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Abstract. A central goal of human genetics is the identification of combi-
nations of DNA sequence variations that increase susceptibility to common,
complex human diseases. Our ability to use genetic information to improve
public health efforts to diagnose, prevent, and treat common human diseases
will depend on our ability to understand the hierarchical relationship between
complex biological systems at the genetic, cellular, biochemical, physiological,
anatomical, and clinical endpoint levels. We have previously demonstrated
that Petri nets are useful for building discrete dynamic systems models of bio-
chemical networks that are consistent with nonlinear gene-gene interactions
observed in epidemiological studies. Further, we have developed a machine
learning approach that facilitates the automatic discovery of Petri net models
thus eliminating the need for human-based trial and error approaches. In the
present study, we evaluate this automated model discovery approach using four
different nonlinear gene-gene interaction models. The results indicate that our
model-building approach routinely identifies accurate Petri net models in a
human-competitive manner. We anticipate that this general modeling strat-
egy will be useful for generating hypotheses about the hierarchical relationship
between genes, biochemistry, and measures of human health.

1. Introduction. There is a growing awareness that susceptibility to common hu-
man diseases such as sporadic breast cancer is largely due to nonlinear interactions
among multiple genes and multiple environmental factors [11, 19, 23]. For exam-
ple, Ritchie et al. [23] identified a combination of four genetic variations from three
estrogen metabolism genes that are associated with risk of sporadic breast cancer.
In this study, no one genetic variation was associated with breast cancer by itself.
Rather, information from all four was necessary. These genes represent important
candidates for determining breast cancer susceptibility because they are involved in
the metabolism of estrogen. Estrogen can increase risk for sporadic breast cancer
if it is metabolized into a compound that can damage DNA. The genes from the
estrogen metabolism pathway play an important functional role in determining how
much carcinogenic estrogen is produced.
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New statistical and computational methods such as multifactor dimensionality
reduction [8, 23, 24] are making it feasible to detect genes that influence breast can-
cer susceptibility primarily through nonlinear interactions with other genes. The
ultimate public health goal is to use information about DNA sequence variations in
genes to improve the diagnosis, prevention, and treatment of common human dis-
eases such as sporadic breast cancer. Realizing this objective will partly depend on
understanding how information at the genetic level is realized at the population level
through biochemical and physiological systems. Understanding how combinations
of genetic variations in estrogen metabolism genes increase levels of carcinogenic
estrogen, and thus breast cancer susceptibility, is expected to lead to improved clin-
ical management of this common disease. Making the connection between genes,
biochemistry, and disease susceptibility using a discrete dynamic systems modeling
approach is the focus of the present study.

We took the first step towards hierarchical systems modeling of disease suscep-
tibility by addressing the following questions. First, is it possible to develop simple
discrete dynamic systems models of biochemical networks that are consistent with
nonlinear gene-gene interactions that are observed at the population level? Sec-
ond, are these simple biochemical systems models biologically plausible? We used
discrete dynamic system models called Petri nets to develop two independent, bio-
logically plausible, biochemical systems models of a well-known nonlinear gene-gene
interaction model (unpublished results). This preliminary study demonstrated the
utility of Petri nets for modeling biochemical systems that are consistent with
nonlinear gene-gene interactions in complex diseases. However, an important lim-
itation of this modeling approach is that the Petri net models were developed by
a human-based trial and error approach that is time consuming and difficult due
to combinatorial complexities. In response to this limitation, Moore and Hahn [17]
developed a machine intelligence strategy that uses an evolutionary computation
approach called grammatical evolution for the automatic discovery of Petri net
models. This approach routinely generates Petri net models that are consistent
with two published genetic models in which disease susceptibility is dependent on
nonlinear interactions between two DNA sequence variations [17].

The goal of the present study is to evaluate the ability of the grammatical evo-
lution approach proposed by Moore and Hahn [17] to discover Petri net models
of biochemical systems that are consistent with nonlinear gene-gene interactions
for a wide range of different genetic models. We have selected four different ge-
netic models in which disease susceptibility is dependent on nonlinear interactions
between two DNA sequence variations. We find that the modeling approach rou-
tinely identifies Petri net models that are consistent with each of the four gene-gene
interaction models.

2. The Nonlinear Gene-Gene Interaction Models. Our four nonlinear gene-
gene interaction models are based on penetrance functions. Penetrance functions
represent one approach to modeling the relationship between genetic variations
and risk of disease. Penetrance is simply the probability (P ) of disease (D) given
a particular combination of genotypes (G) that was inherited (i.e. P [D|G]). A
single genotype is determined by one allele (i.e. a specific DNA sequence state)
inherited from the mother and one allele inherited from the father. For most genetic
variations, only two alleles (encoded by A or a) exist in the biological population.
Therefore, because the ordering of the alleles is unimportant, a genotype can have
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Figure 1. Penetrance functions for each nonlinear gene-gene in-
teraction model. Note that the average penetrance values for each
specific genotype are all approximately equal (not shown). Shaded
cells represent the high risk genotype combinations while unshaded
cells represent low risk combinations.

one of three values: AA, Aa or aa. Figure 1 illustrates each of the four penetrance
function models we used. Each of these models was discovered using the software of
Moore et al. [18] and have been described previously by Ritchie et al. [24]. What
makes these models interesting is that disease risk is dependent on the particular
combination of genotypes inherited. There is effectively no difference in disease risk
for each single genotype as specified by the single-genotype penetrance values in the
margins of the tables. Also illustrated in Figure 1 for each model is the distribution
of high risk and low risk genotype combinations. A genotype combination was
considered high risk if the probability of disease was greater than the prevalence
of disease in the general population which is indicated by the marginal penetrance
values based on single genotypes.

3. Introduction to Petri Nets for Modeling Discrete Dynamic Systems.
Petri nets are a type of directed graph that can be used to model discrete dynamical
systems [2]. Goss and Peccoud [7] demonstrated that Petri nets could be used to
model molecular interactions in biochemical systems. The core Petri net consists of
two different types of nodes: places and transitions. Using the biochemical systems
analogy of Goss and Peccoud [57] places represent molecular species. Each place
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has a certain number of tokens that represent the number of molecules for that
particular molecular specie. A transition is analogous to a molecular or chemical
reaction and is said to fire when it acquires tokens from a source place and, after
a possible delay, deposits tokens in a destination place. Tokens travel from a place
to a transition or from a transition to a place via arcs with specific weights or
bandwidths. While the number of tokens transferred from place to transition to
place is determined by the arc weights, the rate at which the tokens are transferred
is determined by the delay associated with the transition. Transition behavior is
also constrained by the weights of the source and destination arcs. A transition will
only fire if two preconditions are met: 1) if the source place can completely use the
capacity of the source arc and, 2) if the destination place has the capacity available
to store the number of tokens provided by the full weight of the destination arc.
Transitions without an input arc act as if they are connected to a limitless supply of
tokens. Similarly, transitions without an output arc can consume a limitless supply
of tokens. The transition firing rate can be immediate, delayed deterministically or
stochastically depending on the complexity needed. The fundamental behavior of
a Petri net can be controlled by varying the maximum number of tokens a place
can hold, the weight of each arc, and the firing rates of the transitions.

4. Our Petri Net Modeling Strategy. Moore and Hahn [17] developed a strat-
egy for identifying Petri net models of biochemical systems that are consistent with
observed population-level gene-gene interactions. The specific Petri nets used to
model the biochemical pathways are Petri Nets with Time [16, 21]. Transitions
had either a fixed delay or fired as soon as the preconditions of the transition were
met. If a place provided input to two or more transitions but had only enough
tokens to satisfy one transition, then the transition with the shortest delay fired.
If a place provided input to two or more transitions and had enough tokens to
satisfy more than one transition, then the timers associated with both transitions
began to count down. When the timers had counted down to 0, the transition fired
unless two transitions were simultaneously ready to fire in which case one of the
transitions is chosen to fire and the other transition(s) reset.

The goal of identifying Petri net models of biochemical systems that are con-
sistent with observed population-level gene-gene interactions is accomplished by
developing Petri nets that are dependent on specific genotypes from two or more
genetic variations. Here, we make firing rates of transitions and/or arc weights
genotype-dependent yielding different Petri net behavior. Each Petri net model is
related to the genetic model using a discrete version of the threshold model from
population genetics [3]. With a classic threshold or liability model, it is the con-
centration of a biochemical or environmental substance that is related to the risk
of disease, under the hypothesis that risk of disease is greatly increased once a par-
ticular substance exceeds some threshold concentration (e.g. high concentrations
of carcinogenic estrogen are a risk factor for sporadic breast cancer). Conversely,
the risk of disease may increase in the absence of a particular factor or with any
significant deviation from a reference level. In such cases, high or low levels are
associated with high risk while an intermediate level is associated with low risk.
Here, we use a discrete version of this model for our deterministic Petri nets. For
each model, the number of tokens at a particular place is recorded and if they ex-
ceed a certain threshold, the appropriate risk assignment is made. If the number of
tokens does not exceed the threshold, the alternative risk assignment is made. The
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high-risk and low-risk assignments made by the discrete threshold from the output
of the Petri net can then be compared to the high-risk and low-risk genotypes from
the genetic model. A perfect match indicates the Petri net model is consistent
with the gene-gene interactions observed in the genetic model. The Petri net then
becomes a model that relates the genetic variations to risk of disease through an
intermediate biochemical network.

Identifying Petri net models that are consistent with the genotype-dependent
distribution of risk is challenging by hand. Therefore, Moore and Hahn [17] de-
veloped an evolutionary computing approach to the discovery of Petri net models.
This approach is described in the next section.

5. A Grammatical Evolution Approach to Discovering Petri Net Models.
Overview of Grammatical Evolution
Evolutionary computation arose from early work on evolutionary programming [4,
5] and evolution strategies [22, 25] that used simulated evolution for artificial in-
telligence. The focus on representations at the genotypic level lead to the devel-
opment of genetic algorithms by Holland [9, 10] and others. Genetic algorithms
have become a popular machine intelligence strategy because they can be effective
for implementing parallel searches of rugged fitness landscapes [6]. Briefly, this is
accomplished by generating a random population of models or solutions, evaluating
their ability to solve the problem at hand, selecting the best models or solutions,
and generating variability in these models by exchanging model components among
different models. The process of selecting models and introducing variability is iter-
ated until an optimal model is identified or some termination criteria are satisfied.
A limitation of genetic algorithms is that models or solutions are represented by
linear arrays of bits. In response to this limitation, Koza [13] developed a more
flexible evolutionary computation strategy called genetic programming where the
models or solutions are represented by binary expression trees. Koza et al. [14] and
others [12] have successfully applied genetic programming to modeling metabolic
networks.

Grammatical evolution has been described by O’Neill and Ryan [20] as a vari-
ation on genetic programming. Here, a Backus-Naur Form (BNF) grammar is
specified that allows a computer program or model to be constructed by a simple
genetic algorithm operating on an array of bits. The ability to specify a grammar
is appealing because only a text file specifying the grammar needs to be altered for
different applications. There is no need to modify and recompile source code during
development once the fitness function is specified. The end result is a decrease in
development time and an increase in computational flexibility. It is for this reason
that Moore and Hahn [17] selected grammatical evolution instead of genetic pro-
gramming as the evolutionary computation method for the discovery of Petri net
models. It is the goal of this study to evaluate the grammatical evolution approach
to discovering Petri net models using four different nonlinear gene-gene interaction
models that include two DNA sequence variations. We describe below the genetic
algorithm used, the grammar for the Petri net, the fitness function, and the genetic
algorithm parameters used.

A Grammar for Petri Net Models in Backus-Naur Form
Moore and Hahn [17] developed a grammar for Petri nets in Backus-Naur Form
(BNF). Backus-Naur Form is a formal notation for describing the syntax of a
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context-free grammar as a set of production rules that consist of terminals and
nonterminals [15]. Nonterminals form the left-hand side of production rules while
both terminals and nonterminals can form the right-hand side. A terminal is es-
sentially a model element while a nonterminal is the name of a production rule.
For the Petri net models, the terminal set includes, for example, the basic building
blocks of a Petri net: places, arcs, and transitions. The nonterminal set includes
the names of production rules that construct the Petri net. For example, a nonter-
minal might name a production rule for determining whether an arc has weights
that are fixed or genotype-dependent. We show below in (1) the production rule
that is executed to begin the model building process.

<root> ::= <pick a gene><pick a gene><net iterations><expr>
<transition><place noarc> (1)

When the initial <root> production rule is executed, a single Petri net place
with no entering or exiting arc (i.e. <place noarc>) is selected and a transition
leading into or out of that place is selected. The arc connecting the transition and
place can be dependent on the genotypes of the genes selected by <pick a gene>.
The nonterminal <expr> is a function that allows the Petri net to grow. The
production rule for <expr> is shown below in (2). Here, the selection of one of
the four nonterminals (0, 1, 2, or 3) in the right-hand side of the production rule is
determined by a combination of bits in the genetic algorithm chromosome.

<expr> ::= <expr><expr> 0
|<arc> 1
|<transition> 2
|<place> 3

(2)

The base or minimum Petri net that is constructed using the <root> production
rule consists of a single place, a single transition, and an arc that connects them.
Multiple calls to the production rule <expr> by the genetic algorithm chromosome
can build any connected Petri net. In addition, the number of times the Petri
net is to be iterated is selected with the nonterminal <net iterations>. Many
other production rules control the arc weights, the genotype-dependent arcs and
transitions, the number of initial tokens in a place, the place capacity, etc. All
decisions made in the building of the Petri net model are made by each subsequent
bit or combination of bits in the genetic algorithm chromosome. The complete
grammar is too large for presentation in detail here but can be obtained from the
authors upon request.

The Fitness Function
Once a Petri net model is constructed using the BNF grammar, as instructed by
the genetic algorithm chromosome, the model fitness is determined. As described
by Moore and Hahn [17], this is carried out by executing the Petri net model for
each combination of genotypes in the genetic dataset and comparing the final token
counts at a defined place to a threshold constant to determine the risk assignment.
Let G be the set of i = 1 to n possible genotype combinations where n = 9
when there are two genetic variations, each with three genotypes. Let Zi be the
final number of tokens from the designated Petri net place for the ith genotype
combination and let c be the threshold constant. Let d(Gi) be the risk assignment
for the ith genotype combination in the genetic model and let f(Gi) be the risk
assignment made by the Petri net. If Zi ≥ c then f(Gi) = “high risk” else if
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Table 1. The Genetic Algorithm Parameter Settings

Objective Discover Petri net models
Fitness function Classification error
Number of runs 100
Stopping criteria Classification error = 0
Population size 6000
Number of demes 6
Generations 800
Selection Stochastic uniform sampling
Crossover Uniform
Crossover probability 0.60
Mutation probability 0.02

Zi < c then f(Gi) = “low risk.” The dichotomous risk assignment is consistent
with epidemiological study designs in which subjects with the disease (cases) and
subjects without the disease (controls) are used to identify genetic risk factors.
Genotypes that are more common in cases than controls can be thought of as high
risk [8, 19, 23, 24]. Fitness (E) of the Petri net model is determined by comparing
the high risk and low risk assignments made by the Petri net to those from the
given nonlinear gene-gene interaction model. Calculation of the fitness value, E, is
given by the classification error function in (3). In the present study, max(E) = 9
and min(E) = 0. The goal is to minimize E.

E =
|G|∑

i=1

ei, (3)

where
ei = 0 if f(Gi) = d(Gi),
ei = 1 if f(Gi) �= d(Gi).

The Genetic Algorithm Parameters
Table 1 summarizes the genetic algorithm parameter settings used in this study. We
ran the genetic algorithm a total of 100 times with different random seeds for each
gene-gene interaction model. Each run consisted of a maximum of 800 generations.
The genetic algorithm was stopped when a model with a classification error of zero
(i.e. E = 0) was discovered. We used a parallel search strategy [1] with six demes
(i.e. subpopulations) each with 1000 individuals or solutions for a total population
size of 6000. A best chromosome migrated from each deme to all other demes every
25 generations. Each chromosome consisted of 14 32-bit bytes. It is possible to
reach the end of a chromosome with an incomplete instance of the grammar. To
complete the instance, chromosome wrap around was used [20]. In other words,
the instance of the grammar was completed be reusing the chromosome as many
times as was necessary to complete the instance. We also used a dynamic codon
strategy in which the number of bits consumed in deciding on the right-hand side of
a given production rule depended on the number of bits required for that decision
rather than some fixed number of bits. For instance, a production with only two
alternatives consumed only a single bit from the genetic algorithm chromosome.

Software and Hardware
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Table 2. Summary of the distribution (mode and range) of the
number of different Petri net elements identified across 100 gram-
matical evolution runs for the four nonlinear gene-gene interaction
models.

Mode (range) number of Petri net elements
Petri net models Model 1 Model 2 Model 3 Model 4
Place 1 (1-1) 1 (1-2) 1 (1-1) 1 (1-2)
Arc 2 (2-5) 2 (2-7) 2 (2-9) 2 (2-6)
Transition 2 (1-4) 2 (1-5) 2 (1-6) 2 (1-5)
Conditional 3 (2-6) 3 (2-6) 3 (2-8) 3 (2-7)

The parallel genetic algorithm used was a modification of the Parallel Virtual Ma-
chine (PVM) version of the Genetic ALgorithm Optimized for Portability and Paral-
lelism System (GALLOPS) package for UNIX [http://garage.cps.msu.edu/software/
software-index.html]. This package was implemented in parallel using message pass-
ing on a 110-processor Beowulf-style parallel computer cluster running the Linux
operating system. Seven total processors were used for each separate run.

6. Results. The grammatical evolution algorithm was run a total of 100 times for
each of the four nonlinear gene-gene interaction models. For model 1, the grammat-
ical evolution strategy yielded a Petri net model that was perfectly consistent with
the high-risk and low-risk assignments for each combination of genotypes with no
classification error in 99 out of 100 runs. For models 2-4, the grammatical evolution
strategy yielded a Petri net model that was perfectly consistent with the high-risk
and low-risk assignments for each combination of genotypes with no classification
error in 100 out of 100 runs. Thus, Petri net model discovery was routine and
human competitive. Table 2 below summarizes the mode (i.e. most common) and
range of the number of places, arcs, transitions, and conditionals (i.e. genotype-
dependent elements) that define the best Petri net models found across the 100
runs for each model. For all gene-gene interaction models, most Petri net models
consisted of one place, two arcs, and two transitions. In addition, the best models
were most likely to have three Petri net elements that are conditional or dependent
on genotype.

Figure 2A illustrates a Petri net architecture for model 1 that was commonly
found by the grammatical evolution algorithm. This model consists of one place
(P0), two arcs (A0 and A1), and two transitions (T0 and T1). An arc or transition
that is genotype-dependent is indicated by Gi {X1,X2,X3} for the ith genetic
variation (i = 0 or 1) where the weights associated with the three genotypes are in
brackets. For this model, the place is initialized with 11 tokens and has a maximum
capacity of 16 tokens. Transition 0 has a fixed firing delay of 10 time steps. Both
arcs and transition 1 were genotype-dependent. For example, transition 1 has a
firing rate of 13 if the genotype for the first genetic variation is AA. This Petri net
was iterated for 47 time intervals and was formed by using 87 of the 448 available
bits on the genetic algorithm chromosome. The final token counts for each of
the nine genotype combinations are shown in Figure 3A. Note that token counts
greater than 7 are associated with high-risk while those equal to or less than 7
are associated with low-risk. This is consistent with the penetrance values for this
model (see Figure 1A).
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Figure 2. Common Petri net models identified in multiple runs
of the grammatical evolution algorithm for model 1 (A), model 2
(B), model 3 (C), and model 4 (D).

Figure 2B illustrates a Petri net architecture for model 2 that was commonly
found by the grammatical evolution algorithm. For this model, the place is initial-
ized with 6 tokens and has a maximum capacity of 16 tokens. Transition 1 has no
firing delay. Both arcs and transition 0 were genotype-dependent. This Petri net
was iterated for 42 time intervals and was formed by using 82 of the 448 available
bits on the genetic algorithm chromosome. The final token counts for each of the
nine genotype combinations are shown in Figure 3B. Note that token counts greater
than 9 are associated with high-risk while those equal to or less than 9 are asso-
ciated with low-risk. This is consistent with the penetrance values for this model
(see Figure 1B).
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Figure 3. Final token counts for each of the nine genotype combi-
nations after the final iteration of the Petri net models illustrated
in Figure 2 for gene-gene interaction model 1 (A), model 2 (B),
model 3 (C), and model 4 (D).

Figure 2C illustrates a Petri net architecture for model 3 that was commonly
found by the grammatical evolution algorithm. For this model, the place is initial-
ized with 2 tokens and has a maximum capacity of 12 tokens. Transitions 0 and
1 have no firing delays. Both arcs were genotype-dependent. This Petri net was
iterated for 20 time intervals and was formed by using 68 of the 448 available bits
on the genetic algorithm chromosome. The final token counts for each of the nine
genotype combinations are shown in Figure 3C. Note that token counts greater
than 3 are associated with high-risk while those equal to or less than 3 are asso-
ciated with low-risk. This is consistent with the penetrance values for this model
(see Figure 1C).

Figure 2D illustrates a Petri net architecture for model 4 that was commonly
found by the grammatical evolution algorithm. For this model, the place is initial-
ized with 8 tokens and has a maximum capacity of 16 tokens. Transition 0 has no
firing delay. Both arcs and transition 0 were genotype-dependent. This Petri net
was iterated for 20 time intervals and was formed by using 82 of the 448 available
bits on the genetic algorithm chromosome. The final token counts for each of the
nine genotype combinations are shown in Figure 3D. Note that token counts greater
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than 1 are associated with high-risk while those equal to or less than 1 are asso-
ciated with low-risk. This is consistent with the penetrance values for this model
(see Figure 1D).

7. Discussion. The main conclusion of this study is that the Petri net modeling
approach of Moore and Hahn [17] routinely identifies discrete dynamic systems
models that are consistent with the genotype-specific distributions of disease risk.
In fact, across 100 runs, the grammatical evolution algorithm discovered Petri net
models that were consistent with the high-risk and low-risk assignments for each
combination of genotypes with no classification error in at least 99 out of 100
runs across the four different nonlinear gene-gene interaction models. The results
suggest that this modeling approach is flexible and is competitive with human trial
and error model building approaches.

The next step in the evaluation of this approach is to determine whether it is
capable of modeling higher-order interactions. That is, is it possible to construct
Petri net models that are consistent with the effects of more than two genetic
variations at a time. We anticipate that this will be a more difficult task since
the number of genotype combinations goes up exponentially. For example, there
are nine genotype combinations for two genetic variations, 27 for three genetic
variations, and 81 for four genetic variations. We anticipate the Petri net models
will need to be much larger and more complex to generate token counts that are
consistent with the distribution of high risk and low risk genotype combinations in
these larger spaces.

The ultimate goal is to apply this modeling strategy to real data. Ritchie et al.
[23, 24] and Hahn et al. [8] have developed a statistical approach called multifactor
dimensionality reduction (MDR) for identifying combinations of genotypes associ-
ated with high and low risk of disease. The Petri net approach could be used to
construct biochemical systems models that are consistent with the high and low
risk models obtained from MDR. While these models may in no way represent the
true underlying biochemical system, they may tell us something about the nature
of the interactions at the biochemical level. For example, Moore and Hahn [17]
found that arcs were more likely to be genotype-dependent than transitions for the
genetic model examined. Perhaps the functionality of an arc indicates the general
type of biological function that may be important at the biochemical level.

In this study, we used the final token count at a single place to indicate the risk
assignment. It may be useful to change this metric to a more biologically plausible
metric that depends on a feature of the dynamics of the system rather than a fixed
static endpoint. In this case, the steady state level of the system might be an
indicator of risk. In addition, there is the opportunity to explore a wider range
of Petri net model elements. For example, it is possible to use continuous instead
of discrete places or to use both continuous and discrete places (these are called
hybrid Petri nets).

It is well established that nonlinear interactions among multiple genes are likely
to play an important role in susceptibility to common, complex human diseases
such as essential hypertension and sporadic breast cancer [11, 19, 23]. This is partly
due to the inherent complexity of genetic and biochemical networks. Understanding
how interactions at the biochemical level manifest themselves as interactions among
genes at the population level, will provide a basis for understanding the role of genes
in diseases susceptibility. Making this hierarchical connection may ultimately lead
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to an understanding of complex biological systems that will facilitate new treatment
and prevention strategies. We anticipate that this study, and others like it, will open
the door for the synthesis and analysis of biomedical data with the ultimate goal
of improving the diagnosis, prevention, and treatment of common diseases that
represent the greatest public health burden.
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