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An Algebraic Geometry Approach to Protein Structure Determination
from NMR Data
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Abstract try of (a) and (b), drawing on a variety of computer sci-
ence, computational geometry, and computational algebra
techniques.

In our algorithm, RDC data, which gives global re-
straints on the orientation of internuclear bond vectors, is
used in conjunction with very sparse NOE data to obtain
a polynomial-time algorithm for protein structure determi-
nation. An implementation of our algorithm has been ap-
plied to 6 different real biological NMR data sets recorded
for 3 proteins. Our algorithm is combinatorially precise,
polynomial-time, and uses much less NMR data to produce
spectroscopy or X-Ray crystallography. results that are as good or better than previous approaches

Improved algorithms for protein structure determina- in terms of accuracy of the computed structure as well as
tion are needed, because currently, the process is expenfunning time. In practice approaches such as restrained
sive and time-consuming. For example, an area of in- molecular dynamics and simulated annealing, which lack
tense research in NMR methodology is automated assign-both combinatorial precision and guarantees on running
ment of nuclear Overhauser effect (NOE) restraints, in time and solution quality, are commonly used. Our results
which structure determination sits in a tight inner-loop show that by using a different “slice” of the data, an al-
(cycle) of assignment/refinement. These algorithms aregorithm that is polynomial time and that has guarantees
very time-consuming, and typically require a large cluster. about solution quality can be obtained. We believe that
Thus, algorithms for protein structure determination that our techniques can be extended and generalized for other
are known to run in polynomial time and provide guaran- structure-determination problems such as computing side-
tees on solution accuracy are likely to have great impact in chain conformations and the structure of nucleic acids from
the long-term. Methods stemming from a technique called experimental data.

“distance geometry embedding” do come with provable
guarantees, but they/P-hardness of these problem for-
mulations implies that in the worst case these techniques]
cannot run in polynomial time. We are able to avoid the
N'P-hardness by (a) some mild assumptions about the pro-  protein structure is the key to understanding protein
tein being studied, (b) the use of residual dipolar couplings fnction, and is also the starting point for structure-based
(RDC_S) instead of a dense netW(_)rk of NOES, gnd (c) noveldrug design. One of the key tools used to study pro-
algorithms and proofs that exploit the biophysical geome- tain structure and function in solution is NMR spec-
~Dartmouth Computer Science Department, Hanover, NH froscopy. Traditionally, nuclear Overhauser effect (NOE)
03755, USA. spectroscopy has been used to obtain approximate inter-
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USA. for structure determination. Due to the sparsity of the
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Our paper describes the first provably-efficient algo-
rithm for determining protein structurede novg solely
from experimental data. We show how the global na-
ture of a certain kind of NMR data provides quantifiable
complexity-theoretic benefits, allowing us to classify our
algorithm as running irpolynomial time.While our algo-
rithm uses NMR data as input, itis the first polynomial-time
algorithm to compute high-resolution structurde novo
usingany experimentally-recorded data, from either NMR
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ture determination using experimental NOE data is NP-
hard [36, 31, 6], and rigorous approaches to structure de-
termination based on solving this problem, such as the dis-
tance geometry method [15, 14], require exponential time.
In practice, the most commonly used structure determina-
tion protocols use experimental NMR data along with tech-
nigues such as molecular dynamics (MD) and simulated



annealing (SA). These approaches, however, lack combi-(e.g., assigned NH RDCs in two media or NH and CH
natorial precision, guarantees on running time, as well asRDCs in a single medium), (b) identified-helices and
guarantees on solution quality. Additionally, NOE data g-sheets with known hydrogen bonds (H-bonds) between
is tedious and time-consuming to interpret due to the dif- paired strands, and (c) a few NOE distance restraints. The
ficulty of assigningthe distance restraints. In practice, implementation discussed in Sec. 5 uses this experimen-
traditional NOE-based structure determination approachegal data, and allows for missing data as well. The sec-
are not suited for high-throughput structure determination, ondary structure types of backbone residues can be deter-
since it may take months to assign a sufficient number mined by NMR from experimentally recorded HNHA [10,
of NOEs, especially those involving sidechain protons, to pages 524-528] data, or J-doubling [16] data for larger
compute an accurate NMR structure [11]. proteins. NMR chemical shifts [48, 50, 49, 30] or auto-
In recent years, residual dipolar coupling (RDC) data mated assignment [2] can also be used. Hydrogen bonds
has been used to provide global orientational restraints oncan be determined by NMR from experimentally recorded
the protein structure [40, 41, 39, 19, 33]. RDC data gives data [13, 46], or, e.g., by using backbone resonance assign-
global orientational restraints on, for example, backbone ment programs such asckAw [2]. Additionally, it is rel-
NH bond vectors with respect to a global coordinate frame. atively straightforward to rapidly obtain the few (3 or 4),
Additionally, RDCs can be recorded and assigned muchunambiguous NOEs required for our algorithm using, for
faster (e.g., in a few hours) than the NOEs required by example, the labeling strategy of Kay and coworkers [20].
traditional NMR structure determination methods. Exist- The user of our algorithm has a choice, to record either (a)
ing structure determination approaches do use RDCs, alongN\H RDCs in two aligning media, or (b) 2 RDCs per residue
with other experimental restraints such as chemical shifts(€.g., NH and CH) in one medium. This flexibility allows
or sparse NOEs [1, 17, 21, 28, 35, 39], yet remain heuristicour algorithm to be applied to a wider range of proteins.
in nature, without guarantees on solution quality or run- In the remainder of the paper, we present our algorithm as-
ning time. In this paper, we make the biophysically rea- suming that we are given assigned NH RDCs in two media.
sonable assumption that the protein under consideration igour results also hold for the case of NH and CH RDCs in
globular and contains regular secondary structure. Glob-one medium with slight modifications to the equations in
ular proteins comprise the majority of proteins in nature, Sec. 3 (see [43]).

and are far more abundant than fibrous proteins (e.g., colla- 5 key building block of our algorithm makes use @-

gen or coiled-coil oligomers). This assumption implies that act, low-degree polynomial equations [44] that relate the
each secondgry structure elemeqt has length b(_)undeq by 8xperimental RDCs to the backbofig «) dihedral angles,
constant (which, fpr |_mplementat|on PUrposes, 1S stra|_ght- which determine the protein backbone geometry. These
forward to check in linear time). Under this assumption, oqjations, however, do not yield a unique solution for the
previous formulations of the structure determination prob- (6,4)) angles since they are low-degree (at most 4) poly-
lem remain NP-hard. We show that our formulation of the qyiai: furthermore, error in the experimentally recorded
structure determination problem, given RDC data, sparseppcg also makes it possible that these equations are not
NOEs and experimentally-determined secondary structuregqanle. Thus. we formulate and exactly solve a semi-

types, can be S‘?'Ved in pqunomlal time. 'Unllke previous algebraic optimization problem to compute the conforma-
approaches, which have either no theoretical guarantees Ofi,, of the secondary structure elements that optimally fit

run in exponential time, we show that it is possible to_ X~ the experimental data. Since RDCs giylebal restraints
ploitthe global nature of RDC data to develop an algorithm ,, jyteryclear vectors, the conformation of the secondary
that runs in polynomial time and computes the StruCture g,qtre elements can be computed with respect to a global
that agrees best with _the given experimental RDC af‘o,' NOE :oordinate frame. Thus, given the optimal conformation of
data. While our algorithm uses NMR data as input, itis the gecondary structure elements, we must next find only their
first polynomial-time algorithm to compute high-resolution o a4y translations to compute the backbone structure. To
structu_resde novausinganyexperimentally recorded data, do this, we require sparse, assigned NOEs between suc-
from either NMR spectroscopy or X-Ray crystallography.  cessjve pairs of secondary structure elements: we formu-
Our formulation of the structure determination prob- |ate and solve an optimization problem which asks us to
lem assumes that we are given the following experimental fing the translation that maximizes agreement with the ex-
NMR data: (a) 2 RDCs of backbone vectors per residue perimental NOE data. Our approach to solving these opti-
L Abbreviations used: NMR, nuclear magnetic resonance; RDC, ?lfdatlc;nzpmbleri?shma:kes UTe O.fr:ﬁEO]l‘y Ocj readl- C|O?.ed
residual dipolar coupling; 3D, three-dimensional! Famide proton; NH, lelds [22, 3], which gives algorit ms' OI’. ecl |ng Irst-
backbone amide bond vector; NCbackbone bond vector between N order sentences on sets of polynomial inequalities. The
and G, atoms; G,, backbonex-carbon atom; |, backbone G proton; running time of these algorithms is parameterized by the
1H5'\,'\1Hﬁ éf;a',:‘/l'\ég %%f?;‘;zf:;o:;f:jlgiztgfcijbsogdssiﬂgtggUAprlli’r?jga'ﬁn . degree, number of variables and number of a_Iterljations in
MD, Mgl'ecular 5ynamics; M(g, Monte-Carlo; NOE nuclear Overhause?’ the input sentences; we show that our Optl_mlzatlon p_rOb_
effect; SO(3), special orthogonal (rotation) group in 3D; POF, principal 1€MS can be formulated such that we can find the optimal
order frame; SVD, singular value decomposition. solution in polynomial time. Finally, since our algorithm
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is based on low-degree polynomials that relate the experi-general possible to obtain only abaiitn = O(n) NOE-
mental RDCs directly to NH vector orientations, our algo- derived distance restraints. Furthermore, it is unrealistic to
rithm is the first approach to structure determination that assume that some NOE restraints encode perfect distances,
makes it possible tanalytically quantify the effect of ex-  while others are arbitrarily corrupted,; it is more realistic to
perimental error on the resulting backbone structure. Weassume that all of the NOE data is subject to bounded ex-
also show that an implementation based on our algorithm,perimental error. Saxe [36] viewed the structural model as a
given only RDCs, sparse NOEs, hydrogen bonds, and secgraph where the vertices represent atoms and edge weights
ondary structure types, is able to quickly compute struc- represent distance constraints. Thelecule problenasks
tures that are as good or better, in terms of RMSD accuracywhether such a graph, given a sparse set of edges with per-
than structures produced by previous techniques. Underfect distances, can be embeddedRr while preserving

our assumption that the protein is globular, this implemen- the edge weights; Saxe showed that this problem is NP-
tation runs in polynomial time. hard. Hendrickson [26, 27] studies conditions under which

Our result is consistent with previous observations [40, embedding such a graph is even possible, and gives (super-
41, 39, 19, 33, 1, 17, 21, 28, 35, 47] that, empirically, polynomial time) algorithms for the problem. Crippen and
RDCs increase the speed and accuracy of biomacromolecHavel [15] studied thelistance geometrgroblem; in this
ular structure determination, and formally quantitates problem, we must use distance intervals, rather than scalar
the complexity-theoretic benefits of employing globally- distance restraints, to construct a point set that satisfies the
referenced angular data on internuclear bond vectors. Inrestraints imposed by the intervals. This problem has ap-
summary, our main contributions in this paper are: plication in NOE-based structure determination since it can
be used to find a consistent interpretation of noisy experi-
mental NOEs. However, the NP-hardness of this problem
follows from the results of Saxe [36, 31, 6], and existing
algorithms for solving the distance geometry problem re-
quire exponential time in the worst-case [15, 6].

Traditional NMR structure determination algorithms
such as [5, 23] were initially designed to use NOE-derived
distance restraints, but these methods are neither combina-
torially precise nor polynomial time. Table 2 in Sec. 5 gives
a detailed summary of existing methods for structure de-
termination, including the experimental data requirements
and accuracies of the resulting structure. Finally, we note
that although [44, 43] provide some building blocks for this
paper, those algorithms are neither combinatorially precise
nor polynomial time. Furthermore, they do not compute
loop or turn structures, which we show can be done with
our algorithm (see Sec. 5).

1. To show that low-degree polynomial equations can
be solvedexactlyand inconstant timeto give solu-
tions for backboné, 1) angles from experimentally
recorded RDCs.

2. The firstcombinatorially precisgpolynomial-timeal-
gorithm for structure determination using RDCs, sec-
ondary structure type, and very sparse NOEs.

3. The first polynomial-time algorithm fate novdback-
bone protein structure determination solely from ex-
perimental data (of any kind).

4. An implementation of our algorithm that is as good
or better in terms of accuracy and speed, but requires
much less data, than existing NMR structure determi-
nation techniques.

5. Testing and results of our algorithm on real biological
NMR data.

1.1 Related Work
2 Preliminaries
Previously-studied theoretical formulations of the struc-
ture determination problem use local distance restraints, Tpe equation for the RDE associated with an internu-

e.g. NOEs, as the only constraint on the structure. \We noteg|ear bond vector can be written [40, 41] as a quadratic
this problem is not as straightforward as reconstructing agym:

set ofn points with a complete and exact distance matrix; r=D. vIsy 1)
this problem can be solved exactly using SVDOxn?) s ’
time. Bergeet al.[4] assume2(n?) distances are given but  where D, is the dipolar interaction constant, is the
study the problem of reconstructing a setigfoints where  bond vector of interest with respect to an arbitrary global
some of the distances are missing or erroneous (and the ereoordinate frame, an8 is the3 x 3 Saupeorder matrix,
rors are not known). They give a randomiz@¢n log n)- or alignment tensqrwhich specifies the orientation of the
time algorithm to enumerate all point sets consistant with protein in the laboratory frame (i.e, magnetic field in the
these distances, where the given distance matrix has at moflMR spectrometer) with respect to the aligning medium.
(1/2 — e)n errors per row. They also showed that under a Our goal is to determine the orientation of vectogiven
certain random error model they can correct errors of the an experimentally recorded RDC. It is common practice to
same density in a sparse matrix, where gnly 0 fraction record multiple sets of RDCs to further constrainand
of the entries in each row are given. we assume that 2 independent sets of RDCs have been
In practice, far fewer thari;) NOEs are observed ex- recorded. The user of our algorithm has a choice, to record
perimentally: for example, even in an ideal case, it is in either (a) NH RDCs in two aligning media, or (b) 2 RDCs
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per residue (e.g., NH and CH) in one medium. This flex- notational convenience, we will writ ; = b;:(R) and
ibility allows our algorithm to be applied to a wider range b;; = b;;(R,C;—1)for2 <i < candj =1, 2.

of proteins. In the remainder of the paper, we present our  Let(¢,,,) denote the average values for the backbone
results assuming that we are given assigned NH RDCs in(¢, ) dihedral angles for the secondary structure type of
two media. Our results also hold for the case of NH and 4 over the PDB. Then, let

CH RDCs in one medium with slight modifications to the

equations in Sec. 3 [43]. Given an alignment tensor for  o(D},D5 R,C) =

each aligning medium, our problem specification asks us, c—1

informally, to find a conformation vector such that its back- > lw(ei) = w(ea)lI” + l[w(w) — w(ha) |
bone(¢, v) angles fit the experimental RDC data as closely i—1

as possible. Additionally, we ask that the, «) values are c

as close as possible to the averdge,,) angles over + Z ((bu —71,0)2 + (bayi — T2,i)2) : 2

the PDB for the corresponding secondary structure type. i=1

Then, after determining the conformation of the secondary . ) :
structure elements, we must translate the secondary strucDUr goalisto findD;, € G(Dy), D € g(Dz,)’ alrotanon
ture elements using a set of sparse NOES to obtain the finaF < SO.(?’)' and conformatiol” so thato (D3, D3, R, C)
backbone structure. Finding this translation requires only IS m|n|m|zeq. Note thatu(4;) a’.‘d“’wi) are elements of
a constant number of NOEs for each secondary structureci (for 1 < <) and thf”“iji ISa fu_nctlon Ofc_i*1 and
element, since RDCs give an orientation of the entire pro- It (forj = 1,2and1 < i < ¢ bj, is a function ofR
tein with respect to a global coordinate frame and thus theonly)' All elements ofC are roots of polynomials whose

Hal] H / /
global orientations of the secondary structure elements arecoefﬂments are completely determined by, D; andR.

known once their conformations have been computed. T_he minima of Eq. (2) represent the conformations f_or the
) o given secondary structure element that agree best with both
We now formalize the structure determination problem

. . the experimental RDCs and the secondary structure type.
discussed above. First, let denote a secondary Struc- v note that as written Eq. (2) is underconstrained. Given
ture element with length. Let Dy = (r1,1,71,2,---,71,c)

2 RDCs for residue, the NH bond vector must lie in a
andDy = (r21,722,...,72,) denote the recorded RDC

) : X , finite set, defined by a quartic monomial [44]. This, in turn,
values in the first and second. medium, respecfuvelyt. Let constraing(;, v;) to lie in a finite algebraic set, defined
(¢:,%;) denote the backbone dihedral angles forit by backbone kinematics [44]. Hence, the optimization
residuel < i < ¢~ 1, and letw(¢) (resp.w(vy)) denote g4 5y is performed over a finite algebraic subset2f@-
the unit vector(cos ¢,sin ¢) (resp., (cos,sinv)). Let

1)-torus (see Sec. 3 for further discussion).
Ci = (w(1),w(tr1),...,w(d;),w(t;)). Each conforma- ) ( )

. o . . : Given conformations of the secondary structure ele-
tion of A can be specified by the orientation of the first pep- ments, we must next compute the backbone fold by com-
tide plane and the conformation vector= C._,. Finally, ’

; uting the relative translations of the elements. We em-
for any RDCr, let G(r) denote the intervl — 1,7 + 1], Puting

hich i . tal e bH phasize that our algorithm (and our formulation of the
which represents an experimental error rang Z: problem) does not simply ‘pack’ ideal helix/strand geome-

It has been shown that, due to experimental error, tries. The solution structure is computed with respect to
experimentally-recorded RDCs cannot in general be fit to || of the RDCs (rather than any individual RDC) using the
a secondary structure element unless they are perturbedcore functions. Therefore, individual dihedral angles of a
(within some error window) [44]. To account for error in  solved helix/strand computed by our algorithm may differ
the experimentally recorded RDCs, we parameterize thefrom the average values by as much as @See Figure 6
experimental RDCs in our objective function by defining of [44, page 234]). To compute relative translations, we
the following sets. Let(D;) denote the se€(r;1) x require at least 3 Euclidean distances between three (non-
G(rj2) x ... x G(rj) for two aligning medigj = 1,2.  collinear) nuclei between each pair of successive secondary
Then, for each secondary structure element, we seek tostructure elements. NOE restraints provide this informa-
minimize the fO”OWing objective functions on the orienta- tion, but are Subject, like RDCs, to experimenta| error. In-
tion of the first peptide plane and backbaie /) angles.  formally, given experimentally recorded NOE restraints be-

Letb;1(R) = Dyaovi(R)"S;vi(R) andb; i(R,Ci—1) = tween a pair of successive secondary structure elements, we
Dmamvi(R, CZ',l)TSjVi(:R,7 Cifl) for 2 < i < ¢ be the
back-computed RDCs under the alignment tei&oHere, 2For simplicity of analysis, we have omitted the distinction between

R is the rotation matrix that defines the orientation of the a-helices angB-sheets in the definition of Eq. (2). The objective function
for B-sheets has an extra additive term that accounts for hydrogen bonds

ﬁrSt peptiqeh plane of4 and V’i(R’ Ci—_l) is the Oriente_"_ betweens-strands and provides additional constraint on the conformation
tion of thei™ backbone NH vector, which can be specified of the -sheet. This modification fo8-sheets can be incorporated easily
uniquely byR andC;_;. We note that the first NH vector, by the algorithm and analysis given in Sec. 4; this additional term in the

: _ ; : ; objective function is discussed in detail in [44]. To handle hydrogen bond
a.nd thus th(.% fIrSt. back-computed RDC, Is.defln?d slightly geometry in3-sheets, we use Equation (9) in [44, page 228] as the addi-
differently since it depends only on the orientation of the jonal term and make use of the techniques of Lemma 2 to cope with the

first peptide plane (see Sec. 3 for further discussion). Foradditional term in the objective function (see Sec. 4.2).
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wish to find a translation between the secondary structureu, the y-component ofv can be computed directly from
elements that agree best with the NOE restraints. More for-Eq. (4) and the change of the variables given above. Due to
mally, for each oriented pair of successive secondary struc-two-fold symmetry in the RDC equation the number of real
ture elements4d and BB, let A = {a1,az,...,a,} (resp., solutions forv is at most 8. Now, let NC denote the bond

B = {b1,bs,...,bs}) be the 3D coordinates of thienu- vector between the N and,Catoms along the backbone.
clei in A (resp.,B) for which we are given distances (de- We show that:

rived from NOE restraintsN = (n1,ne,...,n¢). Then, - ) )
we wish to find a translation € IR® that minimizes Proposition 2 Given theNH  unit vectorsv; and vi,
of residuesi and i + 1 and theNC, vector of residue
¢ 9 i, the sines and cosines of the intervening backbone di-
T o (7) = Z (lai = bi + || = ni)” ®) hedral angles(¢, ) satisfy the trigonometric equations
=1 sin (¢ +ay) = by andsin (¢ + az) = b, Wherea; and

The minima of Eq. (3) represent relative translations be- b1 are constants depending on andvi, anda, and
tween a successive pair of secondary structures that agre& depend onv;, vi;1, sin¢ and cos¢. Furthermore,

as closely as possible with the experimental NOE re- €xact solutions fosin(¢) and cos(¢) can be computed
straints. from a quadratic equation by the substitutian= tan %,

sing = 2w/(1 + w?),cos ¢ = (1 —w?)/(1 + w?); equa-
tions forsin ) and cos vy can be obtained and solved ex-

3 Equations for computing successivéo, i) actly by a similar substitution.

angles from RDCs
The proof of Prop. 2, as well as definitions@f b1, as, ba,
In this section, we present an exact, constant time (perare provided in Appendix B.

residue) method to compute backbone dihedral angles from Props. 1 and 2 show that the sines and cosings.af)
RDCs in two aligning media. We show that it is possible to angles can be computedactly and in constant-time, from
derive, from the physics of RDCs, low-degree monomials RDCs. This in turn implies that candidate conformations
(with degree at most) whose solutions give the backbone for the protein backbone structure can be built using the
(¢,7) angles. Due to space constraints, we only presentsines and cosines @b, 1>) angles. There are only two in-
the details of these equations that are relevant to Sec. 4dependent solutions for t{e, 1/) angles of residuéegiven
further exposition is provided in Appendix B. For simplic- the NH vectors for residuesandi + 1 if the orientation of
ity we assume that the dipolar interaction constapt,, is the " peptide plane is also known. We can define e
equal to 1. By considering a global coordinate frame which peptide plane by two vectors: an NH vector solved from the

diagonalizes the alignment tensor, Eq. (1) becomes: quartic equation in Prop. 1, and an N@ector. The rota-
tion matrixR; defines the relative rotation between a POF
7= St + Syyy° + .27, 4) and a coordinate system in tiie peptide plane. The rota-

) tion matrix R; defining the first peptide plane can be de-
where S, Sy, and 5. are the three diagonal elements termined by solving an optimization problem (see Sec. 4).
of a diagonalized Saupe matr& (the alignment tensor),  This matrix is denoted. in Eqg. (2) above; below, we let
andz,y andz are, respectively, the, y, z—componentsof R _ R [et Fr(Ry, ¢i,1;) be the algebraic function for
the unit vectorv in a principal order frame (POF) which  computing the matri®R; 1 from ¢;, ¢; andR;; Fr can
diagonalizesS. In order to make our problem algebraic, pe derived from backbone kinematics [44]. In summary,
we write z, y and z in terms of variables andu, where Props. 1 and 2 show that given the rotat®p, ¢; and);

© = asint, y = beost, andu = cos2t. Now, Sis @  forresidue can be compute@xactly and in constant time
3 x 3 symmetric, traceless matrix with five independent from two low-degree polynomial equations

elements [40, 41]. Given NH RDCs in two aligning media,
the associated NH vecter must lie on the intersection of Fy.(rii,m24,71i41,724+1,Ri) = 0 (5)
two conic curves [37, 47]. We show Fy,(r16,7m2,6, 71641, 72,641, Ri,w(g:)) = 0, (6)

Proposition 1 Given the diagonal Saupe elemerfis,
and S,,, for medium 1,57 and S}, for medium 2, and a
relative rotation matrixR 5 between the POFs of medium

1 and 2, the square of thecomponent of the unit vecter

wherer ;, r1,;+1 andry; andry ;41 are NH RDCs mea-
sured for residuéandi+1 in medium 1 and 2, respectively.
The roots ofF;;, (resp.,Fy,) are the vectorsu(¢;) (resp.,

(o fi ; ; [ 4 3 2 w(v;)). The algebraic functioF’r has degree 2 with 4
;?Eiﬂ?i a:rr(l)c.)nom|al quartic equatigiu’+fu”+ fou’+ variables. Egs. (5) and (6) both have degree 4 and have 3

and 4 variables, respectively. We note that analogous low-

The proof of Prop. 1 is provided for in Appendix B; the degree polynomial equations can also be derived for NH
full expressions for the coefficients b, fo, fi, f2, f3, 4 and CH RDCs measured in a single aligning medium [43].
are given in [44]. Since, = 1 — 2(£)2, the equation in Given experimentally-measured RDC<Z; =
Prop. 1 above is also quartic it?. Given solutions for {r1,is71,i+1,72,i,T2,;41}, and the rotation matrixR;,
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for 1 < i < ¢ the solutions toFy,, and Fy, above
define a discrete, finite, algebraic sub3étz;, R;) of

the 2-torusS! x S!, containing at most 16 points, in
which the backbone dihedral anglgs;, ¢»;) must lie. By
Egs. (5) and (6) forw(¢;) andw(v;), Y;(Z;,R;) can be
computed exactly, in closed-form, and in constant-time.
Hence, the conformatiod of each secondary structure
element must lie in a discrete, finite, algebraic subset
of the 2(c — 1)-torus (S')(¢=Y, and is defined by
Y(Dy, Dy, Ry) = TI5ZYi(Z;, R;). Each set;(Z;, R,)

is described by the polynomial equations fgr(of degree

4 with 3 variables)y); (of degree 4 with 4 variables), and
R, (of degree 2 with 4 variables). Since the equations
for (¢;,v;) utilize the rotationR,;, Y;(Z;,R4) requires
2(c—1) equations with degre@(c) in 2(c—1)+4 = 2¢+2
variables. We will exploit the fact that the backbone con-
formation lies in a discrete, finite, algebraic set in the next
section, where we present an algorithm to find the con-
formation that optimizes Eq. (2), subject to the constraint
Y(Dy, Dy, Ry).

4 A Polynomial-Time Algorithm for Protein
Structure Determination

In Sec. 3, we presented low-degree polynomial equa-
tions that relate RDCs to backbone dihedral angles. How-
ever, the equations for a given pair(@f, /) angles depend

on the corresponding experimental RDC values as well as
the orientation of the previous peptide plane. These equa-
tions are not guaranteed to have a unique solution and thug’

there may be multiplée, 1)) pairs that are consistent with

the experimental RDC value; this is a consequence of the

degree of the equations fdrs, and Fy, in Sec. 3. Fur-
thermore, in order to account for experimental error, we

must interpret our RDCs as being in a range rather than

being a fixed value, and there is no guarantee that the en
tire range yields solvable polynomials for the ) angles.
Thus, these equations do not immediately yield a unique

conformation, and a search algorithm is needed to compute

the optimal conformation inside the cross-produz) 6f
the discrete solution choices for the backbdmney)) an-

minimization steps can in fact be implemented in prac-
tice and performed efficiently to rapidly compute accurate
structures given real, experimental NMR data as input. Our
algorithm consists of three phases. We describe the first
two phases, for simplicity, for a single secondary structure
element. In the first phase, we compute the alignment ten-
sor for the protein. We assume without loss of general-
ity that D; and D, correspond to am-helix with ¢ > 5
residues. To compute alignment tensBrsandS, for each
medium we use SVD [29] to fit the RDCs to the NH vectors
of a c-residuea-helix with ideal geometry. The running
time of this phase i©(c?).

In the second phase, we determine the conformation and
global orientation of each secondary structure element, and
in the third phase, we determine the relative translations
of the secondary structure elements to obtain the backbone
fold. We find D} € G(D,) and D} € G(Ds), R, and
C € Y(D1, Dy, R) that minimize Eq. (2), subject (U (see
Sec. 3 for definition) simultaneously by deciding, and find-
ing a witness for, a sentence in the first-order theory of real
closed fields [22, 3]. We show this minimization procedure
is polynomial-time in Sec. 4.2 below.

In the third phase, we are given sparse NOEs be-
tween successive pairs of secondary structure elements,
and must compute their relative translation. Fix two suc-
cessive secondary structure elemeytsand B, and let

= (n1,ne,...,ny) be the Euclidean distances between
¢ pairs of nuclei from.A and B derived from the sparse
experimental NOE restraints. We compute a translation
e IR? betweenA and, that minimizes Eq. (3) by decid-
ing, and finding a witness for, a sentence in the first-order
theory of real closed fields. Computing this translation is
sufficient since RDCs are global restraints and thus all bond
vectors are determined in a common coordinate frame; the
second phase explicitly determines the global orientation

of secondary structure fragments. The time required for

this phase i€)(m) = O(n) times the cost to compute an
optimal translation for each pair of secondary structure el-
ements; we show that the running time of the latter is poly-
nomial inn.

gles. In this section we present an algorithm that uses thes#.2 ~ Analysis of Running Time

equations to find the optimal conformation, with respect to
the objective functions given in Sec. 2,polynomial time
Throughout the presentation of the algorithm and analysis,
we will assume that our protein hasresidues andr sec-

In this section, we show that the key optimization steps
in the algorithm of Sec. 4.1 can be performed in polyno-
mial time. At a high level, our proof relies on the obser-

ondary structure elements. Recall that we assumed that ouyation that the objective functions being minimized in the

protein was globular; this implies that = O(n) and that
c=0(1).

4.1 Algorithm
In this section, we give our algorithm for structure de-

termination. We give a high-level description of the algo-
rithm, and give a detailed description of some of the key

algorithm can be cast into sentences in the first-order theory
of real closed fields. This allows us to apply the algorithm
of [3, Chapter 14] to obtain the desired minima.

There has been much study of how efficiently a first-
order predicate on polynomial inequalities can be de-
cided [38, 12, 22, 8, 25, 34]. We use a result of Basu
al. [3], which has an improved asymptotic running time.
We now restate their result:

steps in Sec. 4.2 below. In Sec. 5, we show that all these
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Theorem 1 (Basuet al.[3, page 507]) Let P be a first-
order predicate oves polynomials of degree at masin k
variables with coefficients bounded ¥y anda alternately
qguantified blocks ok, ko, .. ., k, variables. The truth of

P, along with a witness iP is true, can be determined in
o(C - glkit1)...(kat1) dO(kl)...O(ka)) time.

We will show that, for our purposes, we only require a con-
stant number of quantifiers over polynomials of constant

which have degreé(c) (due to the rotatiolR; that must
be applied to compute,; andi;) and2c variables. Since
the i NH orientation can be written as a quartic equation
(as described in Sec. 3), the summation in Egs. (2) and (7)
involving b;;, for1 < i < ¢, j = 1,2, has degre®(c)
as well (due to the rotatioR.; that must be applied and the
square in each term of the summation) éndariables.

Thus, we havéc equations] inequality, and blocks of
4c + 5, 2¢, and6e + 5 quantified variables. Note that the

degree whose coefficients are bounded by a constant andsefficients in our polynomial inequalities are a function
have a constant number of variables. In Sec. 4.1 we gaveys e experimental RDCs and the parameters of the align-

an algorithm which requires several objective functions to
be minimized; we formulate these objective functions as

ment tensor, and that these coefficients are all bounded by
constants. The maximum degree of the inequalitiéXig,

sentences in the first-order theory of real closed fields andy;, ;o by Theorem 1 we can find the witnesggs D, R*,

apply Theorem 1 to obtain the optimal parameters to these
objective functions. We note that the first-order sentences
constructed in all of the lemmas in fact are guaranteed to be®

satisfiable, since all of our objective functions are guaran-

to Eq. (7) incO(c*).O((3c41)(4e+6)(2e4+2)(6e46)) —
) time. -

andC*

Lemma 1 allows us to not only compute the conforma-

teed to have at least one set of parameter values for whicHion of a secondary structure element, but also constructs

they are minimized.

Lemma 1 The sets of RDC®; € G(D,), D5 € G(D»),
the rotationR* € SO(3), and the conformatiot€* <
Y(Di, D3, R*) that minimize Eq. (2) can be found in
) time.

Proof: Minimizing Eq. (2) subject tay (as defined in
Sec. 3) is equivalent to finding witness€y € G(D;),
D3 € G(Ds), R* € SO(3), andC* € Y(D5, D5, R*) for
the first-order sentence:

AD;} € G(D,),3D3 € G(D3),dR* € SO(3),
3¢* € Y(D7, D3, R*) : VD, € G(D1),¥D, € G(Ds),
VR € SO(3),VC € Y(D1,D2,R) ::

o(Dy, D3, R*,C*) < o(D}, D5, R, C); @)

recall thato is defined by Eq. (2). We now analyze the run-
ning time of solving Eq. (7) by applying Theorem 1. First,
we observe that Eq. (7) has degr@g:), the same as that of

these conformations such that every secondary structure
element has the correct global orientation. We can con-
struct a predicate for the objective function Eq. (3) in
a manner similar to Lemma 1 and apply Theorem 1 to
find the required relative translation of any pair of succes-
sive secondary structure elements. The complete proof of
Lemma 2 is provided in Appendix B.1.

Lemma 2 For any successive pair of secondary structure
elements, we can find a translatiene IR? that minimizes
Eg. (3) inO(1) time.

The first phase of the algorithm can be performe@®{n®),
since a secondary structure element has size at endst
Lemma 1, the second phase can be performed’if’)

time for each secondary structure element, giving a total of
m - ) time. The third phase runs i2(m) time, since

we can orient each successive pair of secondary structure
elements inO(1) time by Lemma 2. We then obtain the
following:

Eg. (2); we will also argue below that the quantified sets are Theorem 2 The algorithm of Sec. 4.1 runs im0

all of degreeO(c) as well. Recall that we argued in Sec. 3
that Y has degre®(c). As stated, Eq. (7) has the same
number of variables on the left and right hand side; we will
now account for these variables. First, the Bgt (resp.,

D3, D}, and D) can be represented succinctly since we

time.

Since in globular proteing = O(1) andm = O(n), the
running time of our algorithm is polynomial im.

are only concerned with scalar error: that is, we can simply ©  EXperimental Results

represent; ; (resp.;r3 ;, 1 ;, r5 ;) With a variables; ; with

—1 < 14 < 1(resp.ez; with —1 < 5, < 1, etc.) for

1 < i < ¢. The variableg; ; ande; ; addc equations of
degree 1 andc variables to the first-order sentence, giving
a total of2¢ equations andc variables for both sides of
the inequality. The variablédB* andR can be represented

As shown in Sec. 4, for globular proteins, our algo-
rithm for structure determination provably runs in polyno-
mial time. In this section, we discuss an implementation
of our algorithm that has been applied to 6 real biologi-
cal NMR data sets recorded for three structurally distinct

by using a quaternion representation of rotations; a quater{proteins. Our implementation is quite fast compared to ex-

nion can be represented usitigyariables and a quadratic
equation. As mentioned in Sec. 3, the backb@ne)) an-
gles in) for bothC* andC in Eq. (7) are the roots of the
polynomial equations for the unit vectoug ¢) andw(v),
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isting software; it took about0 minutes per protein on av-
erage (over all datasets) on a single-processor Pentium-4
class machine. The NMR data used in our experiments on
ubiquitin was taken from the PDB entry for 1D3Z (RDCs)



@) (b)

Figure 1. Computed structures of ubiquitin. (a) The ubiquitin backbone structure excluding loop regions (blue)
was computed by our algorithm using 37 NH and 39 CH RDCs, 12 hydrogen bonds, and 4 NOEs. Our structure has
an RMSD of 0.97A when compared to the high-resolution X-ray structure (PDB ID: 1UBQ, in magenta) [42]. (b) We
have also extended our algorithm to handle loop regions. The structure for ubiquitin (blue) was computed using 59
NH and 58 CH RDCs (117 out of 137 possible RDCs, 20 are missing), 12 H-bonds and 2 unambiguous NOEs. Our
structure has a backbone RMSD of 1A&iith the high-resolution X-ray structure (magenta). The depicted structures
consist of residues from Metl to Arg72, since the C-terminal four residues of ubiquitin do not have a well-defined
structure in solution.

and from NMR spectra from the Driscoll Lab [24] (NOEs). backbone structures have been computed using abéut
We first applied the algorithm to the protein human ubiqui- restraints per residue (2 RDCs and 0.4 distance restraints
tin using 78 NH RDCs in two media [44, 43] or 76 NH and per residue). The fact that our algorithm needs very lit-
CH RDCs in a single medium, plus twelve hydrogen bonds tle RDC data (only 2 restraints per residue), and is still
and four NOE distances. For NH RDCs in 2 media, we ob- able to compute accurate structures is important for high-
tained a structure with an RMSD of 1.23vhen compared  throughput applications as well as for structure-based drug
to the high-resolution X-ray structure (PDB ID: 1UBQ, in design.
magenta) [42]. For CH and NH RDCs in 1 medium, we
obtained a structure with an RMSD of 0.97(Fig. 1a). Finally, we have successfully extended our algorithm to
We have also applied our algorithm to compute the back- compute a complete backbone structure, including turns
bone substructures using 4 other experimental data set@nd loops (connecting the secondary structure elements)
for two proteins, DNA-damage-inducible protein | and im- using only NH and CH RDCs in a single medium (i.e., only
munoglobulin binding protein G, using NH RDCs in two 2 RDCs per residue) and 2 unambiguous NOEs. This algo-
media (or NH and CH RDCs in one medium) and sparse rithm, which computes the structure of the turn and loop
distance restraints. Experimental RDC data for Dini (PDB regions also runs in polynomial-time for a globular protein
ID: 1GHH) and Protein G (PDB ID: 3GB1) was taken from with one additional assumption. We assume that our globu-
the Protein Data Bank (PDB). The backbone RMSDs be- lar protein hag)(n) loop and turn regions, each with length
tween the substructures computed by our algorithm and thec, = O(1); a majority of globular proteins indeed have
corresponding portions of previously-solved NMR struc- short (constant-length) turn and loop regions. The final
tures are, respectively, 1.56for DNA-damage-inducible  ubiquitin backbone structure computed by this algorithm
protein | and 0.98 forimmunoglobulin binding protein G.  has a 1.45A backbone RMSD from the X-ray structure;
Table 1 gives a summary of the types and amount of experi-see Fig. 1b. This accuracy is similar to that of the ubiquitin
mental data used, as well as the accuracies of the computediackbone structure computed by a commonly-used heuris-
backbone structures. tic approach [21] (see Table 2). The latter is the previous
best result obtained for ubiquitin structure when using 6 or
Table 2 shows the data requirements and accuracy of oufewer RDCs per residue. Our accuracy is also better than
algorithm versus other approaches, for ubiquitin. We note the ubiquitin structure computed by [35]; they use 3 RDCs
that the NMR structures we compared with were computed per residues plus 5 chemical shifts per residue as input to
by MD/SA [5] using about 15 restraints per residue (in- their algorithm. Furthermore, our algorithm is capable of
cluding both NOE and RDC restraints). In contrast, our handling up to 15% missing RDC data (Fig. 1b). Further
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Proteirt | a or 3 residue$ | RDCs Type of RDC¢ Hydrogen bonds | NOES" | RMSD?Y
ubiquitin 39/75 78 NH in two media 12 4 1.23A
ubiquitin 41/75 76 NH, CH in one medium 12 4 0.97A
Dini 41/81 75 NH in two media 6 9 1.55A
Dini 41/81 80 NH, C,C’ in one medium 6 9 1.35A
Protein G 29/56 53 NH in two media 9 4 0.98A
Protein G 33/56 61 NH, C,C’ in one medium 9 4 1.30A

Table 1. Results of our algorithm. (a) experimental RDC data for ubiquitin (PDB ID: 1D3Z), Dini (PDB ID: 1GHH)

and Protein G (PDB ID: 3GB1) were taken from the Protein Data Bank (PDB)ugnber of residues in-helices or
(-sheets versus total number of residued. t¢tal number of RDCs used.d RDCs from different experimental
datasets (for different bond vectors) were usedl.nimber of hydrogen bonds used’) fumber of NOEs usedg)

RMSD computed between the oriented and translated secondary structure elements computed by our algorithm to
existing structures: ubiquitin to a high-resolution X-ray structure (PDB ID:1UBQ); Dini to an NMR structure (PDB

ID: 1GHH); and Protein G to an NMR structure (PDB ID: 3GB1).

Reference Program Techniqué Restraints Per Residtie | Accuracy
Brownet al. [21] X-plor MD/SA 6 RDCs 1.45A
Blackledgeet al.[28] | SCULPTOR MD/SA 11 RDCs, 1.00A
Baxetal.[17] MFR Database 10 RDCs, 5 Chemical shifts 1.21A
Bakeret al.[35] RosettaNMR| DataBase/MC | 3 RDCs, 5 Chemical shifts 1.65A
Bakeret al.[35] RosettaNMR| DataBase/MC 1 RDC 2.75A

[ Our algorithm \ - | Exact Equationg 2 RDCs | 1.45A |

Table 2. Comparison of results for ubiquitin with existing approaches. (a) References to previously-computed
ubiquitin backbone structures;) (Algorithmic technique; €) Data requirementsgj Backbone RMSD of computed
structure compared to the X-ray structure (PDB ID: 1UBQ) [42]; our algorithm used NH and CH RDCs in a single
medium and 2 unambiguous NOEs.

details of the extended algorithm to handle loops and turnsact equations (from DNA and RNA RDCs) can easily be
can be found in [45, Appendix C]. derived to compute the backbone torsion andngles in
nucleic acids.
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Practical algorithms for quantifier elimination and the
existential theory of real closed fields have been efficiently
implemented [7, 32] to find the minima of objective func-
tions that are similar to Egs. (2) and (3). In our imple-
mentation, the second phase of the algorithm was imple-
mented as a systematic depth-first search along with a prun-
ing criterion that only consider&p, 1)) angles that are in



the algebraic subset defined Pyand in the Ramachan- that:
dran region of the current secondary structure type. While
there is a long history of validating exact algorithms us- 32 € R® : Va € IR® =:

ing implementations that contain numerical subroutihes, ¢ ¢

these codes must be tested on real data to verify robustnesi (lai = bj + ¥ = n)* <> (la; — b + 2] — ni)>.
and accuracy. Our algorithm is combinatorially precise and i=1 i=1

uses exact algebraic numbers; to test it in practice we im- (8)

plemented some subroutines exactly (i.e., the closed-form _
exact solutions for internuclear NH and CH bond vectors This predicate has degree at mésand2 blocks of6 quan-

and backbonée, ) angles, and used a discrete, combi- tified variables. In this predicate, the largest coefficient is
natorial tree-search over the algebraic cross-proguot at most the square of the maximum distanc&/in\We note

possible solutions) and some numerically (i.e., we used athat there is an inherent_upper bound on NOE restraints of
grid search oveSO(3) for the orientation of the first pep- ~ @bout 6A, thus the coefficients are all bounded by a con-
tide plane and oveR? to find translations between succes- Stant. The running time of finding a witnessfor Eq. (8) is

. . . 7Ty — . i i
sive secondary structure elements) for both implementationth€nO(2*) = O(1). (Remark: Without this bound on the
speed and to avoid some technical issues in approximatNOE distance restraints, the coefficients in the inequalities

ing rational rotations [18, pages 1-23] [9]. In practice, the aré bounded by the diameter of the protein, which would

implementation took abo@) minutes on average over all in(_:rea_\se the running time by a factor logarithmic in the pro-
datasets on a single-processor Pentium-4 class machine. t€in diameter.) L

B.2 Equations for computing backbone dihedral
B Proofs angles from RDCs

In this section, we give the details of proofs omit- In this section, we give a more detailed presentation
ted from the text. In Appendix B.1, we give a proof of of the method to compute backbone dihedral angles from

Lemma 2, and in Appendix B.2 we give a more detailed RDCs i_n two aligning media _e>$actly af‘d in constant time

presentation of Props. 1 and 2. per resujue. We show that it is possmle. to de_rlve, from
the physics of RDCs, low-degree monomials (with degree
at most4) whose solutions give the backbo(, ¢)) an-

B.1 Computing Relative Translations gles. Due to space considerations, we sketch the proofs
here; the interested reader can refer to [44] for further de-
tails of the proofs and equations. As before, we assume

In this section, we give the proof of Lemma 2. While it that the dipolar interaction constabt,,.., is equal to 1. By
is similar to, and simpler than, the proof of Lemma 1, we considering a global coordinate frame which diagonalizes

include it here for completeness. the alignment tensor, Eq. (1) becomes:

Lemma 2 For any successive pair of secondary structure r = Sper’ + Syny + 5.2, (4)
elements, we can find a translatience IR? that minimizes

Eg. (3) inO(1) time. whereS,,, Syy, and S, are the three diagonal elements

. ) ) of a diagonalized Saupe matrs (the alignment tensor),
Proof:  Consider a successive pair of secondary structureang ;. , and = are, respectively, the, y, z—components

elementsA and B and without loss of generality fiX, of the unit vectow in a principal order frame (POF) which
2 < € < ¢, and the distanced’ derived from the experi-  giagonalizesS. Now, S is a 3 x 3 symmetric, traceless
mental NOE restrainty/. Let A = {ay, az, ..., ac} (f€SP.,  matrix with five independent elements [40, 41]. Given NH
B = {b1,bs,...,bs}) be the 3D coordinates of tHeuclei  RpCs in two aligning media, the associated NH veator
in A (resp.,B) that correspond to the distancesNn Min- must lie on the intersection of two conic curves [37, 47].

imizing Eqg. (3) is equivalent to finding a witnes$ such We show

_ Proposition 1 Given the diagonal Saupe elemefts. and
3 M. A. Erdmann and T. Lozano-PereXigorithmica 2(4):477-521,

- , , -
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coefficients and temporary variables, (b-, c¢1, etc.) can
be found in [44].

Proof Sketch:  Fix a backbone NH vectov along the
backbone and let andr’ be the experimental RDCs fer

i, the sines and cosines of the intervening backbone di-
hedral angles(¢, ) satisfy the trigonometric equations
sin (¢ +a1) = by andsin (¢ + a2) = be, Wherea; and

b, are constants depending on and v;.;, andas and

in the first and second medium, respectively. From Eq. (4) b, depend onv;, v;11, sin¢ and cos¢. Furthermore,

we have
r = Sp.x?+ Syyy2 +5,,22
2 2 2
=S+ S,y + S
x Ri1 Ri2 Ris x
v | = Ra1i R Ros Y
2 R3; R3z Ras z

where r is the RDC value, z,y,z are the z,y, 2-
components of in a POF of medium 13/ and«’,y/, 2/

are the corresponding variables for medium 2. Eliminating
z',y, andz’, we have

re = agx® 4 boy? + 1oy + coxz + c3yz,  (9)
ro= aa®+ by’ (10)
where ay = (S;, — SL)(R}, — Ri3) + (S, —

S’.)(R3, —R33) andcy = 2(S7,, —S., ) Ri1 Ri3+2(S,, —
S?.)Ra1 Ra3, andbsy, ¢, ca, c3, a1, by are similar constants;
full details are given in [44].
Eliminating z from Eq. (9) we obtain
dgzt + d7a:3y + d6m2y2 —dsz? + d4xy3 — dsry—
doy® + diy* + do = 0, (11)

whereds = a3 + cZ, anddy, dg, ..., dy are analogously de-

fined; these are defined fully in [44]. Eq. (11) is a degree 8

monomial inz after direct elimination of; using Eq. (10).

However, it can be reduced to a quartic equation by substi-
tution since only the terms with the degrees of 0, 2, 4, and

8 appear in it. Introducing new variableandw such that

T = asint, y = bceost, u = cos 2t, (12)

and through algebraic manipulation we finally obtain

faut + fau® + fou® + fru+ fo = 0. (13)

The full expressions for coefficientsa,b and
fo, f1, f2, f3, f1 are given in [44]. Since, = 1 — 2(%)?
Eg. (13) is also a quartic equationa. ]

The y-component ofv can be computed directly from
Eqg. (12). Due to two-fold symmetry in the RDC equation
the number of real solutions for is at most 8. We will
refer to the bond vector between the N anda@oms as the
NC, vector. Given two unit vectors in consecutive peptide

planes we can use backbone kinematics to derive quadratic

equations to compute the sines and cosines of ¢he)
angles:

Proposition 2 Given theNH unit vectorsv; and v;;
of residuesi and 7 + 1 and theNC, vector of residue
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exact solutions fosin(¢) and cos(¢) can be computed
from a quadratic equation by the substitutian= tan %,
sing = 2w/(1 4+ w?),cos ¢ = (1 — w?)/(1 + w?); equa-
tions forsin ¢y and cos can be obtained and solved ex-
actly by a similar substitution.

The following is a sketch of the proof. Full expres-
sions for the polynomial coefficients and temporary vari-
ables {1, y1, 21, 2, Y2, 22, a1, by, az, bs) introduced in the
proof are given in [44].

Proof Sketch: Following a procedure similar to kine-
matics the two NH vectors; andv,; can be related by 8
rotation matrices between two coordinate systems in pep-
tide planes and: + 1:

vi =R (07)Ry(0s)Re(05)R. (¢ + 7)-

R.(03)Ry(¢)Ry(0s) R (01) Vi1, (14)

The definitions of the coordinate systems, the expressions
for the rotation matriceR,, R,, andR. and the def-
initions of the six backbone angle8; (603, 65, 6¢, 6> and

fs) are given in [44]. The backbor(@, ¢)) angles are de-
fined according to the standard convention. Given the val-
ues of these six angld®; = R, (67)R,(6s)R(65) and

R, =R, (6s)R,(6:) are two3 x 3 constanmatrices. De-

fine two new vectorsv; = (x1,41,2) = R; 'v; and

Wo = ({EQ, Y2, 2’2) = RrViJrl to obtain

1 = — (cos ¢ cost) + sinfs sin ¢ sinh) xo—

cos 03 sin v ya + (cos 1 sin ¢ — cos ¢ sin O3 sin ) zo
y1 =(cos ¢ sinp — sin O3 sin ¢ cos ) xo—

cos 03 cos ) ya — (sin @ sin ¢ + cos ¢ sin b5 cos 1)) 2o
z1 =cosf3sin ¢ ro — sinf3 yo+

cos 03 cos ¢ za. (15)

By Eg. (15) we can then obtain a simple trigonometric
equation:
sin (¢ +a1) = by
21+y2sin b3
\/(zQ cos 03)2+ (22 cos 03)2
lar constant; see [44] for detailsiin ¢ andcos ¢ can be
computed from a quadratic equation by the substitution
w = tan%,singb = 1217”U2,cos¢> = %:ﬁz Substituting
the computedin ¢ andcos ¢ into Eqg. (16) we can obtain
another simple trigonometric equation:

(16)

whereb; = anda; is a simi-

sin (¢ + ag) = ba. a7

sin ¢ andcos 1 can be computed similarly from a quadratic
equation where both, andb, < 1 are computed from
Y1, X2, Yo, 22, B3 andsin ¢ andcos ¢. [



