Contents

Preface xxiii
 How to Use This Book xxv
 Courses of Different Lengths xxix
Acknowledgments xxxi

1 Introduction to Protein Structure and NMR 1
 1.1 Protein Structure 1
 1.2 Structure Determination of Proteins with NMR Spectroscopy 2

2 Basic Principles of NMR 7
 2.1 Overview of NMR 7
 2.2 The Physical Basis of NMR Spectroscopy 8
 2.3 Chemical Shifts 10
 2.4 Introduction to NMR Experiments 11

3 Proteins and NMR Structural Biology 15
 3.1 COSY 15
 3.2 J_{HNHu} 15
 3.3 HN^{15}N HSQC 17
 3.4 15N TOCSY 17
 3.5 NOESY 18
 3.6 RDC 19

4 MBM, SVD, PCA, and RDCs 23
 4.1 MBM 23
 4.2 SVD 24
 4.2.1 Definition 24
 4.2.2 Properties 24
 4.3 PCA 25
 4.3.1 Calculating PCA by SVD 25
 4.4 RDCs 25
5 Principal Components Analysis, Residual Dipolar Couplings, and Their Relationship in NMR Structural Biology 27
Antony K. Yan and Bruce R. Donald
5.1 Introduction 27
5.2 Introduction to PCA 28
5.3 Residual Dipolar Couplings in Structural Biochemistry 34
5.4 RDCs and PCA 38
5.5 Conclusions and Future Work 43

6 Orientational Sampling of Interatomic Vectors 47
6.1 Introduction 47
6.2 Theory 47
6.2.1 Sampling Tensor 47
6.2.2 Generalized Sampling Parameter 48
6.2.3 Average Constant 48
6.2.4 Generalized Quality Factor 48
6.2.5 Geometric Representation 49
6.3 Results 49
6.4 Applications 51

7 Solution Structures of Native and Denatured Proteins Using RDCs 53
7.1 Determining Native Protein Structure 53
7.1.1 Theoretical Background 53
7.1.2 The Algorithm 54
7.1.3 Results 55
7.2 Determination of Denatured or Disordered Proteins 55
7.2.1 A Probabilistic Interpretation of Restraints in the Denatured State 56
7.2.2 The Algorithm 56
7.2.3 Applications to Biological Systems 58

8 JIGSAW and NMR 59
8.1 Overview of JIGSAW 59
8.2 NMR Spectra Used in JIGSAW 59
8.3 Graph Representation of Atom Interactions in NOESY Spectra 60
8.3.1 Graph Representation 60
8.3.2 Graph Constraints for Identifying Secondary Structure 61
8.4 Secondary Structure Pattern Discovery 61
8.5 Assignment by Alignment of Side-Chain Fingerprints 64
8.5.1 Experimental Results 65

9 Peptide Design 67
9.1 Peptides 67
9.2 Peptide Backbone Reconstruction 68
9.2.1 Problem Statement 68
9.2.2 Motivation 68
9.2.3 Algorithm 69
9.2.4 Results 69
9.3 Peptides That Target Transmembrane Helices 70
 9.3.1 Algorithm 70
 9.3.2 Results 71
9.4 Foldamers 71
 9.4.1 Types of Monomer Frameworks 72
 9.4.2 Foldamer Structure 72
 9.4.3 Foldamer Function 72
 9.4.4 Foldamer Benefits 73

10 Protein Interface and Active Site Redesign 77
 10.1 Minimalist Active Site Redesign 77
 10.1.1 Subtilisin 78
 10.1.2 Interconverting Homologous Enzymes 79
 10.1.3 Introduction of Catalytic Machinery 80
 10.1.4 Removal of Catalytic Nucleophiles 81
 10.1.5 Partitioning of Reaction Intermediates 81
 10.1.6 Controlling Stereo- and Regiochemistry 81
 10.1.7 Improving Promiscuity 82
 10.2 Protein Domain Interface Redesign via Directed Evolution 83

11 Computational Protein Design 87
 11.1 Introduction 87
 11.2 Overview of Methodology 87
 11.3 Algorithm Design 88
 11.4 Intuition: Dead-End Elimination 91
 11.5 Complexity Analysis 92
 11.6 Experimental Validation: Interplay of Computational Protein Design and NMR 92

12 Nonribosomal Code and K* Algorithms for Ensemble-Based Protein Design 97
 12.1 Nonribosomal Peptide Synthetase (NRPS) Enzymes 97
 12.2 K-star (K*) Algorithm Basics 98
 12.3 Energy Functions 102
 12.4 Redesigning Enzymes with K* 105
 12.5 Minimized Dead-End Elimination (minDEE) 106
 12.5.1 A* Search and minDEE 106
 12.6 Backbone Flexibility in DEE for Protein Design 107
 12.6.1 Continuous Backbone Flexibility DEE 107
 12.6.2 Backrub DEE 108
 12.7 Application to Negative Design 109
 12.8 Discussion 110

13 RDCs in NMR Structural Biology 115
 13.1 Residual Dipolar Couplings 115
 13.2 Computational Topics Related to RDCs 116
 13.2.1 Assignment Problem 116
 13.2.2 Structure Determination Problem 116
20.2 Probik 193
 20.2.1 Overview 193
 20.2.2 Algorithm Description 193
 20.2.3 Exploring Control Parameters Based on Principal Component Analysis 193
20.3 ChainTweak 193
 20.3.1 Overview 193
 20.3.2 Algorithm Description 194
20.4 Comparisons Between Probik and ChainTweak 195

21 Normal Mode Analysis (NMA) and Rigidity Theory 197
 21.1 Normal Mode Analysis 197
 21.1.1 Introduction 197
 21.1.2 Different Normal Modes 199
 21.2 Protein Flexibility Predictions Using Graph Theory 200
 21.2.1 Overview of FIRST 200
 21.2.2 Rigidity Theory 200
 21.2.3 Pebble Game Analysis 201

22 ROCK and FRODA for Protein Flexibility 205
 22.1 The ROCK Algorithm 205
 22.1.1 Terminology 205
 22.1.2 Overview 205
 22.1.3 Conformation Sampling in Single-Ring Closure 206
 22.1.4 Conformation Sampling in Multiple-Ring Closure 206
 22.1.5 Conformation Sampling in Side Branches 207
 22.1.6 Hydrophobic Interactions and Ramachandran Checks 207
 22.2 Application of ROCK in Flexible Docking 208
 22.3 FRODA 208
 22.3.1 Overview 208
 22.3.2 The FRODA Algorithm 208
 22.3.3 Comparisons Between ROCK and FRODA 210

23 Applications of NMA to Protein-Protein and Ligand-Protein Binding 213
 23.1 Structure Changes for Protein Binding in the Unbound State 213
 23.1.1 Classical Models for Protein-Protein Interactions 213
 23.1.2 Gaussian Network Model (GNM) 213
 23.1.3 Anisotropic Network Model (ANM) 214
 23.2 Receptor Flexibility Representation Through Relevant Normal Modes 215
 23.2.1 Methodology Overview 215
 23.2.2 Determination of the Relevant Normal Mode 215
 23.2.3 Generation of MRCs 216
 23.2.4 Side-Chain Optimization 216
 23.2.5 Small-Scale Virtual Screening Using RED 216
24 Modeling Equilibrium Fluctuations in Proteins 219
 24.1 Missing Loops and Protein Flexibility 219
 24.2 Materials and Methods 220
 24.2.1 Fragment Ensemble Method (FEM) 220
 24.2.2 Protein Ensemble Method (PEM) 221
 24.3 Results 226

25 Generalized Belief Propagation, Free Energy Approximations, and Protein Design 227
 25.1 Free Energy 227
 25.2 Graphical Models 228
 25.2.1 Bayesian Networks 228
 25.2.2 Pairwise Markov Random Fields 229
 25.2.3 Factor Graphs 229
 25.3 Belief Propagation (BP) 229
 25.4 The Connection Between Belief Propagation and Free Energy 230
 25.5 Generalized Belief Propagation (GBP) 231
 25.6 An Application of GBP: Estimating the Free Energy of Protein Structures 231
 25.6.1 Results and Discussion 232
 25.7 Application: Graphical Models for Protein Design 233
 25.7.1 Protein Design Problem 235
 25.7.2 Graphical Models and Belief Propagation for Protein Design 236
 25.7.3 Multiple Low-Energy Sequences Through BP 237
 25.7.4 Graphical Models for Probabilistic Protein Design 238
 25.7.5 Discussion and Future Directions 240

26 Ligand Configurational Entropy 245
 26.1 Experimental Input 245
 26.2 Entropy 245
 26.3 Entropy in Ligand Binding 246
 26.3.1 Conformational Entropy 246
 26.3.2 Vibrational Entropy 246
 26.4 Entropy and Amprenavir 246
 26.5 Implications for Design 247

27 Carrier Protein Structure and Recognition in Peptide Biosynthesis 249
 27.1 Carrier Proteins 249

28 Kinetic Studies of the Initial Module PheATE of Gramicidin S Synthetase 253
 28.1 Background 253
 28.2 Binding of the Amino Acid Substrate to the A Domain of GrsA 254
 28.3 Aminoaeryl-AMP Formation Catalyzed by the A Domain 254
 28.3.1 The Steady-State Assays 254
 28.3.2 The Pre-Steady-State Assay 255
 28.4 Loading of the Amino Acid Substrate to the T Domain 255
 28.5 Epimerization of the L-Form Substrate-Enzyme Complex to D-Form by the E Domain 256
 28.6 Free Energy Profiles for HoloPheATE Catalysis 256
29 **Protein-Ligand NOE Matching** 259
 29.1 Background 259
 29.2 Methods 260
 29.3 Results and Discussion 262

30 **Side-Chain and Backbone Flexibility in Protein Core Design** 265
 30.1 Protein Modeling with Fixed or Flexible Backbone 265
 30.2 SoftROC 266
 30.2.1 Initializing Backbone Population 266
 30.2.2 Optimization with Genetic Algorithm 266
 30.2.3 Refining the Model with Monte Carlo Sampling 268
 30.2.4 Final Model 268
 30.3 Issues on Energy Calculations 268
 30.4 Results: Comparison to ROC Variants 269
 30.4.1 ROC Settings 269
 30.4.2 Experiments on 434 cro 269
 30.4.3 Experiments on T4 Lysozyme 270

31 **Distance Geometry** 273
 31.1 The Molecule Problem 273
 31.2 Divide and Conquer 274
 31.3 Conditions for Unique Realizibility 274
 31.4 Graph Partitioning 275
 31.5 Realizing Subgraphs 276
 31.6 Conclusion 277

32 **Distance Geometry: NP-Hard, NP-Hard to Approximate** 279
 32.1 Introduction 279
 32.1.1 Review: Reductions 279
 32.1.2 NP-Hard Problems 280
 32.2 Reduction from Partition to 1-Embeddability 280
 32.3 Reduction from 3SAT to (1,2) 1-Embeddability 280
 32.4 Reduction from 3SAT to Integer 1-Embeddability 282
 32.5 Adding Dimensions 282
 32.6 Approximation 282
 32.6.1 Definition of ϵ-Approximate k-Embeddability 282

33 **A Topology-Constrained Network Algorithm for NOESY Data Interpretation** 285
 33.1 Algorithms 285
 33.2 Results 291

34 **MARS: An Algorithm for Backbone Resonance Assignment** 293
 34.1 MARS—Backbone Assignment of Proteins 293
 34.1.1 Backbone Resonance Assignment 293
 34.1.2 Method 293
 34.1.3 Results and Discussion 296
39 Protein Unfolding by Using Residual Dipolar Couplings 333

39.1 Motivation and Overview 333
39.2 Ensemble Computation Using Only Local Sampling 333
39.3 Ensemble Computation with Both Local Sampling and Long-Range Order 335
39.4 An Unfolded Protein Structure Model from RDCs and Small-Angle X-Ray Scattering (SAXS) Data 337
 39.4.1 Generation of the Conformation Ensemble 337
 39.4.2 RDC Computation from the Conformational Ensemble 337
 39.4.3 Prediction of SAXS Data from the Conformational Ensemble 337

40 Structure-Based Protein-Ligand Binding 341

40.1 Uncertainty in Experimentally Derived Structures 341
 40.1.1 Uncertainty in X-Ray Structures 341
 40.1.2 Uncertainty in NMR Structures 342
40.2 Protein Dynamics 342
40.3 Probabilistic Representations of Uncertainty and Dynamics 343
40.4 Representation of Protein Flexibility: Ensemble Docking 343
40.5 FDS: Flexible Ligand and Receptor Docking with a Continuum Solvent Model and Soft-Core Energy Function 344

41 Flexible Ligand-Protein Docking 345

41.1 Predicting Binding Energetics from Structure 345
41.2 Flexible Docking in Solution Using Metadynamics 346
 41.2.1 Overview of Metadynamics 346
 41.2.2 Application of Metadynamics in Flexible Docking 347
 41.2.3 Results 349

42 Analyzing Protein Structures Using an Ensemble Representation 351

42.1 Mathematical Results 351
 42.1.1 Terminology 351
 42.1.2 Results 352
 42.1.3 Brief Proof 352
42.2 Biological Significance 353

43 NMR Resonance Assignment Assisted by Mass Spectrometry 355

43.1 Motivation 355
43.2 Mass Spectrometry–Assisted NMR Assignment 355
 43.2.1 Principle of the Approach 355
 43.2.2 Extracting HX Rates by HSQC 355
 43.2.3 Extracting HX Rates by MS 357
 43.2.4 Correlating HX Rates Between NMR and MS 357
 43.2.5 MS-Assisted Assignment 357
43.3 MS-Assisted NMR Assignment in Reductively 13C-Methylated Proteins 357
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>Autolink: An Algorithm for Automated NMR Resonance Assignment</td>
<td>363</td>
</tr>
<tr>
<td>44.1</td>
<td>Algorithm Overview</td>
<td>363</td>
</tr>
<tr>
<td>44.2</td>
<td>Spin System Pair Scoring</td>
<td>365</td>
</tr>
<tr>
<td>44.2.1</td>
<td>Spin Density Bias</td>
<td>365</td>
</tr>
<tr>
<td>44.2.2</td>
<td>Assigned Spin Bias</td>
<td>365</td>
</tr>
<tr>
<td>44.2.3</td>
<td>Offset Bias</td>
<td>367</td>
</tr>
<tr>
<td>44.2.4</td>
<td>Atomic Assignment Bias</td>
<td>367</td>
</tr>
<tr>
<td>44.2.5</td>
<td>Overall Spin System Pair Scoring</td>
<td>367</td>
</tr>
<tr>
<td>44.3</td>
<td>Hypothesis Evaluation/Reevaluation Cycles</td>
<td>367</td>
</tr>
<tr>
<td>44.3.1</td>
<td>Calculation of the Base Priority Prime List</td>
<td>367</td>
</tr>
<tr>
<td>44.3.2</td>
<td>Calculation of the Relative Priority Prime List</td>
<td>369</td>
</tr>
<tr>
<td>45</td>
<td>CS-Rosetta: Protein Structure Generation from NMR Chemical Shift Data</td>
<td>371</td>
</tr>
<tr>
<td>45.1</td>
<td>Introduction</td>
<td>371</td>
</tr>
<tr>
<td>45.1.1</td>
<td>Rosetta</td>
<td>372</td>
</tr>
<tr>
<td>45.1.2</td>
<td>CS-Rosetta</td>
<td>373</td>
</tr>
<tr>
<td>45.2</td>
<td>Results</td>
<td>374</td>
</tr>
<tr>
<td>46</td>
<td>Enzyme Redesign by SVM</td>
<td>377</td>
</tr>
<tr>
<td>46.1</td>
<td>Overview</td>
<td>377</td>
</tr>
<tr>
<td>46.2</td>
<td>Data Representation</td>
<td>377</td>
</tr>
<tr>
<td>46.3</td>
<td>The Support Vector Machine (SVM) Approach</td>
<td>378</td>
</tr>
<tr>
<td>46.4</td>
<td>Results</td>
<td>381</td>
</tr>
<tr>
<td>47</td>
<td>Cross-Rotation Analysis Algorithm</td>
<td>383</td>
</tr>
<tr>
<td>47.1</td>
<td>CRANS</td>
<td>383</td>
</tr>
<tr>
<td>47.1.1</td>
<td>Methods</td>
<td>384</td>
</tr>
<tr>
<td>47.1.2</td>
<td>Complexity</td>
<td>384</td>
</tr>
<tr>
<td>48</td>
<td>Molecular Replacement and NCS in X-ray Crystallography</td>
<td>387</td>
</tr>
<tr>
<td>48.1</td>
<td>Background</td>
<td>387</td>
</tr>
<tr>
<td>48.1.1</td>
<td>The Phase Problem</td>
<td>387</td>
</tr>
<tr>
<td>48.1.2</td>
<td>Molecular Replacement</td>
<td>387</td>
</tr>
<tr>
<td>48.2</td>
<td>NMA in Molecular Replacement</td>
<td>388</td>
</tr>
<tr>
<td>48.2.1</td>
<td>Objectives</td>
<td>388</td>
</tr>
<tr>
<td>48.2.2</td>
<td>Normal Modes and Elastic Network Models (ENM)</td>
<td>389</td>
</tr>
<tr>
<td>48.2.3</td>
<td>Summary</td>
<td>390</td>
</tr>
<tr>
<td>48.3</td>
<td>NCS-Constrained Exhaustive Search Using Oligomeric Models</td>
<td>390</td>
</tr>
<tr>
<td>48.3.1</td>
<td>Methods</td>
<td>391</td>
</tr>
<tr>
<td>48.3.2</td>
<td>Examples</td>
<td>391</td>
</tr>
<tr>
<td>49</td>
<td>Optimization of Surface Charge-Charge Interactions</td>
<td>393</td>
</tr>
<tr>
<td>49.1</td>
<td>Algorithm Input</td>
<td>393</td>
</tr>
<tr>
<td>49.2</td>
<td>Genetic Algorithm</td>
<td>393</td>
</tr>
<tr>
<td>49.2.1</td>
<td>Chromosome Scoring</td>
<td>394</td>
</tr>
<tr>
<td>49.2.2</td>
<td>Parental Chromosome Selection and Crossover</td>
<td>395</td>
</tr>
<tr>
<td>49.2.3</td>
<td>Child Chromosome Mutation</td>
<td>395</td>
</tr>
</tbody>
</table>
49.3 Computational and Experimental Validations 395
 49.3.1 Computational Validations 397
 49.3.2 Experimental Validation 397

50 Computational Topology and Protein Structure 399
 50.1 Topology 399
 50.2 Homology 400
 50.3 Simplicial Complexes 401
 50.4 Homology Type Is Effectively Computable 402
 50.4.1 Complexity 403
 50.4.2 Applications 403
 50.4.3 Foundations 404
 50.5 Computing Homology Groups 404
 50.5.1 Simplicial Homology 404
 50.5.2 Computing the Homology Groups 405
 50.5.3 The Algorithm for Homology Group Computation 407
 50.6 Alpha Shapes (\(\alpha\)-Shapes) and Applications to Protein Structure 410
 50.7 Conclusions and Future Work 411

Index 415