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An Algebraic Geometry Approach to Protein Structure Determination
from NMR Data

Lincong Wang∗ Ramgopal R. Mettu∗ Bruce Randall Donald∗,†,‡,§,¶

Abstract

Our paper describes the first provably-efficient algo-
rithm for determining protein structuresde novo, solely
from experimental data. We show how the global na-
ture of a certain kind of NMR data provides quantifiable
complexity-theoretic benefits, allowing us to classify our
algorithm as running inpolynomial time.While our algo-
rithm uses NMR data as input, it is the first polynomial-time
algorithm to compute high-resolution structuresde novo
usinganyexperimentally-recorded data, from either NMR
spectroscopy or X-Ray crystallography.

Improved algorithms for protein structure determina-
tion are needed, because currently, the process is expen-
sive and time-consuming. For example, an area of in-
tense research in NMR methodology is automated assign-
ment of nuclear Overhauser effect (NOE) restraints, in
which structure determination sits in a tight inner-loop
(cycle) of assignment/refinement. These algorithms are
very time-consuming, and typically require a large cluster.
Thus, algorithms for protein structure determination that
are known to run in polynomial time and provide guaran-
tees on solution accuracy are likely to have great impact in
the long-term. Methods stemming from a technique called
“distance geometry embedding” do come with provable
guarantees, but theNP-hardness of these problem for-
mulations implies that in the worst case these techniques
cannot run in polynomial time. We are able to avoid the
NP-hardness by (a) some mild assumptions about the pro-
tein being studied, (b) the use of residual dipolar couplings
(RDCs) instead of a dense network of NOEs, and (c) novel
algorithms and proofs that exploit the biophysical geome-
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try of (a) and (b), drawing on a variety of computer sci-
ence, computational geometry, and computational algebra
techniques.

In our algorithm, RDC data, which gives global re-
straints on the orientation of internuclear bond vectors, is
used in conjunction with very sparse NOE data to obtain
a polynomial-time algorithm for protein structure determi-
nation. An implementation of our algorithm has been ap-
plied to 6 different real biological NMR data sets recorded
for 3 proteins. Our algorithm is combinatorially precise,
polynomial-time, and uses much less NMR data to produce
results that are as good or better than previous approaches
in terms of accuracy of the computed structure as well as
running time. In practice approaches such as restrained
molecular dynamics and simulated annealing, which lack
both combinatorial precision and guarantees on running
time and solution quality, are commonly used. Our results
show that by using a different “slice” of the data, an al-
gorithm that is polynomial time and that has guarantees
about solution quality can be obtained. We believe that
our techniques can be extended and generalized for other
structure-determination problems such as computing side-
chain conformations and the structure of nucleic acids from
experimental data.

1 Introduction 1

Protein structure is the key to understanding protein
function, and is also the starting point for structure-based
drug design. One of the key tools used to study pro-
tein structure and function in solution is NMR spec-
troscopy. Traditionally, nuclear Overhauser effect (NOE)
spectroscopy has been used to obtain approximate inter-
proton distance restraints, which, in turn, have been used
for structure determination. Due to the sparsity of the
data and experimental error, however, the problem of struc-
ture determination using experimental NOE data is NP-
hard [36, 31, 6], and rigorous approaches to structure de-
termination based on solving this problem, such as the dis-
tance geometry method [15, 14], require exponential time.
In practice, the most commonly used structure determina-
tion protocols use experimental NMR data along with tech-
niques such as molecular dynamics (MD) and simulated
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annealing (SA). These approaches, however, lack combi-
natorial precision, guarantees on running time, as well as
guarantees on solution quality. Additionally, NOE data
is tedious and time-consuming to interpret due to the dif-
ficulty of assigningthe distance restraints. In practice,
traditional NOE-based structure determination approaches
are not suited for high-throughput structure determination,
since it may take months to assign a sufficient number
of NOEs, especially those involving sidechain protons, to
compute an accurate NMR structure [11].

In recent years, residual dipolar coupling (RDC) data
has been used to provide global orientational restraints on
the protein structure [40, 41, 39, 19, 33]. RDC data gives
global orientational restraints on, for example, backbone
NH bond vectors with respect to a global coordinate frame.
Additionally, RDCs can be recorded and assigned much
faster (e.g., in a few hours) than the NOEs required by
traditional NMR structure determination methods. Exist-
ing structure determination approaches do use RDCs, along
with other experimental restraints such as chemical shifts
or sparse NOEs [1, 17, 21, 28, 35, 39], yet remain heuristic
in nature, without guarantees on solution quality or run-
ning time. In this paper, we make the biophysically rea-
sonable assumption that the protein under consideration is
globular and contains regular secondary structure. Glob-
ular proteins comprise the majority of proteins in nature,
and are far more abundant than fibrous proteins (e.g., colla-
gen or coiled-coil oligomers). This assumption implies that
each secondary structure element has length bounded by a
constant (which, for implementation purposes, is straight-
forward to check in linear time). Under this assumption,
previous formulations of the structure determination prob-
lem remain NP-hard. We show that our formulation of the
structure determination problem, given RDC data, sparse
NOEs and experimentally-determined secondary structure
types, can be solved in polynomial time. Unlike previous
approaches, which have either no theoretical guarantees or
run in exponential time, we show that it is possible to ex-
ploit the global nature of RDC data to develop an algorithm
that runs in polynomial time and computes the structure
that agrees best with the given experimental RDC and NOE
data. While our algorithm uses NMR data as input, it is the
first polynomial-time algorithm to compute high-resolution
structuresde novousinganyexperimentally recorded data,
from either NMR spectroscopy or X-Ray crystallography.

Our formulation of the structure determination prob-
lem assumes that we are given the following experimental
NMR data: (a) 2 RDCs of backbone vectors per residue

1 Abbreviations used: NMR, nuclear magnetic resonance; RDC,
residual dipolar coupling; 3D, three-dimensional; HN, amide proton; NH,
backbone amide bond vector; NCα, backbone bond vector between N
and Cα atoms; Cα, backboneα-carbon atom; Hα, backbone Cα proton;
HNHA, an NMR experiment to measure the 3-bond scalar coupling HN–
15N–Hα; RMSD, root-mean squared distance; SA, Simulated Annealing;
MD, Molecular Dynamics; MC, Monte-Carlo; NOE, nuclear Overhauser
effect;SO(3), special orthogonal (rotation) group in 3D; POF, principal
order frame; SVD, singular value decomposition.

(e.g., assigned NH RDCs in two media or NH and CH
RDCs in a single medium), (b) identifiedα-helices and
β-sheets with known hydrogen bonds (H-bonds) between
paired strands, and (c) a few NOE distance restraints. The
implementation discussed in Sec. 5 uses this experimen-
tal data, and allows for missing data as well. The sec-
ondary structure types of backbone residues can be deter-
mined by NMR from experimentally recorded HNHA [10,
pages 524–528] data, or J-doubling [16] data for larger
proteins. NMR chemical shifts [48, 50, 49, 30] or auto-
mated assignment [2] can also be used. Hydrogen bonds
can be determined by NMR from experimentally recorded
data [13, 46], or, e.g., by using backbone resonance assign-
ment programs such as JIGSAW [2]. Additionally, it is rel-
atively straightforward to rapidly obtain the few (3 or 4),
unambiguous NOEs required for our algorithm using, for
example, the labeling strategy of Kay and coworkers [20].
The user of our algorithm has a choice, to record either (a)
NH RDCs in two aligning media, or (b) 2 RDCs per residue
(e.g., NH and CH) in one medium. This flexibility allows
our algorithm to be applied to a wider range of proteins.
In the remainder of the paper, we present our algorithm as-
suming that we are given assigned NH RDCs in two media.
Our results also hold for the case of NH and CH RDCs in
one medium with slight modifications to the equations in
Sec. 3 (see [43]).

A key building block of our algorithm makes use ofex-
act, low-degree polynomial equations [44] that relate the
experimental RDCs to the backbone(φ, ψ) dihedral angles,
which determine the protein backbone geometry. These
equations, however, do not yield a unique solution for the
(φ, ψ) angles since they are low-degree (at most 4) poly-
nomials; furthermore, error in the experimentally recorded
RDCs also makes it possible that these equations are not
solvable. Thus, we formulate and exactly solve a semi-
algebraic optimization problem to compute the conforma-
tion of the secondary structure elements that optimally fit
the experimental data. Since RDCs giveglobal restraints
on internuclear vectors, the conformation of the secondary
structure elements can be computed with respect to a global
coordinate frame. Thus, given the optimal conformation of
secondary structure elements, we must next find only their
relative translations to compute the backbone structure. To
do this, we require sparse, assigned NOEs between suc-
cessive pairs of secondary structure elements; we formu-
late and solve an optimization problem which asks us to
find the translation that maximizes agreement with the ex-
perimental NOE data. Our approach to solving these opti-
mization problems makes use of thetheory of real closed
fields [22, 3], which gives algorithms for deciding first-
order sentences on sets of polynomial inequalities. The
running time of these algorithms is parameterized by the
degree, number of variables and number of alternations in
the input sentences; we show that our optimization prob-
lems can be formulated such that we can find the optimal
solution in polynomial time. Finally, since our algorithm
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is based on low-degree polynomials that relate the experi-
mental RDCs directly to NH vector orientations, our algo-
rithm is the first approach to structure determination that
makes it possible toanalyticallyquantify the effect of ex-
perimental error on the resulting backbone structure. We
also show that an implementation based on our algorithm,
given only RDCs, sparse NOEs, hydrogen bonds, and sec-
ondary structure types, is able to quickly compute struc-
tures that are as good or better, in terms of RMSD accuracy,
than structures produced by previous techniques. Under
our assumption that the protein is globular, this implemen-
tation runs in polynomial time.

Our result is consistent with previous observations [40,
41, 39, 19, 33, 1, 17, 21, 28, 35, 47] that, empirically,
RDCs increase the speed and accuracy of biomacromolec-
ular structure determination, and formally quantitates
the complexity-theoretic benefits of employing globally-
referenced angular data on internuclear bond vectors. In
summary, our main contributions in this paper are:

1. To show that low-degree polynomial equations can
be solvedexactlyand in constant timeto give solu-
tions for backbone(φ, ψ) angles from experimentally
recorded RDCs.

2. The firstcombinatorially precise, polynomial-timeal-
gorithm for structure determination using RDCs, sec-
ondary structure type, and very sparse NOEs.

3. The first polynomial-time algorithm forde novoback-
bone protein structure determination solely from ex-
perimental data (of any kind).

4. An implementation of our algorithm that is as good
or better in terms of accuracy and speed, but requires
much less data, than existing NMR structure determi-
nation techniques.

5. Testing and results of our algorithm on real biological
NMR data.

1.1 Related Work

Previously-studied theoretical formulations of the struc-
ture determination problem use local distance restraints,
e.g. NOEs, as the only constraint on the structure. We note
this problem is not as straightforward as reconstructing a
set ofn points with a complete and exact distance matrix;
this problem can be solved exactly using SVD inO(n3)
time. Bergeret al.[4] assumeΩ(n2) distances are given but
study the problem of reconstructing a set ofn points where
some of the distances are missing or erroneous (and the er-
rors are not known). They give a randomizedO(n log n)-
time algorithm to enumerate all point sets consistant with
these distances, where the given distance matrix has at most
(1/2 − ε)n errors per row. They also showed that under a
certain random error model they can correct errors of the
same density in a sparse matrix, where onlyβ > 0 fraction
of the entries in each row are given.

In practice, far fewer than
(
n
2

)
NOEs are observed ex-

perimentally: for example, even in an ideal case, it is in

general possible to obtain only about15n = O(n) NOE-
derived distance restraints. Furthermore, it is unrealistic to
assume that some NOE restraints encode perfect distances,
while others are arbitrarily corrupted; it is more realistic to
assume that all of the NOE data is subject to bounded ex-
perimental error. Saxe [36] viewed the structural model as a
graph where the vertices represent atoms and edge weights
represent distance constraints. Themolecule problemasks
whether such a graph, given a sparse set of edges with per-
fect distances, can be embedded inIR3 while preserving
the edge weights; Saxe showed that this problem is NP-
hard. Hendrickson [26, 27] studies conditions under which
embedding such a graph is even possible, and gives (super-
polynomial time) algorithms for the problem. Crippen and
Havel [15] studied thedistance geometryproblem; in this
problem, we must use distance intervals, rather than scalar
distance restraints, to construct a point set that satisfies the
restraints imposed by the intervals. This problem has ap-
plication in NOE-based structure determination since it can
be used to find a consistent interpretation of noisy experi-
mental NOEs. However, the NP-hardness of this problem
follows from the results of Saxe [36, 31, 6], and existing
algorithms for solving the distance geometry problem re-
quire exponential time in the worst-case [15, 6].

Traditional NMR structure determination algorithms
such as [5, 23] were initially designed to use NOE-derived
distance restraints, but these methods are neither combina-
torially precise nor polynomial time. Table 2 in Sec. 5 gives
a detailed summary of existing methods for structure de-
termination, including the experimental data requirements
and accuracies of the resulting structure. Finally, we note
that although [44, 43] provide some building blocks for this
paper, those algorithms are neither combinatorially precise
nor polynomial time. Furthermore, they do not compute
loop or turn structures, which we show can be done with
our algorithm (see Sec. 5).

2 Preliminaries

The equation for the RDCr associated with an internu-
clear bond vectorv can be written [40, 41] as a quadratic
form:

r = DmaxvTSv, (1)

whereDmax is the dipolar interaction constant,v is the
bond vector of interest with respect to an arbitrary global
coordinate frame, andS is the3 × 3 Saupeorder matrix,
or alignment tensor, which specifies the orientation of the
protein in the laboratory frame (i.e, magnetic field in the
NMR spectrometer) with respect to the aligning medium.
Our goal is to determine the orientation of vectorv given
an experimentally recorded RDC. It is common practice to
record multiple sets of RDCs to further constrainv, and
we assume that 2 independent sets of RDCs have been
recorded. The user of our algorithm has a choice, to record
either (a) NH RDCs in two aligning media, or (b) 2 RDCs
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per residue (e.g., NH and CH) in one medium. This flex-
ibility allows our algorithm to be applied to a wider range
of proteins. In the remainder of the paper, we present our
results assuming that we are given assigned NH RDCs in
two media. Our results also hold for the case of NH and
CH RDCs in one medium with slight modifications to the
equations in Sec. 3 [43]. Given an alignment tensor for
each aligning medium, our problem specification asks us,
informally, to find a conformation vector such that its back-
bone(φ, ψ) angles fit the experimental RDC data as closely
as possible. Additionally, we ask that the(φ, ψ) values are
as close as possible to the average(φa, ψa) angles over
the PDB for the corresponding secondary structure type.
Then, after determining the conformation of the secondary
structure elements, we must translate the secondary struc-
ture elements using a set of sparse NOEs to obtain the final
backbone structure. Finding this translation requires only
a constant number of NOEs for each secondary structure
element, since RDCs give an orientation of the entire pro-
tein with respect to a global coordinate frame and thus the
global orientations of the secondary structure elements are
known once their conformations have been computed.

We now formalize the structure determination problem
discussed above. First, letA denote a secondary struc-
ture element with lengthc. LetD1 = (r1,1, r1,2, . . . , r1,c)
andD2 = (r2,1, r2,2, . . . , r2,c) denote the recorded RDC
values in the first and second medium, respectively. Let
(φi, ψi) denote the backbone dihedral angles for thei+1st

residue,1 ≤ i ≤ c − 1, and letw(φ) (resp.,w(ψ)) denote
the unit vector(cosφ, sinφ) (resp., (cosψ, sinψ)). Let
Ci = (w(φ1), w(ψ1), . . . , w(φi), w(ψi)). Each conforma-
tion ofA can be specified by the orientation of the first pep-
tide plane and the conformation vectorC = Cc−1. Finally,
for any RDCr, letG(r) denote the interval[r − 1, r + 1],
which represents an experimental error range of±1 Hz.

It has been shown that, due to experimental error,
experimentally-recorded RDCs cannot in general be fit to
a secondary structure element unless they are perturbed
(within some error window) [44]. To account for error in
the experimentally recorded RDCs, we parameterize the
experimental RDCs in our objective function by defining
the following sets. LetG(Dj) denote the setG(rj,1) ×
G(rj,2) × . . . × G(rj,c) for two aligning mediaj = 1, 2.
Then, for each secondary structure element, we seek to
minimize the following objective functions on the orienta-
tion of the first peptide plane and backbone(φ, ψ) angles.
Let bj,1(R) = Dmaxvi(R)TSjvi(R) andbj,i(R, Ci−1) =
Dmaxvi(R, Ci−1)TSjvi(R, Ci−1) for 2 ≤ i ≤ c be the
back-computed RDCs under the alignment tensorSj . Here,
R is the rotation matrix that defines the orientation of the
first peptide plane ofA and vi(R, Ci−1) is the orienta-
tion of theith backbone NH vector, which can be specified
uniquely byR andCi−1. We note that the first NH vector,
and thus the first back-computed RDC, is defined slightly
differently since it depends only on the orientation of the
first peptide plane (see Sec. 3 for further discussion). For

notational convenience, we will writebj,1 = bj,1(R) and
bj,i = bj,i(R, Ci−1) for 2 ≤ i ≤ c andj = 1, 2.

Let (φa, ψa) denote the average values for the backbone
(φ, ψ) dihedral angles for the secondary structure type of
A over the PDB. Then, let

σ(D′
1,D

′
2,R, C) =

c−1∑
i=1

‖w(φi)− w(φa)‖2 + ‖w(ψi)− w(ψa)‖2

+
c∑
i=1

(
(b1,i − r1,i)

2 + (b2,i − r2,i)
2
)
. (2)

Our goal is to findD′
1 ∈ G(D1), D′

2 ∈ G(D2), a rotation
R ∈ SO(3), and conformationC so thatσ(D′

1, D
′
2,R, C)

is minimized. Note thatw(φi) andw(ψi) are elements of
Ci ( for 1 ≤ i < c), and thatbj,i is a function ofCi−1 and
R (for j = 1, 2 and1 < i < c; bj,1 is a function ofR
only). All elements ofC are roots of polynomials whose
coefficients are completely determined byD′

1, D′
2 andR.

The minima of Eq. (2) represent the conformations for the
given secondary structure element that agree best with both
the experimental RDCs and the secondary structure type.
We note that as written Eq. (2) is underconstrained. Given
2 RDCs for residuei, the NH bond vector must lie in a
finite set, defined by a quartic monomial [44]. This, in turn,
constrains(φi, ψi) to lie in a finite algebraic set, defined
by backbone kinematics [44]. Hence, the optimization2 in
Eq. (2) is performed over a finite algebraic subset of a2(c−
1)-torus (see Sec. 3 for further discussion).

Given conformations of the secondary structure ele-
ments, we must next compute the backbone fold by com-
puting the relative translations of the elements. We em-
phasize that our algorithm (and our formulation of the
problem) does not simply ‘pack’ ideal helix/strand geome-
tries. The solution structure is computed with respect to
all of the RDCs (rather than any individual RDC) using the
score functionσ. Therefore, individual dihedral angles of a
solved helix/strand computed by our algorithm may differ
from the average values by as much as 29◦ (See Figure 6
of [44, page 234]). To compute relative translations, we
require at least 3 Euclidean distances between three (non-
collinear) nuclei between each pair of successive secondary
structure elements. NOE restraints provide this informa-
tion, but are subject, like RDCs, to experimental error. In-
formally, given experimentally recorded NOE restraints be-
tween a pair of successive secondary structure elements, we

2For simplicity of analysis, we have omitted the distinction between
α-helices andβ-sheets in the definition of Eq. (2). The objective function
for β-sheets has an extra additive term that accounts for hydrogen bonds
betweenβ-strands and provides additional constraint on the conformation
of theβ-sheet. This modification forβ-sheets can be incorporated easily
by the algorithm and analysis given in Sec. 4; this additional term in the
objective function is discussed in detail in [44]. To handle hydrogen bond
geometry inβ-sheets, we use Equation (9) in [44, page 228] as the addi-
tional term and make use of the techniques of Lemma 2 to cope with the
additional term in the objective function (see Sec. 4.2).
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wish to find a translation between the secondary structure
elements that agree best with the NOE restraints. More for-
mally, for each oriented pair of successive secondary struc-
ture elementsA andB, let A = {a1, a2, . . . , a`} (resp.,
B = {b1, b2, . . . , b`}) be the 3D coordinates of thènu-
clei in A (resp.,B) for which we are given distances (de-
rived from NOE restraints)N = (n1, n2, . . . , n`). Then,
we wish to find a translationx ∈ IR3 that minimizes

σ
NOE

(x) =
∑̀
i=1

(‖ai − bi + x‖ − ni)
2
. (3)

The minima of Eq. (3) represent relative translations be-
tween a successive pair of secondary structures that agree
as closely as possible with the experimental NOE re-
straints.

3 Equations for computing successive(φ, ψ)
angles from RDCs

In this section, we present an exact, constant time (per
residue) method to compute backbone dihedral angles from
RDCs in two aligning media. We show that it is possible to
derive, from the physics of RDCs, low-degree monomials
(with degree at most4) whose solutions give the backbone
(φ, ψ) angles. Due to space constraints, we only present
the details of these equations that are relevant to Sec. 4;
further exposition is provided in Appendix B. For simplic-
ity we assume that the dipolar interaction constantDmax is
equal to 1. By considering a global coordinate frame which
diagonalizes the alignment tensor, Eq. (1) becomes:

r = Sxxx
2 + Syyy

2 + Szzz
2, (4)

whereSxx, Syy andSzz are the three diagonal elements
of a diagonalized Saupe matrixS (the alignment tensor),
andx, y andz are, respectively, thex, y, z−components of
the unit vectorv in a principal order frame (POF) which
diagonalizesS. In order to make our problem algebraic,
we writex, y andz in terms of variablest andu, where
x = a sin t, y = b cos t, andu = cos 2t. Now, S is a
3 × 3 symmetric, traceless matrix with five independent
elements [40, 41]. Given NH RDCs in two aligning media,
the associated NH vectorv must lie on the intersection of
two conic curves [37, 47]. We show

Proposition 1 Given the diagonal Saupe elementsSxx
andSyy for medium 1,S′

xx andS′
yy for medium 2, and a

relative rotation matrixR12 between the POFs of medium
1 and 2, the square of thex-component of the unit vectorv
satisfies a monomial quartic equationf4u4+f3u3+f2u2+
f1u+ f0 = 0.

The proof of Prop. 1 is provided for in Appendix B; the
full expressions for the coefficientsa, b, f0, f1, f2, f3, f4
are given in [44]. Sinceu = 1 − 2(xa )2, the equation in
Prop. 1 above is also quartic inx2. Given solutions for

u, the y-component ofv can be computed directly from
Eq. (4) and the change of the variables given above. Due to
two-fold symmetry in the RDC equation the number of real
solutions forv is at most 8. Now, let NCα denote the bond
vector between the N and Cα atoms along the backbone.
We show that:

Proposition 2 Given theNH unit vectorsvi and vi+1

of residuesi and i + 1 and theNCα vector of residue
i, the sines and cosines of the intervening backbone di-
hedral angles(φ, ψ) satisfy the trigonometric equations
sin (φ+ a1) = b1 and sin (ψ + a2) = b2, wherea1 and
b1 are constants depending onvi and vi+1, and a2 and
b2 depend onvi, vi+1, sinφ and cosφ. Furthermore,
exact solutions forsin(φ) and cos(φ) can be computed
from a quadratic equation by the substitutionw = tan φ

2 ,
sinφ = 2w/(1 + w2), cosφ = (1− w2)/(1 + w2); equa-
tions for sinψ and cosψ can be obtained and solved ex-
actly by a similar substitution.

The proof of Prop. 2, as well as definitions ofa1, b1, a2, b2,
are provided in Appendix B.

Props. 1 and 2 show that the sines and cosines of(φ, ψ)
angles can be computedexactly, and in constant-time, from
RDCs. This in turn implies that candidate conformations
for the protein backbone structure can be built using the
sines and cosines of(φ, ψ) angles. There are only two in-
dependent solutions for the(φ, ψ) angles of residuei given
the NH vectors for residuesi andi+ 1 if the orientation of
the ith peptide plane is also known. We can define theith

peptide plane by two vectors: an NH vector solved from the
quartic equation in Prop. 1, and an NCα vector. The rota-
tion matrixRi defines the relative rotation between a POF
and a coordinate system in theith peptide plane. The rota-
tion matrixR1 defining the first peptide plane can be de-
termined by solving an optimization problem (see Sec. 4).
This matrix is denotedR in Eq. (2) above; below, we let
R1 = R. LetFR(Ri, φi, ψi) be the algebraic function for
computing the matrixRi+1 from φi, ψi andRi; FR can
be derived from backbone kinematics [44]. In summary,
Props. 1 and 2 show that given the rotationRi, φi andψi
for residuei can be computed,exactly and in constant time,
from two low-degree polynomial equations

Fφi
(r1,i, r2,i, r1,i+1, r2,i+1,Ri) = 0 (5)

Fψi
(r1,i, r2,i, r1,i+1, r2,i+1,Ri, w(φi)) = 0, (6)

wherer1,i, r1,i+1 andr2,i andr2,i+1 are NH RDCs mea-
sured for residuei andi+1 in medium 1 and 2, respectively.
The roots ofFφi (resp.,Fψi) are the vectorsw(φi) (resp.,
w(ψi)). The algebraic functionFR has degree 2 with 4
variables. Eqs. (5) and (6) both have degree 4 and have 3
and 4 variables, respectively. We note that analogous low-
degree polynomial equations can also be derived for NH
and CH RDCs measured in a single aligning medium [43].

Given experimentally-measured RDCsZi =
{r1,i, r1,i+1, r2,i, r2,i+1}, and the rotation matrixRi,
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for 1 ≤ i < c, the solutions toFφi , and Fψi above
define a discrete, finite, algebraic subsetYi(Zi,Ri) of
the 2-torusS1 × S1, containing at most 16 points, in
which the backbone dihedral angles(φi, ψi) must lie. By
Eqs. (5) and (6) forw(φi) andw(ψi), Yi(Zi,Ri) can be
computed exactly, in closed-form, and in constant-time.
Hence, the conformationC of each secondary structure
element must lie in a discrete, finite, algebraic subset
of the 2(c − 1)-torus (S1)2(c−1), and is defined by
Y(D1, D2,R1) = Πc−1

i=1Yi(Zi,Ri). Each setYi(Zi,Ri)
is described by the polynomial equations forφi (of degree
4 with 3 variables),ψi (of degree 4 with 4 variables), and
Ri (of degree 2 with 4 variables). Since the equations
for (φi, ψi) utilize the rotationRi, Yi(Zi,R1) requires
2(c−1) equations with degreeO(c) in 2(c−1)+4 = 2c+2
variables. We will exploit the fact that the backbone con-
formation lies in a discrete, finite, algebraic set in the next
section, where we present an algorithm to find the con-
formation that optimizes Eq. (2), subject to the constraint
Y(D1, D2,R1).

4 A Polynomial-Time Algorithm for Protein
Structure Determination

In Sec. 3, we presented low-degree polynomial equa-
tions that relate RDCs to backbone dihedral angles. How-
ever, the equations for a given pair of(φ, ψ) angles depend
on the corresponding experimental RDC values as well as
the orientation of the previous peptide plane. These equa-
tions are not guaranteed to have a unique solution and thus
there may be multiple(φ, ψ) pairs that are consistent with
the experimental RDC value; this is a consequence of the
degree of the equations forFφi

andFψi
in Sec. 3. Fur-

thermore, in order to account for experimental error, we
must interpret our RDCs as being in a range rather than
being a fixed value, and there is no guarantee that the en-
tire range yields solvable polynomials for the(φ, ψ) angles.
Thus, these equations do not immediately yield a unique
conformation, and a search algorithm is needed to compute
the optimal conformation inside the cross-product (Y) of
the discrete solution choices for the backbone(φ, ψ) an-
gles. In this section we present an algorithm that uses these
equations to find the optimal conformation, with respect to
the objective functions given in Sec. 2, inpolynomial time.
Throughout the presentation of the algorithm and analysis,
we will assume that our protein hasn residues andm sec-
ondary structure elements. Recall that we assumed that our
protein was globular; this implies thatm = O(n) and that
c = O(1).

4.1 Algorithm

In this section, we give our algorithm for structure de-
termination. We give a high-level description of the algo-
rithm, and give a detailed description of some of the key
steps in Sec. 4.2 below. In Sec. 5, we show that all these

minimization steps can in fact be implemented in prac-
tice and performed efficiently to rapidly compute accurate
structures given real, experimental NMR data as input. Our
algorithm consists of three phases. We describe the first
two phases, for simplicity, for a single secondary structure
element. In the first phase, we compute the alignment ten-
sor for the protein. We assume without loss of general-
ity thatD1 andD2 correspond to anα-helix with c ≥ 5
residues. To compute alignment tensorsS1 andS2 for each
medium we use SVD [29] to fit the RDCs to the NH vectors
of a c-residueα-helix with ideal geometry. The running
time of this phase isO(c3).

In the second phase, we determine the conformation and
global orientation of each secondary structure element, and
in the third phase, we determine the relative translations
of the secondary structure elements to obtain the backbone
fold. We findD′

1 ∈ G(D1) andD′
2 ∈ G(D2), R, and

C ∈ Y(D1, D2,R) that minimize Eq. (2), subject toY (see
Sec. 3 for definition) simultaneously by deciding, and find-
ing a witness for, a sentence in the first-order theory of real
closed fields [22, 3]. We show this minimization procedure
is polynomial-time in Sec. 4.2 below.

In the third phase, we are given sparse NOEs be-
tween successive pairs of secondary structure elements,
and must compute their relative translation. Fix two suc-
cessive secondary structure elementsA and B, and let
N = (n1, n2, . . . , n`) be the Euclidean distances between
` pairs of nuclei fromA andB derived from the sparse
experimental NOE restraints. We compute a translation
x ∈ IR3 betweenA andB, that minimizes Eq. (3) by decid-
ing, and finding a witness for, a sentence in the first-order
theory of real closed fields. Computing this translation is
sufficient since RDCs are global restraints and thus all bond
vectors are determined in a common coordinate frame; the
second phase explicitly determines the global orientation
of secondary structure fragments. The time required for
this phase isO(m) = O(n) times the cost to compute an
optimal translation for each pair of secondary structure el-
ements; we show that the running time of the latter is poly-
nomial inn.

4.2 Analysis of Running Time

In this section, we show that the key optimization steps
in the algorithm of Sec. 4.1 can be performed in polyno-
mial time. At a high level, our proof relies on the obser-
vation that the objective functions being minimized in the
algorithm can be cast into sentences in the first-order theory
of real closed fields. This allows us to apply the algorithm
of [3, Chapter 14] to obtain the desired minima.

There has been much study of how efficiently a first-
order predicate on polynomial inequalities can be de-
cided [38, 12, 22, 8, 25, 34]. We use a result of Basuet
al. [3], which has an improved asymptotic running time.
We now restate their result:
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Theorem 1 (Basuet al. [3, page 507])Let P be a first-
order predicate overs polynomials of degree at mostd in k
variables with coefficients bounded by2C anda alternately
quantified blocks ofk1, k2, . . . , ka variables. The truth of
P, along with a witness ifP is true, can be determined in
O(C · s(k1+1)...(ka+1) · dO(k1)...O(ka)) time.

We will show that, for our purposes, we only require a con-
stant number of quantifiers over polynomials of constant
degree whose coefficients are bounded by a constant and
have a constant number of variables. In Sec. 4.1 we gave
an algorithm which requires several objective functions to
be minimized; we formulate these objective functions as
sentences in the first-order theory of real closed fields and
apply Theorem 1 to obtain the optimal parameters to these
objective functions. We note that the first-order sentences
constructed in all of the lemmas in fact are guaranteed to be
satisfiable, since all of our objective functions are guaran-
teed to have at least one set of parameter values for which
they are minimized.

Lemma 1 The sets of RDCsD∗
1 ∈ G(D1), D∗

2 ∈ G(D2),
the rotationR∗ ∈ SO(3), and the conformationC∗ ∈
Y(D∗

1 , D
∗
2 ,R

∗) that minimize Eq. (2) can be found in
cO(c3) time.

Proof: Minimizing Eq. (2) subject toY (as defined in
Sec. 3) is equivalent to finding witnessesD∗

1 ∈ G(D1),
D∗

2 ∈ G(D2), R∗ ∈ SO(3), andC∗ ∈ Y(D∗
1 , D

∗
2 ,R

∗) for
the first-order sentence:

∃D∗
1 ∈ G(D1),∃D∗

2 ∈ G(D2),∃R∗ ∈ SO(3),
∃C∗ ∈ Y(D∗

1 , D
∗
2 ,R

∗) : ∀D′
1 ∈ G(D1),∀D′

2 ∈ G(D2),
∀R ∈ SO(3),∀C ∈ Y(D1, D2,R) ::
σ(D∗

1 , D
∗
2 ,R

∗, C∗) ≤ σ(D′
1, D

′
2,R, C); (7)

recall thatσ is defined by Eq. (2). We now analyze the run-
ning time of solving Eq. (7) by applying Theorem 1. First,
we observe that Eq. (7) has degreeO(c), the same as that of
Eq. (2); we will also argue below that the quantified sets are
all of degreeO(c) as well. Recall that we argued in Sec. 3
thatY has degreeO(c). As stated, Eq. (7) has the same
number of variables on the left and right hand side; we will
now account for these variables. First, the setD∗

1 (resp.,
D∗

2 , D′
1, andD′

2) can be represented succinctly since we
are only concerned with scalar error; that is, we can simply
representr∗1,i (resp.,r∗2,i, r

∗
1,i, r

∗
2,i) with a variableε1,i with

−1 ≤ ε1,i ≤ 1 (resp.,ε2,i with −1 ≤ ε2,i ≤ 1, etc.) for
1 ≤ i ≤ c. The variablesε1,i andε2,i addc equations of
degree 1 and2c variables to the first-order sentence, giving
a total of2c equations and4c variables for both sides of
the inequality. The variablesR∗ andR can be represented
by using a quaternion representation of rotations; a quater-
nion can be represented using4 variables and a quadratic
equation. As mentioned in Sec. 3, the backbone(φ, ψ) an-
gles inY for bothC∗ andC in Eq. (7) are the roots of the
polynomial equations for the unit vectorsw(φ) andw(ψ),

which have degreeO(c) (due to the rotationRi that must
be applied to computeφi andψi) and2c variables. Since
the ith NH orientation can be written as a quartic equation
(as described in Sec. 3), the summation in Eqs. (2) and (7)
involving bj,i, for 1 ≤ i ≤ c, j = 1, 2, has degreeO(c)
as well (due to the rotationRi that must be applied and the
square in each term of the summation) and6c variables.

Thus, we have3c equations,1 inequality, and blocks of
4c + 5, 2c, and6c + 5 quantified variables. Note that the
coefficients in our polynomial inequalities are a function
of the experimental RDCs and the parameters of the align-
ment tensor, and that these coefficients are all bounded by
constants. The maximum degree of the inequalities isO(c),
thus by Theorem 1 we can find the witnessesD∗

1 ,D∗
2 , R∗,

andC∗ to Eq. (7) incO(c3)·O((3c+1)(4c+6)(2c+2)(6c+6)) =
cO(c3) time.

Lemma 1 allows us to not only compute the conforma-
tion of a secondary structure element, but also constructs
these conformations such that every secondary structure
element has the correct global orientation. We can con-
struct a predicate for the objective function Eq. (3) in
a manner similar to Lemma 1 and apply Theorem 1 to
find the required relative translation of any pair of succes-
sive secondary structure elements. The complete proof of
Lemma 2 is provided in Appendix B.1.

Lemma 2 For any successive pair of secondary structure
elements, we can find a translationx ∈ IR3 that minimizes
Eq. (3) inO(1) time.

The first phase of the algorithm can be performed inO(c3),
since a secondary structure element has size at mostc. By
Lemma 1, the second phase can be performed incO(c3)

time for each secondary structure element, giving a total of
m · cO(c3) time. The third phase runs inO(m) time, since
we can orient each successive pair of secondary structure
elements inO(1) time by Lemma 2. We then obtain the
following:

Theorem 2 The algorithm of Sec. 4.1 runs inmcO(c3)

time.

Since in globular proteinsc = O(1) andm = O(n), the
running time of our algorithm is polynomial inn.

5 Experimental Results

As shown in Sec. 4, for globular proteins, our algo-
rithm for structure determination provably runs in polyno-
mial time. In this section, we discuss an implementation
of our algorithm that has been applied to 6 real biologi-
cal NMR data sets recorded for three structurally distinct
proteins. Our implementation is quite fast compared to ex-
isting software; it took about20 minutes per protein on av-
erage (over all datasets) on a single-processor Pentium-4
class machine. The NMR data used in our experiments on
ubiquitin was taken from the PDB entry for 1D3Z (RDCs)
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(a) (b)

Figure 1. Computed structures of ubiquitin. (a) The ubiquitin backbone structure excluding loop regions (blue)
was computed by our algorithm using 37 NH and 39 CH RDCs, 12 hydrogen bonds, and 4 NOEs. Our structure has
an RMSD of 0.97Å when compared to the high-resolution X-ray structure (PDB ID: 1UBQ, in magenta) [42]. (b) We
have also extended our algorithm to handle loop regions. The structure for ubiquitin (blue) was computed using 59
NH and 58 CH RDCs (117 out of 137 possible RDCs, 20 are missing), 12 H-bonds and 2 unambiguous NOEs. Our
structure has a backbone RMSD of 1.45Å with the high-resolution X-ray structure (magenta). The depicted structures
consist of residues from Met1 to Arg72, since the C-terminal four residues of ubiquitin do not have a well-defined
structure in solution.

and from NMR spectra from the Driscoll Lab [24] (NOEs).
We first applied the algorithm to the protein human ubiqui-
tin using 78 NH RDCs in two media [44, 43] or 76 NH and
CH RDCs in a single medium, plus twelve hydrogen bonds
and four NOE distances. For NH RDCs in 2 media, we ob-
tained a structure with an RMSD of 1.23Å when compared
to the high-resolution X-ray structure (PDB ID: 1UBQ, in
magenta) [42]. For CH and NH RDCs in 1 medium, we
obtained a structure with an RMSD of 0.97̊A (Fig. 1a).
We have also applied our algorithm to compute the back-
bone substructures using 4 other experimental data sets
for two proteins, DNA-damage-inducible protein I and im-
munoglobulin binding protein G, using NH RDCs in two
media (or NH and CH RDCs in one medium) and sparse
distance restraints. Experimental RDC data for Dini (PDB
ID: 1GHH) and Protein G (PDB ID: 3GB1) was taken from
the Protein Data Bank (PDB). The backbone RMSDs be-
tween the substructures computed by our algorithm and the
corresponding portions of previously-solved NMR struc-
tures are, respectively, 1.55̊A for DNA-damage-inducible
protein I and 0.98̊A for immunoglobulin binding protein G.
Table 1 gives a summary of the types and amount of experi-
mental data used, as well as the accuracies of the computed
backbone structures.

Table 2 shows the data requirements and accuracy of our
algorithm versus other approaches, for ubiquitin. We note
that the NMR structures we compared with were computed
by MD/SA [5] using about 15 restraints per residue (in-
cluding both NOE and RDC restraints). In contrast, our

backbone structures have been computed using about2.4
restraints per residue (2 RDCs and 0.4 distance restraints
per residue). The fact that our algorithm needs very lit-
tle RDC data (only 2 restraints per residue), and is still
able to compute accurate structures is important for high-
throughput applications as well as for structure-based drug
design.

Finally, we have successfully extended our algorithm to
compute a complete backbone structure, including turns
and loops (connecting the secondary structure elements)
using only NH and CH RDCs in a single medium (i.e., only
2 RDCs per residue) and 2 unambiguous NOEs. This algo-
rithm, which computes the structure of the turn and loop
regions also runs in polynomial-time for a globular protein
with one additional assumption. We assume that our globu-
lar protein hasO(n) loop and turn regions, each with length
c` = O(1); a majority of globular proteins indeed have
short (constant-length) turn and loop regions. The final
ubiquitin backbone structure computed by this algorithm
has a 1.45Å backbone RMSD from the X-ray structure;
see Fig. 1b. This accuracy is similar to that of the ubiquitin
backbone structure computed by a commonly-used heuris-
tic approach [21] (see Table 2). The latter is the previous
best result obtained for ubiquitin structure when using 6 or
fewer RDCs per residue. Our accuracy is also better than
the ubiquitin structure computed by [35]; they use 3 RDCs
per residues plus 5 chemical shifts per residue as input to
their algorithm. Furthermore, our algorithm is capable of
handling up to 15% missing RDC data (Fig. 1b). Further
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Proteina α or β residuesb RDCsc Type of RDCsd Hydrogen bondse NOEsf RMSDg

ubiquitin 39/75 78 NH in two media 12 4 1.23Å
ubiquitin 41/75 76 NH, CH in one medium 12 4 0.97Å
Dini 41/81 75 NH in two media 6 9 1.55Å
Dini 41/81 80 NH, CαC′ in one medium 6 9 1.35Å
Protein G 29/56 53 NH in two media 9 4 0.98Å
Protein G 33/56 61 NH, CαC′ in one medium 9 4 1.30Å

Table 1. Results of our algorithm. (a) experimental RDC data for ubiquitin (PDB ID: 1D3Z), Dini (PDB ID: 1GHH)
and Protein G (PDB ID: 3GB1) were taken from the Protein Data Bank (PDB). (b) number of residues inα-helices or
β-sheets versus total number of residues. (c) total number of RDCs used. (d) RDCs from different experimental
datasets (for different bond vectors) were used. (e) number of hydrogen bonds used. (f ) number of NOEs used. (g)
RMSD computed between the oriented and translated secondary structure elements computed by our algorithm to
existing structures: ubiquitin to a high-resolution X-ray structure (PDB ID:1UBQ); Dini to an NMR structure (PDB
ID: 1GHH); and Protein G to an NMR structure (PDB ID: 3GB1).

Referencea Program Techniqueb Restraints Per Residuec Accuracyd

Brownet al. [21] X-plor MD/SA 6 RDCs 1.45Å
Blackledgeet al. [28] SCULPTOR MD/SA 11 RDCs, 1.00Å
Baxet al. [17] MFR Database 10 RDCs, 5 Chemical shifts 1.21Å
Bakeret al. [35] RosettaNMR DataBase/MC 3 RDCs, 5 Chemical shifts 1.65Å
Bakeret al. [35] RosettaNMR DataBase/MC 1 RDC 2.75Å

Our algorithm – Exact Equations 2 RDCs 1.45Å

Table 2. Comparison of results for ubiquitin with existing approaches. (a) References to previously-computed
ubiquitin backbone structures, (b) Algorithmic technique; (c) Data requirements; (d) Backbone RMSD of computed
structure compared to the X-ray structure (PDB ID: 1UBQ) [42]; our algorithm used NH and CH RDCs in a single
medium and 2 unambiguous NOEs.

details of the extended algorithm to handle loops and turns
can be found in [45, Appendix C].

6 Conclusion

In this paper, we have shown that the global prop-
erties of residual dipolar couplings can be used to de-
velop a polynomial-time algorithm forde novo high-
resolution protein structure determination. This is the first
polynomial-time algorithm forde novostructure determi-
nation from any type of experimental data. Furthermore,
we have shown that in practice, on real biological NMR
data, that our algorithm is as good or better in terms of
accuracy and speed, and requires less data, than existing
NMR structure determination techniques.

Our polynomial-time backbone structure determination
algorithm can be extended to computecompleteprotein
structures (including side-chains), since exact equations
analogous to Eqs. (5) and (6) can be derivedmutatis mu-
tandisto compute the side-chain dihedral anglesχ1, χ2, . . .
from experimentally-recorded side-chain RDCs. In this
case, the average anglesφa andψa in Eq. (2) would be
replaced with side-chain rotamer anglesχa,1, χa,2, . . .. Fi-
nally, our algorithm might also be extended to speed up the
structure determination of nucleic acids, since similar ex-

act equations (from DNA and RNA RDCs) can easily be
derived to compute the backbone torsion andχ angles in
nucleic acids.
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[31] J. J. Moŕe and Z. Wu. In P. M. Pardalos, D. Shalloway, and
G. Xue, editors,Global Minimization of Nonconvex Energy
Functions: Molecular Conformation and Protein Folding.
American Mathematical Society, 1995.

[32] J. Ponce and D. J. Kriegman. In B. R. Donald, D. Kapur,
and J. L. Mundy, editors,Symbolic and Numerical Compu-
tation for Artificial Intelligence. Academic Press, Boston,
MA, 1992.

[33] J. H. Prestegard, C. M. Bougault, and A. I. Kishore.Chem.
Rev., 104(8):3519–3540, 2004.

[34] J. Renegar.Journal of Symbolic Computation, 13(3):255–
352, 1992.

[35] C. A. Rohl and D. Baker.J. Am. Chem. Soc., 124(11):2723–
2729, 2002.

[36] J. B. Saxe. InProc. of the 17th Allerton Conference on
Communications, Control, and Computing, pages 480–489,
1979.

[37] N. R. Skrynnikov and L. E. Kay. J. Biomol. NMR,
18(3):239–252, 2000.

[38] A. Tarski. A decision method for elementary algebra and
geometry. University of California Press, 1951.

[39] F. Tian, H. Valafar, and J. H. Prestegard.J. Am. Chem. Soc.,
123(47):11791–11796, 2001.

[40] N. Tjandra and A. Bax.Science, 278:1111–1114, 1997.

[41] J. R. Tolman, J. M. Flanagan, M. A. Kennedy, and J. H.
Prestegard. Proc. Natl. Acad. Sci. USA, 92:9279–9283,
1995.

[42] S. Vijay-Kumar, C. E. Bugg, and W. J. Cook.J. Mol. Biol.,
194:531–544, 1987.

[43] L. Wang and B. R. Donald. InIEEE Computational Systems
Bioinformatics Conference, pages 319–330, 2004.

[44] L. Wang and B. R. Donald.J. Biomol. NMR, 29:223–242,
2004.

[45] L. Wang and B. R. Donald. An Efficient and Accurate Al-
gorithm for Assigning Nuclear Overhauser Effect Restraints
Using a Rotamer Library Ensemble and Residual Dipolar
Couplings. InIEEE Computational Systems Bioinformatics
Conference, 2005. To appear.

[46] Y. X. Wang, J. Jacob, F. Cordier, P. Wingfield, S. J. Stahl,
S. Lee-Huang, D. Torchia, S. Grzesiek, and A. Bax.J.
Biomol. NMR, 14(2):181–184, 1999.

[47] W. J. Wedemeyer, C. A. Rohl, and H. A. Scheraga.J.
Biomol. NMR, 22:137–151, 2002.

[48] D.S. Wishart and B.D. Sykes.J. Biomol. NMR, 4:171–180,
1994.

[49] D.S. Wishart, B.D. Sykes, and F. M. Richards.J. Mol. Biol.,
222(2):311–33, 1991.

[50] D.S. Wishart, B.D. Sykes, and F. M. Richards.Biochem-
istry, 31(6):1647–1651, 1992.

Appendix
In Appendix A, we describe our implementation in fur-

ther detail. In Appendix B, we give proofs of Lemma 2 and
Props. 1 and 2 from Sec. 3 of the text.

A Implementation

Practical algorithms for quantifier elimination and the
existential theory of real closed fields have been efficiently
implemented [7, 32] to find the minima of objective func-
tions that are similar to Eqs. (2) and (3). In our imple-
mentation, the second phase of the algorithm was imple-
mented as a systematic depth-first search along with a prun-
ing criterion that only considers(φ, ψ) angles that are in
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the algebraic subset defined byY and in the Ramachan-
dran region of the current secondary structure type. While
there is a long history of validating exact algorithms us-
ing implementations that contain numerical subroutines,3

these codes must be tested on real data to verify robustness
and accuracy. Our algorithm is combinatorially precise and
uses exact algebraic numbers; to test it in practice we im-
plemented some subroutines exactly (i.e., the closed-form
exact solutions for internuclear NH and CH bond vectors
and backbone(φ, ψ) angles, and used a discrete, combi-
natorial tree-search over the algebraic cross-productY of
possible solutions) and some numerically (i.e., we used a
grid search overSO(3) for the orientation of the first pep-
tide plane and overIR3 to find translations between succes-
sive secondary structure elements) for both implementation
speed and to avoid some technical issues in approximat-
ing rational rotations [18, pages 1–23] [9]. In practice, the
implementation took about20 minutes on average over all
datasets on a single-processor Pentium-4 class machine.

B Proofs

In this section, we give the details of proofs omit-
ted from the text. In Appendix B.1, we give a proof of
Lemma 2, and in Appendix B.2 we give a more detailed
presentation of Props. 1 and 2.

B.1 Computing Relative Translations

In this section, we give the proof of Lemma 2. While it
is similar to, and simpler than, the proof of Lemma 1, we
include it here for completeness.

Lemma 2 For any successive pair of secondary structure
elements, we can find a translationx ∈ IR3 that minimizes
Eq. (3) inO(1) time.

Proof: Consider a successive pair of secondary structure
elementsA and B and without loss of generality fix̀,
2 ≤ ` ≤ c, and the distancesN derived from the experi-
mental NOE restraintsN . LetA = {a1, a2, . . . , a`} (resp.,
B = {b1, b2, . . . , b`}) be the 3D coordinates of the` nuclei
in A (resp.,B) that correspond to the distances inN . Min-
imizing Eq. (3) is equivalent to finding a witnessx∗ such

3 M. A. Erdmann and T. Lozano-Perez,Algorithmica, 2(4):477–521,
1987; J. Canny and B. R. Donald,Discrete and Computational Geom-
etry, 3(3):219–236, 1988; K.-F. B̈ohringer, B. R. Donald, and N. Mac-
Donald, InProc. International Workshop on the Algorithmic Foundations
of Robotics (WAFR), 1996; B. R. Donald,Algorithmica, 5(3):353–382,
1990; B. R. Donald,IEEE Trans. on Robotics and Automation, 8(2), 1992;
B. R. Donald,Algorithmica, 10(2/3/4):91–101, 1993; R. G. Brown and
B. R. Donald,Algorithmica, 26(3/4):515–559, 2000; M. A. Erdmann, In
Proceedings of the Eighth Annual International Conference on Research
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that:

∃x∗ ∈ IR3 : ∀x ∈ IR3 ::∑̀
i=1

(‖ai − bj + x∗‖ − ni)
2 ≤

∑̀
i=1

(‖ai − bj + x‖ − ni)
2
.

(8)

This predicate has degree at most4, and2 blocks of6 quan-
tified variables. In this predicate, the largest coefficient is
at most the square of the maximum distance inN . We note
that there is an inherent upper bound on NOE restraints of
about 6Å, thus the coefficients are all bounded by a con-
stant. The running time of finding a witnessx∗ for Eq. (8) is
thenO(27·7) = O(1). (Remark: Without this bound on the
NOE distance restraints, the coefficients in the inequalities
are bounded by the diameter of the protein, which would
increase the running time by a factor logarithmic in the pro-
tein diameter.)

B.2 Equations for computing backbone dihedral
angles from RDCs

In this section, we give a more detailed presentation
of the method to compute backbone dihedral angles from
RDCs in two aligning media exactly and in constant time
per residue. We show that it is possible to derive, from
the physics of RDCs, low-degree monomials (with degree
at most4) whose solutions give the backbone(φ, ψ) an-
gles. Due to space considerations, we sketch the proofs
here; the interested reader can refer to [44] for further de-
tails of the proofs and equations. As before, we assume
that the dipolar interaction constantDmax is equal to 1. By
considering a global coordinate frame which diagonalizes
the alignment tensor, Eq. (1) becomes:

r = Sxxx
2 + Syyy

2 + Szzz
2, (4)

whereSxx, Syy, andSzz are the three diagonal elements
of a diagonalized Saupe matrixS (the alignment tensor),
andx, y, andz are, respectively, thex, y, z−components
of the unit vectorv in a principal order frame (POF) which
diagonalizesS. Now, S is a 3× 3 symmetric, traceless
matrix with five independent elements [40, 41]. Given NH
RDCs in two aligning media, the associated NH vectorv
must lie on the intersection of two conic curves [37, 47].
We show

Proposition 1Given the diagonal Saupe elementsSxx and
Syy for medium 1,S′

xx andS′
yy for medium 2, and a rel-

ative rotation matrixR12 between the POFs of medium 1
and 2, the square of thex-component of the unit vectorv
satisfies a monomial quartic equation.

The following is a sketch of the proof. The methods for
the computation of the seven parameters (Sxx, Syy, S′

xx,
S′
yy, andR12) and the full expressions for the polynomial
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coefficients and temporary variables (a2, b2, c1, etc.) can
be found in [44].
Proof Sketch: Fix a backbone NH vectorv along the
backbone and letr andr′ be the experimental RDCs forv
in the first and second medium, respectively. From Eq. (4)
we have

r = Sxxx
2 + Syyy

2 + Szzz
2

r′ = S′
xxx

′2 + S′
yyy

′2 + S′
zzz

′2 x′

y′

z′

 =

 R11 R12 R13

R21 R22 R23

R31 R32 R33

  x
y
z


where r is the RDC value, x, y, z are the x, y, z-
components ofv in a POF of medium 1,r′ andx′, y′, z′

are the corresponding variables for medium 2. Eliminating
x′, y′, andz′, we have

r2 = a2x
2 + b2y

2 + c1xy + c2xz + c3yz, (9)

r1 = a1x
2 + b1y

2, (10)

where a2 = (S′
xx − S′

zz)(R
2
11 − R2

13) + (S′
yy −

S′
zz)(R

2
21−R2

23) andc2 = 2(S′
xx−S′

zz)R11R13+2(S′
yy−

S′
zz)R21R23, andb2, c1, c2, c3, a1, b1 are similar constants;

full details are given in [44].
Eliminatingz from Eq. (9) we obtain

d8x
4 + d7x

3y + d6x
2y2 − d5x

2 + d4xy
3 − d3xy−

d2y
2 + d1y

4 + d0 = 0, (11)

whered8 = a2
2 + c22, andd7, d6, ..., d0 are analogously de-

fined; these are defined fully in [44]. Eq. (11) is a degree 8
monomial inx after direct elimination ofy using Eq. (10).
However, it can be reduced to a quartic equation by substi-
tution since only the terms with the degrees of 0, 2, 4, and
8 appear in it. Introducing new variablest andu such that

x = a sin t, y = b cos t, u = cos 2t, (12)

and through algebraic manipulation we finally obtain

f4u
4 + f3u

3 + f2u
2 + f1u+ f0 = 0. (13)

The full expressions for coefficientsa, b and
f0, f1, f2, f3, f4 are given in [44]. Sinceu = 1 − 2(xa )2

Eq. (13) is also a quartic equation inx2.

The y-component ofv can be computed directly from
Eq. (12). Due to two-fold symmetry in the RDC equation
the number of real solutions forv is at most 8. We will
refer to the bond vector between the N and Cα atoms as the
NCα vector. Given two unit vectors in consecutive peptide
planes we can use backbone kinematics to derive quadratic
equations to compute the sines and cosines of the(φ, ψ)
angles:

Proposition 2 Given theNH unit vectorsvi and vi+1

of residuesi and i + 1 and theNCα vector of residue

i, the sines and cosines of the intervening backbone di-
hedral angles(φ, ψ) satisfy the trigonometric equations
sin (φ+ a1) = b1 and sin (ψ + a2) = b2, wherea1 and
b1 are constants depending onvi and vi+1, and a2 and
b2 depend onvi, vi+1, sinφ and cosφ. Furthermore,
exact solutions forsin(φ) and cos(φ) can be computed
from a quadratic equation by the substitutionw = tan φ

2 ,
sinφ = 2w/(1 + w2), cosφ = (1− w2)/(1 + w2); equa-
tions for sinψ and cosψ can be obtained and solved ex-
actly by a similar substitution.

The following is a sketch of the proof. Full expres-
sions for the polynomial coefficients and temporary vari-
ables (x1, y1, z1, x2, y2, z2, a1, b1, a2, b2) introduced in the
proof are given in [44].
Proof Sketch: Following a procedure similar to kine-
matics the two NH vectorsvi andvi+1 can be related by 8
rotation matrices between two coordinate systems in pep-
tide planesi andi+ 1:

vi =Rx(θ7)Ry(θ6)Rx(θ5)Rz(ψ + π)·
Rx(θ3)Ry(φ)Ry(θ8)Rx(θ1)vi+1. (14)

The definitions of the coordinate systems, the expressions
for the rotation matricesRx, Ry, and Rz and the def-
initions of the six backbone angles (θ1, θ3, θ5, θ6, θ7 and
θ8) are given in [44]. The backbone(φ, ψ) angles are de-
fined according to the standard convention. Given the val-
ues of these six anglesRl = Rx(θ7)Ry(θ6)Rx(θ5) and
Rr = Ry(θ8)Rx(θ1) are two3×3 constantmatrices. De-
fine two new vectorsw1 = (x1, y1, z1) = Rl

−1vi and
w2 = (x2, y2, z2) = Rrvi+1 to obtain

x1 =− (cosφ cosψ + sin θ3 sinφ sinψ) x2−
cos θ3 sinψ y2 + (cosψ sinφ− cosφ sin θ3 sinψ) z2

y1 =(cosφ sinψ − sin θ3 sinφ cosψ) x2−
cos θ3 cosψ y2 − (sinφ sinψ + cosφ sin θ3 cosψ) z2

z1 =cos θ3 sinφ x2 − sin θ3 y2+
cos θ3 cosφ z2. (15)

By Eq. (15) we can then obtain a simple trigonometric
equation:

sin (φ+ a1) = b1 (16)

where b1 = z1+y2 sin θ3√
(x2 cos θ3)2+(z2 cos θ3)2

, and a1 is a simi-

lar constant; see [44] for details.sinφ and cosφ can be
computed from a quadratic equation by the substitution
w = tan φ

2 , sinφ = 2w
1+w2 , cosφ = 1−w2

1+w2 . Substituting
the computedsinφ andcosφ into Eq. (16) we can obtain
another simple trigonometric equation:

sin (ψ + a2) = b2. (17)

sinψ andcosψ can be computed similarly from a quadratic
equation where botha2 and b2 ≤ 1 are computed from
y1, x2, y2, z2, θ3 andsinφ andcosφ.
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