Keyframing

fine level of control
quality of motion depends on skill of animator
Keyframing

iterate: adjust trajectory

play back motion

parameter/representation

interpolation path

speed along path
Keyframing

parameters:
locations/orientations
joint angles
shape -- flexible objects
material properties (color, texture)
camera motion (for animation)
lighting
Representation—orientation

transformation matrices

\[
\begin{bmatrix}
x_x & y_x & z_x & p_x \\
x_y & y_y & z_y & p_y \\
x_z & y_z & z_z & p_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Euler angles

rot \(\theta \) about x,
rot \(\alpha \) about y...

quaternions

\((x,y,z) \sin (\theta/2), \cos (\theta/2)\)
Keyframing -- Interpolation

Linear

position

time

position

time
Splines

- Position
- Linear
 - Cardinal
 - B-spline
 - Bezier spline

- Time
Splines

unintended wiggles
Keyframing
Velocity along path

Linear

Ease in/ Ease out
Control of Velocity

x, y = Q(u) for u: [0, 1]

equal arc lengths

equal spacing in u
Arc-length reparametrization

$s = A(u)$ where s is arc length

reparam: $Q(u)$ to $Q(A^{-1}(s))$

need to find $u = A^{-1}(s)$

bisection search for a value of u where $A(u) = s$ with a numerical evaluation of $A(u)$ (details in Watt and Watt)
Keyframing -- Constraints

Inverse Kinematics
Joint Limits
Position Limits
Control for the Animator

- picking keyframe positions
- editing motion curves
- control over velocity (timing)
- specification of constraints
Kinematics — the study of motion without regard to the forces that cause it.

Forward: \(A = f(\alpha, \beta) \)

Inverse: \(\alpha, \beta = f^{-1}(A) \)

draw graphics

specify fewer degrees of freedom

more intuitive control of dof

pull on hand

glue feet to the ground
Forward Kinematics

\[
x = L_1 \cos \theta_1 + L_2 \cos (\theta_1 + \theta_2)
\]

\[
y = L_1 \sin \theta_1 + L_2 \sin (\theta_1 + \theta_2)
\]

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix} = \begin{bmatrix}
 0 \\
 0 \\
 0 \\
 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
 \text{rot } \theta_1 \\
 \text{trans } L_1 \\
 \text{rot } \theta_2 \\
 \text{trans } L_2
\end{bmatrix}
\]

\[
\begin{bmatrix}
 \text{rot } \theta_1 \\
 \text{trans } L_1 \\
 \text{rot } \theta_2 \\
 \text{trans } L_2
\end{bmatrix}
\]
Inverse Kinematics

\[\theta_2 = \cos \left(\frac{x^2 + y^2 - L_1^2 - L_2^2}{2L_1L_2} \right) \]

\[\theta_1 = \frac{-(L_2 \sin \theta_2)x + (L_1 + L_2 \cos \theta_2)y}{(L_2 \sin \theta_2)y + (L_1 + L_2 \cos \theta_2)x} \]

\[\theta = f^{-1}(x) \]
What makes IK hard?

- redundancy
- singularities
- goal of "natural looking" motion
Danse Interactif and Improv – Perlin, NYU

Keyframed actions
Additive noise