of a
matrix polynomial. It is possible that the resultant
formulation for a (sparse) polynomial system can
result in a singular matrix polynomial. In such
cases, we are still interested in computing the finite
eigenvalues only.

Let us consider the case, when the matrix poly-
nomial is regular. Furthermore, we start our anal-
ysis by assuming that the leading matrix of the
matrix polynomial, Ml is nonsingular and well con-
ditioned. As a result, computation of Ml

�1 does not
introduce severe numerical errors. Let

M� � x1� � Ml
�1M� x1�,

and M� i � Ml
�1Mi, 0 � i � l.

Now, M� (x1) is a monic matrix polynomial. Its de-
terminant has the same roots as does the determi-
nant of M(x1). Let x1 � �1 be a root of the equation,
det[M� (x1)] � 0. As a result M� (�1) is a singular
matrix and there is at least one nontrivial vector in
its kernel. Let us denote that m � 1 vector by v.
Therefore,

M� ��1�v � 0, (7)

where 0 is a m � 1 null vector. The roots of the
determinant of M(x1) correspond to the eigenvalues
of matrix C, defined as follows [31] (cf. also Refs. [1,
27]):

C � �
0 Im 0 · · · 0
0 0 Im · · · 0
···

··· · · · ···
···

0 0 0 · · · Im

�M� 0 �M� 1 �M� 2 · · · �M� l�1

�,

where 0 and Im are m � m null and identity matri-
ces, respectively. Furthermore, the eigenvector of C
corresponding to the eigenvalue x1 � �1 has the
form

�v �1v �1
2v . . . �1

l�1v	T,

where v is the vector in the kernel of M� (�1) as
highlighted in expression (7).

Many times the leading matrix Ml is singular or
close to being singular (due to high condition num-
ber). Some techniques based on linear transforma-
tions are highlighted in Ref. [30], such that the
problem of finding roots of the determinant of a
matrix polynomial can be reduced to an eigenvalue
problem. However, there are cases in which they
may not work. For example, when the matrices
have singular pencils. In such cases, we reduce the
intersection problem to a generalized eigenvalue
problem as follows.

Given matrix polynomial, M(x1) the roots of the
polynomial corresponding to its determinant are
the eigenvalues of the generalized system C1x1 �
C2, where [30]:

C1 � �
Im 0 0 · · · 0
0 Im 0 · · · 0
···

··· · · · ···
···

0 0 · · · Im 0
0 0 · · · 0 Ml

� ,

C2 � �
0 Im 0 · · · 0
0 0 Im · · · 0
···

··· · · · ···
···

0 0 0 · · · Im

�M0 �M1 �M2 · · · �Ml�1

�.

In many applications, we are interested only in
the real solutions or solutions lying in a particular
domain. The QR or QZ algorithm for eigenvalue
computation returns all the eigenvalues of a given
matrix, and it is difficult to restrict it to eigenvalues
in a particular domain [39]. Algorithms to compute
selected eigenvalues of the these matrices based on
power iterations and their structure are given in
Ref. [36].
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Let us assume that �1 is a simple eigenvalue of C.
In the rest of the section, we carry out the analysis
on the eigenvalues of C and the resulting algorithm
is similar for the finite eigenvalues of the pencil
C1x1 � C2. Since �1 is a simple eigenvalue, the
kernel of C � �1I has dimension one, represented as

V � �v �1v �1
2v . . . �1

l�1v	T.

Furthermore, we know that v � [v1 v2 . . . vm]T

corresponds to the vector in the kernel of M(�1).
Given v, it is possible to compute the x2, . . . , xn

coordinates.
In many cases �1 may correspond to an eigen-

value of multiplicity greater than one. There are
two possibilities:

(�1, �2, . . . , �n) is a solution of multiplicity
greater than one of the given system of equations.

There may be two solutions of the given equa-
tions of the form (�1, �2, . . . , �n) and (�1, ��2, . . . ,
��n). As a result the kernel of C � �1I has dimension
greater than one.

The problem of computing higher multiplicity
roots can be numerically ill-conditioned. However,
in many cases it is possible to identify higher mul-
tiplicity eigenvalues of a matrix by identifying clus-
ters of eigenvalues and using the knowledge of the
condition number of the clusters. More details of its
application to finding solutions of polynomial
equations are given in Ref. [30]. Such analysis is
well developed for eigenvalues of a matrix.

Given a higher multiplicity eigenvalue, �1, we
compute its geometric multiplicity by computing
the SVD of C � �1I. The geometric multiplicity
corresponds to the number of singular values equal
to zero. In case, the geometric multiplicity is one,
the relationship in expression (5) is used to com-
pute �2, �3, . . . , �n for each �1. Otherwise there are
two or more vectors in the kernel of M(�1). The
vectors computed using linear algebra routines
may correspond to any two vectors in the vector
space corresponding to the kernel. Hence, to solve
the problem, we substitute x1 � �1 in the n equa-
tions (3) and solve them for the rest of the un-
knowns. This procedure is applied recursively.

4.5. MATRIX COMPUTATIONS

In this section, we briefly review some tech-
niques from linear algebra and numerical analysis,

which have been used in our algorithms. More
details can be found in Refs. [39, 40].

Given an n � n matrix A, its eigenvalues and
eigenvectors are the solutions to the equation

Ax � sx,

where s is the eigenvalue and x � 0 is the eigen-
vector. The eigenvalues of a matrix are the roots of
its characteristic polynomial, corresponding to
det(A � sI). As a result, the eigenvalues of a diag-
onal matrix, upper triangular matrix or lower tri-
angular matrix correspond to the elements on its
diagonal. Efficient algorithms for computing eigen-
values and eigenvectors are well known, and their
implementations are available as part of packages
EISPACK and LAPACK [38].

Given n � n matrices, A and B, the generalized
eigenvalue problem corresponds to solving

Ax � sBx.

We represent this problem as eigenvalues of A �
sB. The vectors x � 0 correspond to the eigenvectors
of this equation. If B is nonsingular and its condi-
tion number is low, the problem can be reduced to
an eigenvalue problem by multiplying both sides of
the equation by B�1 and thereby obtaining

B�1Ax � sx.

However, B may have a high condition number and
such a reduction may be numerically unstable. A
better algorithm is the QZ algorithm, which is in
EISPACK and in LAPACK [38].

The singular value decomposition (SVD) is a
powerful tool that gives us accurate information
about matrix rank in the presence of round off
errors. The rank of a matrix can also be computed
by Gauss elimination. However, many situations
arise in which near rank deficiency prevails.
Rounding errors and fuzzy data make rank deter-
mination a nontrivial exercise. In these situations,
the numerical rank is easily characterized in terms
of the SVD. Given A, an m � n real matrix, matrices
U and V exist such that

A � U�VT,

where U is an m � n orthogonal matrix, V is an n �
n orthogonal matrix and � is a n � n diagonal
matrix of the form � � diag(�1, �2, . . . , �n). More-
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over, �1 	 �2 	 . . . 	 �n 	 0. The �i values are
called the singular values and the columns of U and
V, denoted as ui and vj values are known as the left
and right singular vectors, respectively.

The largest or the smallest eigenvalue of a matrix
(and the corresponding eigenvector) can be com-
puted using the power method. The power method
involves multiplication of a matrix by a vector, and
after a few steps it converges to the largest eigen-
value. Given a matrix, A, the technique starts with
a vector q0 and performs computation of the form

zi � Aqi�1, qi � zi/� zi�, 
i � qi
TAqi.

After a few iterations, 
k corresponds to the eigen-
value of maximum magnitude, and qk is the corre-
sponding eigenvector.

The formulation of resultant matrices of Syl-
vester (or Macaulay) type leads to sparse matrices
[30]. In such cases we want to make use of the
sparsity of the matrix in computing its eigendecom-
position. The sparsity of the matrix increases with
the degrees of the polynomials or the number of
equations. Algorithms for sparse matrix computa-
tions are based on matrix–vector multiplication, as
highlighted in the power method. For our applica-
tions, we use the algorithm highlighted in Ref. [41]
for computing the invariant subspaces and thereby
the eigendecomposition of a sparse matrix.

5. Molecular Conformations

We apply our algebraic tools to computing all
conformations of ring molecules. First, we model
the problem in terms of polynomial equations.

5.1. MODELING RING CLOSURE

Two different modeling approaches are sketched
here, following Ref. [2]. The first is the direct ap-
proach based on Ref. [9]. The molecule has a cyclic
backbone of 6 atoms, typically of carbon. Carbon-
hydrogen or other bonds outside the backbone are
ignored. Backbone atoms are points p1, . . . , p6 � �3;
the unknown dihedrals are about axes (p6, p1) and
(pi�1, pi) for i � 2, . . . , 6, respectively. The triangles
(p1, p2, p6), (p2, p3, p4) and (p4, p5, p6) are fixed for
constant bond lengths Li and bond angles �1, �3, �5.
Then, base triangle (p2, p4, p6) is fixed in space,
defining the xy-plane of a coordinate frame. Let �1

be the (dihedral) angle between the plane of trian-
gle (p1, p2, p6) and that xy-plane. For any conforma-
tion, �1 is well defined and, similarly, we define
angles �2 and �3. We call them flap (dihedral) an-
gles. Conversely, given the Li, �i and �i, the coordi-
nates of all pi are uniquely determined, and hence
the bond dihedral angles and the associated confor-
mation are all well defined. We have therefore re-
duced the problem to computing the three �i which
satisfy the constraints on �2, �4, �6. Hence we ob-
tain a polynomial system:

�11 � �12 cos �2 � �13 cos �3 � �14 cos �2 cos �3

� �15 sin �2 sin �3 � 0,

�21 � �22 cos �3 � �23 cos �1 � �24 cos �3 cos �1

� �25 sin �3 sin �1 � 0,

�31 � �32 cos �1 � �33 cos �2 � �34 cos �1 cos �2

� �35 sin �1 sin �2 � 0,

cos2 �i � sin2 �i � 1 � 0, i � 1, 2, 3, (8)

where the �ij are input coefficients. For our solvers
we prefer an equivalent formulation with a smaller
number of polynomials, obtained by applying
transformation (1) to the tangents of the half-angles,
which leads to rational equations in the new un-
knowns xi � tan(�i/2), where i � 1, 2, 3. This
transformation automatically captures the last three
equations in (8). By multiplying both sides of the ith
equation by (1 � xj

2)(1 � xk
2), where (i, j, k) is a

permutation of {1, 2, 3}, we arrive at polynomial
system (2):

f1 � �11 � �12x2
2 � �13x3

2 � �14x2x3 � �15x2
2x3

2 � 0

f2 � �21 � �22x3
2 � �23x1

2 � �24x3x1 � �25x3
2x1

2 � 0

f3 � �31 � �32x1
2 � �33x2

2 � �34x1x2 � �35x1
2x2

2 � 0,

where �ij are input coefficients.
Another formulation of the problem relying on

the geometry of distances is presented. This is a
rather general methodology with numerous appli-
cations. Consider the configurations of points
p1, . . . , p6, and consider an additional artificial
point p0, such that all distances to p0 equal 1. Now
define a 7 � 7 symmetric matrix whose entry (i � 1,
j � 1) is the squared distance between pi and pj. This
is the Cayley–Menger matrix of points p1, . . . , p6;
see, for instance, Refs. [10, 11]:
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p0

p1

p2

p3

p4

p5

p6

p0 p1 p2 p3 p4 p5 p6

�
0 1 1 1 1 1 1
1 0 d( p1, p2)2 d( p1, p3)2 u1 d( p1, p5)2 d( p1, p6)2

1 d( p1, p2)2 0 d( p2, p3)2 d( p2, p4)2 u2 d( p2, p6)2

1 d( p1, p3)2 d( p2, p3)2 0 d( p3, p4)2 d( p3, p5)2 u3

1 u1 d( p2, p4)2 d( p3, p4)2 0 d( p4, p5)2 d( p4, p6)2

1 d( p1, p5)2 u2 d( p3, p5)2 d( p4, p5)2 0 d( p5, p6)2

1 d( p1, p6)2 d( p2, p6)2 u3 d( p4, p6)2 d( p5, p6)2 0

� ,

where d(pi, pj) stands for the Euclidean distance
between points pi, pj. There are only three un-
knowns u1, u2, u2. Once these unknowns are com-
puted, we can recover the geometry of the mole-
cule, up to global translations and rotations.

It is known that this matrix is at most of rank 5,
if and only if the points p1, . . . , p6 with the respec-
tive distances can be embedded in �3. Since every
6 � 6 minor of the matrix vanishes, we derive
several constraints on the parameters ui. For in-
stance, taking the principal minors of column (re-
spective row) indices (1, 2, 3, 4, 5, 6) of this matrix,
we obtain an equation P1(u1, u2) � 0 in the variables
u1, u2, which is of degree 2 in u1 and u2. In a similar
way, we can derive constraints P2(u1, u3) � 0 and
P3(u2, u3) � 0 by considering the principal minor of
indices (1, 2, 3, 4, 5, 7) and (1, 2, 3, 5, 6, 7). This leads
to a system identical to (2).

5.2. CYCLOHEXANE CONFORMATIONS

This section examines resultant methods from
Ref. [4], as well as matrix formulae of the sparse
resultant from Refs. [1, 2, 42], and how they were
used to compute all conformations of ring mole-
cules. Here, we limit our discussion to cyclic mol-
ecules of 6 degrees of freedom, which are modeled
by system (2). Problems with fewer and more de-
grees of freedom are examined in Refs. [2, 4].

We have chosen to hide x3 in the coefficient field
hence arriving at system (4). Our procedure con-
structs the matrix by the incremental algorithm of Ref.
[29] with generic coefficients, therefore independent
of the input instance and the arithmetic precision.
This is matrix M from Section 4.2. The program then
applies the standard eigendecomposition routines of
LAPACK to the corresponding companion matrix;
more information is included in Refs. [1, 41]. For
every system the coefficients of system (4) are special-
ized to integer polynomials in the hidden variable x3.
Recall that the inputs are the �ij, defined in Section 5.1.

The first instance refers to the symmetric cyclo-
hexane molecule, which has 6 carbon atoms at
equal distances and equal bond angles. Usually
noise enters in the process that produces the coef-
ficients. To illustrate this phenomenon, starting
with the pure cyclohexane, we randomly perturb
the data by about 10% to obtain �ij as the entries of
matrix:

	�310 959 774 1389 1313
�365 755 917 1451 1269
�413 837 838 1655 1352


.

In this case, we find the four solutions of Table I
(see Ref. [2]). Each root contains at least 8 correct
digits, which is largely sufficient in chemical appli-
cations. A chemist will immediately recognize two
chair and two twisted boat, or crown, conforma-
tions, shown in Figure 4.

Now let the coefficients be (�i1, . . . , �i5) � �13,
�1, �1, 24, �1. This has the maximum number of
roots, namely 16, and furthermore, they are all real
(see Table II). The roots are correct to at least 7
decimal digits, which is sufficient for chemical ap-
plications. Certain roots correspond to a triple eig-
envalue, so we recover the values of x1, x2 by sub-
stituting x3 in the original system and by solving
the resulting univariate equations.

TABLE I ______________________________________
Four possible real values of the tangents in the case
of the symmetric cyclohexane.

x1 x2 x3

0.3684363946 0.3197251270 0.2969559367
�0.3684363946 �0.3197251270 �0.2969559367

0.7126464332 �0.01038413185 �0.6234532743
�0.7126464332 0.01038413185 0.6234532743
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The last system is defined by (�i1, . . . , �i5) �
(�3/2, 1/2, 1/2, 2, 3/2). The system that we
actually solve is obtained by taking the floating-
point approximations of the coefficients �ij with 5
digits. There are 16 complex roots, of which the real
ones are in Table III. The first two correspond to
isolated points, whereas the last 6 points are per-
turbations of points that lie on a one-dimensional
component of the solution set, when taking rational
inputs [2].

6. Pharmacophore Matching

A fundamental assumption in structural biology
is that the power of interaction between two mole-

cules strongly depends on the existence of geomet-
rical complementarity between them. The same as-
sumption holds true in pharmacology, where the
most common interaction model involves docking a
(small) ligand in the pocket of a (large) receptor,
thereby triggering or hindering a biochemical pro-
cess. Furthermore, it is often assumed that only
certain parts of the ligand play a significant role in
the interaction with the receptor, while the rest of
the molecule serves mainly as a scaffold, allowing
the active groups to be properly positioned in
space. Thus, every ligand that interacts with a cer-
tain receptor according to a certain model of inter-
action, has to contain certain chemical groups,
properly positioned in space. This gives rise to an
abstract concept of a 3D pattern that characterizes
the potential of a ligand to show chemical activity.
This 3D pattern, called a pharmacophore [43], can
be equivalently regarded as a set of geometric con-
straints imposed on the structure of the ligand. The
latter has to be able to satisfy the constraints, in
order to be characterized as potentially active.

We present an algebraic methodology for the
solution of such kinds of geometric constraints on
molecules, based on Ref. [3]. We focus on con-
straints involving only distances between certain
points of the molecular structure. We should men-
tion that a set of predefined intermolecular dis-
tances is a common, though not standardized, way
to quantitatively describe a pharmacophore. Apart
from a set of distances, a pharmacophore definition
can also include other features, such as angles or
planarity constraints. The problem can be formu-
lated as follows: given the 3D structure of a mole-
cule and a set of predefined distances between
points of the molecule, compute all conformations
that satisfy the distance constraints. Thereby, we
adopt the assumption of fixed bond lengths and

FIGURE 4. The four conformations of the symmetric
cyclohexane.

TABLE II ______________________________________
All solutions for the example with 16 real roots.

x1 x2 x3

10.85770360 0.7795480449 0.7795480451
�10.85770360 �0.7795480449 �0.7795480451

0.3320730984 4.625181601 4.625181601
�0.3320730984 �4.625181601 �4.625181601

0.7795480449 0.7795480449 0.7795480451
0.7795480449 10.85770360 0.7795480451
0.7795480440 0.7795480457 10.85770360
4.625181601 4.625181601 4.625181601
4.625181601 0.3320730984 4.625181601
4.625181600 4.625181613 0.3320730984

�0.7795480440 �0.7795480457 �10.85770360
�0.7795480449 �0.7795480449 �0.7795480451
�0.7795480449 �10.85770360 �0.7795480451
�4.625181600 �4.625181613 �0.3320730984
�4.625181601 �4.625181601 �4.625181601
�4.625181601 �0.3320730984 �4.625181601

TABLE III _____________________________________
All solutions for the third example.

x1 x2 x3

0.5176444559 0.5176444559 0.5176444563
�0.5176444567 �0.5176444567 �0.5176444555

0.5176444559 �1.931851652 0.5176444563
�0.5176444567 1.931851652 �0.5176444555

1.931851652 �0.5176444567 �0.5176444555
�1.931851652 0.5176444559 0.5176444563

0.5176444561 0.5176444561 �1.931851652
�0.5176444561 �0.5176444561 1.931851652
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angles and model the problem in the space of tor-
sional angles.

6.1. MODELING DISTANCE CONSTRAINTS

Using Figure 1, we show how we can express the
distance d(X, Y) between the points X and Y as a
function of the torsional angles t1, . . . , tn. Let the
position of X with respect to FX be x and the posi-
tion of Y with respect to FY be y, both of which are
known and fixed vectors. Then, the position of Y
with respect to FX will be y� � R(t1, . . . , tn)y. In
order to express the distance d(X, Y) in terms of the
torsional angles, all we have to do is compute the
length of the vector XY with respect to FX.

d�X, Y� � �XY� � � y� � x� � �R�t1, . . . , tn� y � x�.

In the above equation, d(X, Y) is expressed as a
trigonometric function of t1, . . . , tn. In Lemma 1 we
will show that d2 is multilinear with respect to the
sines and cosines of the angles. Having expressed
the distance d(X, Y) as a function of the angles, a
constraint of the form d(X, Y) � do can be readily
formulated as a trigonometric equation, simply by
squaring both sides of the equation to eliminate the
square root. As a last step, we apply the half-tan-
gent substitution and eliminate the denominators.
What remains is a polynomial equation, containing
the half-tangents as unknowns. Repeating the same
procedure for all distance constraints leaves us with
an algebraic system.

We will close the current section by proving a
result that characterizes the form of the equations.
As we explained above, a distance constraint of the
form d(X, Y) � do is reduced to the trigonometric
equation �R(t1, . . . , tn)y � x�2 � do

2. For the left-hand
side of this equation, the following property is
valid.

Lemma 1 The expression �R(t1, . . . , tn)y � x�2 is
multilinear with respect to the sines and cosines of
angles t1, . . . , tn.

Proof:

�Ry � x�2 � �Ry � x�T�Ry � x�

� yTRTRy � 2xTRy � xTx.

Suffice it to prove that the elements of matrices R
and RTR are multilinear with respect to the sines
and cosines. Matrix R is a product: R � Rn

. . . R2R1.
Each Ri consists of two nontrivial parts: a 3 � 3

matrix �i(ti) expressing rotation, and a 3 � 1 col-
umn ci expressing translation:

Ri � 	�i ci

0 1
 .

We compute matrix R directly as a product:

R � ��n cn

0 1 � · · ·��2 c2

0 1 ���1 c1

0 1 �
� ��n· · ·�1 cn � �

k�1

n�1

�n· · ·�k�1ck

0 1
� .

With substitution we also directly compute the
product RTR. In this computation, we use the or-
thonormality of the rotation matrices: �i�i

T �
�i

T�i � I. This property makes the upper left
submatrix of the product RTR equal to the 3 � 3
identity matrix:

RTR � � I �
k�1

n

�1
T· · ·�k

Tck

�
k�1

n

ck�k· · ·�1 s �
s � 1 � �

k�1

n

�ck�2 � 2 �
k�1

n�1 �
m�k�1

n

ck
T�k�1

T · · ·�m
T cm.

From the above expressions, it is clear that R and
RTR contain elements that are multilinear with re-
spect to the sines and cosines of the angles.

We generally expect the elements of R, RTR to
contain all possible products of the form �i�1

n fi(ti),
where function fi can be one of sine, cosine, or
constant.

6.2. APPLICATION TO ACE INHIBITORS

In this section, we combine the modeling meth-
odology described above with the available result-
ant-based tools for the solution of a concrete mo-
lecular problem. We would like to emphasize that
both the modeling and the solution stages do not
contain any ad hoc constructions, but are based
instead on generic theoretical results and algorith-
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mic implementations. Therefore, the procedure de-
scribed below can be applied unchanged to other
cases. For the modeling stage we have imple-
mented a library of MAPLE routines, which take as
input the 3D structure of a molecule, its connectiv-
ity table, and a set of distance constraints, and
return the algebraic formulation of the constraints
in terms of polynomial equations. For the solution
of the resulting system, we use the public-domain
standalone solver of Ref. [42].

We focus on a pharmacophore matching prob-
lem, because a pharmacophore readily provides us
with the necessary geometric constraints for the
formulation of our equations. The two molecules,
captopril and enalapril, that serve as the material of
our study, belong to the ACE inhibitors. The latter
constitute a well-studied group of molecules, sev-
eral of which are nowadays used as drugs against
hypertension. We chose these two particular mole-
cules, as we found them suitable for our purposes:
they have few degrees of freedom, which makes it
possible to apply the algebraic methods and to in-
spect the results visually, their formulae can be
retrieved from publicly available chemical data-
bases, and finally PDB also contains recently pub-
lished reference structures of them, complexed with
ACE [44].

We should note that the pharmacophore we are
using below may be somewhat obsolete, since it
was proposed before the determination of the ac-
tual structure of the ACE receptor. However, since
our purpose is the demonstration of the algebraic
methodology, this is not of major importance. The
pharmacophore depicted in Figure 5 was proposed
in Ref. [45] as characteristic of ACE inhibition. It
contains three features: a carboxyl group, an amido-
carbonyl group, and a zinc atom, which is actually
part of the receptor. Five interatomic distances are
specified, so as to characterize the relative positions

of the pharmacophoric features. Using the informa-
tion from the available structures, we calculated the
five constrained distances as the averages of the
values observed in the three human ACE com-
plexes found in PDB (codes: 1UZE, 1UZF, 1O86).

For both molecules, captopril and enalapril, we
retrieved their chemical formulae from ChemBank
[46] as a SMILES string and generated their 3D
structures using the Web interface of Corina [47].
We finally added to each one a zinc pseudo-atom,
connected to the rest of the molecule via a pseudo-
bond. In the analysis below, we treat the zinc atom
as part of the ligand. We apply the algebraic meth-
odology on each of the two modeled ligands, in
order to match its structure to the requirements of
the pharmacophore. Starting from the modeled
molecules, which do not satisfy the distance con-
straints a priori, we seek to determine whether they
can fold so as to satisfy the constraints and, if so, we
wish to compute all appropriate conformations.

Let us first concentrate on captopril. It should be
obvious that the resulting polynomial system is
square, i.e. there are as many equations as un-
knowns. This is a fortunate coincidence in this par-
ticular case, since the molecule has five degrees of
freedom and the pharmacophore imposes exactly
five constraints. Most problems of this type should
be underconstrained.

Applying the modeling algorithm, we derive for
each distance constraint a polynomial equation,
which depends on the torsional angles of all, but
two, rotating bonds connecting the corresponding
atoms. The bonds at the two ends of the path,
obviously, do not appear in the equation, even if
they can rotate, because their rotation does not
affect the relative position of the constrained atoms.
Thus, the resulting system for captopril has the
following structure, where each polynomial pi cor-
responds to distance constraint di. Each variable xi

FIGURE 5. A pharmacophore for ACE inhibition.
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equals the tangent of one-half of the corresponding
torsional angle ti:

p1� x1, x2, x3, x4, x5� � 0

p2� x1, x2, x3� � 0

p3� x4, x5� � 0

p4� x1, x2� � 0

p5� x5� � 0.

Furthermore, as immediately follows from
Lemma 1, each polynomial pi is complete multiqua-
dratic with respect to its variables. Because of space
limitations, we give below an expanded expression
for the third polynomial only:

p3� x4, x5� � 17.699x4
2x5

2 � 3.4532x4
2x5 � 6.0548x4x5

2

� 3.393x4
2 � 4.1946x4x5 � 4.991x5

2 � 8.6680x4

� 8.0294x5 � 3.4886.

Each polynomial contains 3n monomials, where
n is the number of variables appearing in it. How-
ever, the overall system, considered in the five di-
mensional space (x1, x2, x3, x4, x5), is clearly very
sparse, which makes the resultant approach partic-
ularly well suited for its solution. We generally
expect problems of this type to lead to sparse sys-
tems, especially when the pharmacophoric features
are uniformly distributed along the molecular
chain. In particular, they may lead to an almost
triangular system like the one above, or to systems
containing some decoupled subsystem.

This is what happens in this particular case. As a
first step, we exploit the fact that the third and fifth
equations are decoupled from the rest and, even
better, that the fifth is a simple quadratic. So, we can
directly solve it for x5, substitute the solutions into
the third, which then becomes a simple quadratic,
and finally solve the latter for x4. From this proce-
dure, we expect at most four real solution pairs (x4,
x5). We proceed by substituting each one into the
first equation. Each substitution yields a 3 � 3
subsystem:

p1� x1, x2, x3� � 0

p2� x1, x2, x3� � 0

p4� x1, x2� � 0.

For the latter, we use the tools of sparse elimina-
tion. Since the system is sparse, we expect the
mixed volume to provide a tighter bound than the
Bézout theorem. Indeed, the mixed volume is 32,
while the Bézout bound is 144. The next step is to
construct a resultant matrix that will reduce the
solution of the system to an eigenproblem. There-
fore, we use the algorithm described in Ref. [29],
which is implemented in the software we are using.
Since the resultant is defined for systems with one
more equation than unknowns, we hide one of the
variables in the coefficient field; i.e., we regard the
system as containing three equations in two un-
knowns. In our case, we choose to hide x2; the size
of the optimal sparse-resultant matrix of Sylvester
type equals the sum of the pairwise mixed volumes,
which is 16. The algorithm used for the resultant
construction returns, here, an optimal 16 � 16 ma-
trix.

Having constructed the resultant matrix, the so-
lution of the system in the field of complex numbers
has been reduced to an eigenproblem for the com-
panion matrix. In our case, as the hidden variable
appears in the resultant matrix in quadratic terms,
the size of the companion matrix will be 32 � 32. In
summary, we have reduced the initial geometric
problem to the solution of quadratic equations and
eigenproblems of size 32. From this procedure, we
obtain 24 discrete, real solutions to the overall poly-
nomial system. It is straightforward to compute the
corresponding values of the torsional angles. Table
IV lists all 24 real solutions for captopril. We show
the rounded values of the five torsional angles,
measured in degrees. As already explained, the
solutions come in four groups, each one corre-
sponding to a different pair of (t4, t5). The members
of each group correspond to the triplets t1, t2, t3 that
are solutions of the 3 � 3 subsystem. We observe
that within each group there exist strong arithmet-
ical symmetries. These symmetries are easy to jus-
tify. The distance constraints imposed on the mo-
lecular structure describe the relative positions of
the corresponding atoms, without involving any
definition of direction. Consequently, the solutions
we obtain correspond to several pairs of enanti-
omers, i.e., conformers that are related to each other
like mirror images. In fact, the structure of this
particular molecule and the particular set of con-
straints define several planes of symmetry, with
respect to which conformational enantiomers are
generated, all of them satisfying the distance con-
straints. We believe that the generation of enanti-
omers as solutions may be inherent to problems
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involving only distance constraints and no defini-
tion of direction. Finally, we should note that in this
case the symmetry is not perfect. For two pairs of
(t4, t5) the corresponding 3 � 3 subsystem has four
real solutions, while for the other two pairs there
are eight solutions. Figure 6 depicts the eight con-
formers corresponding to (t5, t4) � (�99, �79) and
(t5, t4) � (�99, 34), in order to illustrate the existing
symmetries.

Let us now focus on enalapril. The resulting
system is underconstrained, because the equations
contain seven unknowns, while there are only five
constraints. The system has the structure shown
below:

p1� x1, x2, x3, x4, x5, x6, x7� � 0

p2� x1, x2, x3, x4, x5� � 0

p3� x6, x7� � 0

p4� x1, x2, x3, x4� � 0

p5� x7� � 0.

Two equations are still decoupled and conse-
quently can be immediately solved for (x6, x7). Ob-
viously, this is a convenient feature characterizing
this group of molecules, due to the relative position
of the carboxyl and carbonyl groups. Following the
procedure described above, for each pair (x6, x7) we
obtain a 3 � 5 subsystem:

p1� x1, x2, x3, x4, x5� � 0

p2� x1, x2, x3, x4, x5� � 0

p4� x1, x2, x3, x4� � 0.

However, this time we cannot solve the system
directly, because it is not square, which is a funda-
mental requirement for the elimination tools to be
applicable. So we apply an exhaustive grid search
for two of the variables and solve the resulting
square systems. If we choose x5 as one of the vari-

TABLE IV _____________________________________________________________________________________________
The 24 real solutions for captopril, rounded to the nearest integer, containing several symmetries.

t5 � � 99 t4 � � 79 t5 � � 99 t4 � 34

t3 t2 t1 t3 t2 t1

�151 43 �69 151 �43 108
�151 �61 108 151 61 �69
�103 �43 108 103 43 �69
�103 61 �69 103 �61 108

t5 � 55 t4 � � 94 t5 � 55 t4 � � 22

t3 t2 t1 t3 t2 t1

�103 125 �151 103 �125 �170
�103 83 �170 103 �82 �151
�132 �125 �170 132 125 �151
�132 �83 �151 132 82 �170

110 45 �69 �110 �45 108
110 �58 108 �110 58 �69
147 �45 108 �147 45 �69
147 58 �69 �147 �58 108

FIGURE 6. Eight conformers satisfying the distance
constraints for captopril.

EMIRIS, FRITZILAS, AND MANOCHA

208 VOL. 106, NO. 1



ables to be sampled, the resulting systems will con-
tain three complete triquadratic equations. The the-
ory guarantees, that for such a system, an optimal
resultant matrix of size 24 � 24 can be constructed.
However, if we do not choose x5 as a sampling
variable, the resulting systems will be like the one
discussed in the case of captopril, for which we
already have a smaller 16 � 16 resultant matrix.
Therefore, we chose to use x2 and x3 as our sam-
pling variables.

We perform the sampling for a grid size of 30
degrees. Table V lists the number of real solutions
for different combinations of the sampling angles,
the rows and columns corresponding to the angles
t2 and t3, respectively, measured in degrees. We
observe that the numbers are even, so the solutions
should again appear in pairs, perhaps symmetric to
each other.

7. Conclusions

This study surveys symbolic-numerical methods
for various problems in computational chemistry
and molecular biology. Several questions, which
can be answered off-line or in some comfortable
time frame, can best be faced with computational
algebra. Moreover, we demonstrated that the verac-
ity of symbolic methods can be combined with the
speed of numerical or approximate techniques to
yield important algorithms, even for problems re-
quiring real-time solutions.
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