
Energy Estimation Tools for thePalmTM

Todd L. Cignetti, Kirill Komarov, and Carla Schlatter Ellis

Department of Computer Science
Duke University

Durham, NC 27708 USA
fcignetti,kirill,carlag@cs.duke.edu

Abstract

Reducing the energy consumed in the use of mobile and
wireless devices is becoming a major design challenge.
While the problem obviously must be addressed with im-
proved low-level technology, we have advocated also con-
sidering a higher-level view in which energy management
becomes an explicit design goal of the software developer
who can be more aware of the needs of applications. In
support of this objective, new programming models, mea-
surement tools, and simulation environments must be devel-
oped to provide the developer with feedback on the energy
implications of various design decisions. In this paper, we
describe an energy model and an execution-driven simula-
tor incorporating this model for thePalmOSTM family of
devices.

1. Introduction

Reducing the energy consumed in using mobile/ wire-
less devices, thereby extending the lifetime of the batteries
that power them, is one of the major challenges in design-
ing such systems. While this problem can be addressed
at various levels (e.g., by improving battery technology,
by engineering low-power electronics and components, and
by designing more efficient computer architectures), we
have advocated designing applications and system software
with energy consumption as a primary measure of perfor-
mance [2, 12]. However, currently any attempts by software
developers to tailor the energy use to the specific needs of
applications are frustrated by several factors: a lack of feed-
back on what effect various design decisions might have
on energy use, an inadequate programming model of power
consumption in the target platform, a gap between our vi-
sion of how the application should control its energy use and

the ability to express that to the system, and limitations on
the flexibility of interactions between the operating system
and the given architecture. Identifying and alleviating these
drawbacks in the state-of-the-art of energy conservation are
among the goals of our Milly Watt Project1.

In this paper, we describe an energy model for the
PalmOSTM family of devices and a suite of tools includ-
ing an execution-driven simulator. We present a power mea-
surement framework which is based on the model and used
to set empirically-derived parameter values for the simula-
tor. The development of a simulation environment that can
provide useful information to the programmer faces a num-
ber of challenges: The first step that must be taken is the
development of an abstract energy model. The model must
provide a simplified but accurate picture of how energy con-
sumption is related to the actions of an application. In this
way, any causality between the application source code and
the energy consumption of the device can be exploited. The
next step is to design experiments that accurately charac-
terize the power consumption of the device in terms of the
model. These values are then used as parameters in a simu-
lator incorporating the abstract energy model. Our simula-
tor is implemented as an extension of the Palm OS Emulator
(POSE) that is a major component of the PalmOS program
development environment [9]. For good predictions of en-
ergy consumption, the timing in the emulator must also be
calibrated to reflect the actual device. Finally, the results of
executing applications on the simulator must be presented
in a meaningful fashion to the user. We describe our ap-
proach to each of these issues.

The remainder of the paper is organized as follows: In
the next section, we describe the target device and the ex-
isting POSE environment which serves as a starting point
for our development. Section 3 presents the energy model.

1The name was inspired by Reddy Kilowatt, a mascot for the electric
power industry, whose heyday was in the 1950’s.



Section 4 describes the enhanced simulator with the energy
model embedded inside. Section 5 describes the measure-
ment methodology and results used to parameterize the sim-
ulator. Then, we show the visualization tools for the simula-
tion results. Finally, we present related work and conclude.

2. Background

The target platform for this work is thePalmTM family
of organizers. In particular, the timing and power measure-
ments have been performed on the Palm IIIe (IBM Work-
pad). This model is based on the Motorola Dragonball pro-
cessor, with 2MB of memory and a backlit, monochrome
LCD display. It also has infrared (IR) and a serial port
for communicating with other devices (hotsync cradle to a
desktop machine, add-on modems). It is powered by two
AAA batteries and runs PalmOS version 3.1. The adver-
tised estimate on battery life is approximately 2 months with
typical use. The standard applications include a calendar, to
do list, address book, email, memo pad, and various games.

The Palm OS Emulator (POSE) [9] was the starting point
for the development of our energy simulator. It was devel-
oped from an earlier application called Copilot [4]. Source
code for POSE is available. POSE is a hardware emula-
tor that allows testing, profiling, and debugging of PalmOS
applications on a desktop computer rather than the PDA de-
vice. It is execution driven, fetching and interpreting in-
structions from both applications code and a ROM image
of the operating system. A virtual Palm device is shown
within a window on the desktop display and its screen is
updated as applications run. Stylus and button input is sim-
ulated via the mouse and keyboard. It provides testing fea-
tures not available on the device itself, including logging of
events and functions, support for external debuggers, and
automated random input generation (gremlins). External
debuggers work with POSE to provide source-level debug-
ging support. POSE provides an extensibility mechanism
for intercepting system calls and changing their function-
ality (without access to PalmOS source). These are essen-
tially head and tail patches that do additional or alternative
processing before or after the ROM function executes.

3. Energy Model

It is impossible to address higher-level energy manage-
ment without an understanding of what different operations
cost in terms of power consumption. Unfortunately, few
programmers have much intuition of how energy is used
in a computing system. Thus, the first necessary step is to
build a model with the following desirable properties:(i) the
model components that represent energy use must be trace-
able to constructs in the source code in order to have mean-
ingful predictive value for users and (ii) the model must

facilitate measurements of energy consumption that corre-
spond to detectable energy-related events or functions on
the device.

With these considerations in mind we have constructed a
model of energy consumption. We chose a level of abstrac-
tion that reduces the complexity of the hardware state suffi-
ciently, but that encompasses enough information to allow
useful high-level energy optimization. The abstract model
manages the problem of scale that is present in complex
systems by encapsulating low level hardware details.

The energy model identifies a set of device power states
and transitions between the states that are based on the hard-
ware subsystems of the device. It assumes that the relevant
transitions between states occur as the result of system calls,
and that, by keeping track of system calls, the system may
monitor its own energy consumption (one of our eventual
objectives). There are several hardware subsystems that do
not fit into this level of abstraction precisely, and these must
be addressed separately.

For each separate hardware subsystem, a set of device
states is defined. The device states are differentiated by
the power consumption of the hardware during steady state
(e.g. backlight ON versus backlight OFF). Each state is as-
signed a power consumption cost by measuring the steady
state power consumption in that state (using the method-
ology described in Section 5.2). Each transition between
states is assigned an energy consumption cost by measuring
the transitional energy consumption.

The total energy consumed by the system is determined
by summing the power of each device state multiplied by
the time spent in each state plus the total energy consump-
tion for all transitions.

Our model is based on the following premise: Signifi-
cant device state transitions occur as a result of system calls
and events (particularly those posted by interrupt handlers,
ultimately recognized by a system call). Our model will ap-
ply to systems at the levels for which this premise is true,
and we believe it to hold for many modern operating sys-
tems. Generally, user level programs get access to hard-
ware devices via system calls (traps). Accessing devices
through system calls provides the mechanism for the op-
erating system to eventually be able to monitor the energy
consumption of its devices by tracking device power states
and transitions.

The current PalmOS does not provide as much protec-
tion for user programs as other operating systems. User
programs have free access to memory mapped hardware de-
vices. This is an artifact of the fact that the Motorola 68000
processor did not support virtual memory. Despite these
limitations, the importance of providing operating system
compatibility requires that well designed programs use sys-
tem calls for device access. The practice of accessing hard-
ware directly is discouraged by the PalmOS documenta-



tion [1]. We believe it is reasonable to assume application
programs will use the conventional system call interface to
access device hardware.

We found that, in PalmOS, our premise that device state
transitions only occur as a result of system calls is only
strictly true if we liberally interpret the definition of the sys-
tem call to include shared library calls. In PalmOS, shared
libraries are dynamically loaded libraries that are used to
implement functions that multiple applications may use. A
shared library function call first traps to a common shared li-
brary dispatcher which determines which library and which
function to invoke[6]. By patching the shared library han-
dler, the operating system can keep track of which shared li-
brary calls are made, and thereby keep track of device state
transitions.

These power states and energy transitions can be applied
to most hardware subsystems on a PDA, but there are sub-
systems that do not fit this model. One instance of such an
exception is the power consumption of the CPU. Another
special case is any device for which the power consumption
states are not discrete.

The power consumption of the CPU and memory system
vary depending on the mix of instruction types executed and
the load on the system. There is not a system call that tracks
this explicitly. In our model, we assume the CPU can be
in one of three states:sleep, doze, busy[1]. Since system
calls are required for the transitions between these states,
the operating system can be aware of the coarse-grained
power state of the CPU. Of course, there is variation in
the power consumption within the busy state (idle and sleep
states have a constant power consumption, as described in
Section 5.4). The power consumption in the busy state may
vary depending on many factors [11]. At the present time,
we average these into one power consumption estimate for
the CPU busy state. By contrast, a more complex model can
be used within the simulator to model the power consump-
tion of the CPU since it emulates the activity of the CPU
on an instruction-by-instruction basis as it interprets code.
This is planned future work, both to build the CPU model
and to perform an instruction-level measurement study as
in [11] to provide parameter settings.

Because our model uses discrete device states to model
power consumption, devices with power consumption val-
ues that fall into a continuous range may be problematic.
One case where this occurs is with the serial link state which
is part of almost all communication from the Palm device.
The serial port may be in the following states: open, closed,
sending, receiving, or sending and receiving. The power
consumed while sending or receiving is highly dependent
on the bit rate. In order to be useful, the device state must
account for the bit rate. When the power consumption falls
into a continuous range, we break the continuous range into
convenient discrete steps.

4. The Simulator

We have developed this simulation environment with the
goal of facilitating development of software which pays at-
tention to issues of higher-level power management. The
simulator enables prototyping of energy-efficient applica-
tion programs with substantial feedback given to the pro-
grammer. It provides flexibility for conducting studies
evaluating the benefits of using new policies, mechanisms,
and/or architectural features that are not currently available
on the actual devices. It provides a convenient framework
in which to experiment with proposed new features of an
energy-aware API. For example, it allows investigation of
cooperation between the operating system and application
programs through an exchange of power-related informa-
tion across that boundary that is relatively easy to incor-
porate in the simulator but difficult to implement since it
involves modifying the actual OS interface.

The simulation environment is implemented as an exten-
sion of the Palm OS Emulator (POSE). POSE is a Windows-
based application that simulates functionality of the Palm
device, emulating its operating system and instruction exe-
cution of the Motorola Dragonball processors used in the
Palm. We concentrated primarily on incorporating the
power state model for the Palm into this existing environ-
ment. The transition states are currently not explicitly cap-
tured in the simulator’s version of the power state model.
The information in the output logs is sufficient to apply the
energy costs of state transitions in the post-processing stage.
Since measured instruction-level power consumption data
is not currently available, fine-grain power state monitor-
ing of the busy CPU within the processor emulator is not
supported and an average power consumption value is asso-
ciated with the busy CPU state.

4.1. Timing Calibration

Since energy expenditure depends on both time and
power consumption, timings gathered from the simulator
must be representative of an execution on the actual de-
vice. However, the simulator emulates PalmOS and does
not run on the same platform or processor. Thus, straight-
forward time measurements of calculations done by simu-
lator are not accurate. It is necessary to calibrate simulator
time units to time units on a Palm. Timing in the emulator
is governed not by the actual time but rather by the num-
ber of cycles the processor spends executing instructions.
Therefore, any cycle may be adjusted to have an arbitrary
duration in terms of actual time. We performed experiments
to determine the correspondence between execution time on
the actual Palm device and the virtual time in POSE in or-
der to adjust the time calculations reported by the simulator.
Timing measurements were taken at the initial stage of de-



velopment and after the simulator was close to completion.
Since different types of instructions and system calls may
affect the timing differently, timing was performed on appli-
cations that executed a mix of arithmetic instructions, mix
of memory-access instructions, and mix of system calls.
Different classes produce different scalings:TPalm

TPOSE
ranges

from .625 to .69 in our experiments. Because of disparity
in timings between the actual device and POSE, necessary
adjustments have to be done to POSE in order to assure the
validity of the measurements and correspondence between
clocks in POSE and actual Palm device.

In the POSE simulator, the functionality of the keys is
simulated using the mouse or the keyboard. Similarly, tasks
that are usually done using the pen in an actual Palm are
also performed using the mouse. Therefore, when account-
ing for power and energy consumption of the pen and key
components in the emulator, we need to keep track of mouse
events. These include clicking of the mouse left and right
buttons, and movement of the mouse. The cursor position
at the time of the click determines whether there was pen
or key activity. The difference is that pen events correspond
to clicks in the display area, and graffiti writing area of the
Palm, while the key events correspond to clicks on the hard
buttons of the device. The described mouse events closely
correspond to the PalmOS events that are generated in re-
sponse to pen or key activity. Unfortunately, the timing of
mouse activity is not representative of real pen and key user
interface behavior on the Palm. This is an unavoidable lim-
itation in the simulator when applications are used interac-
tively in the simulator.

4.2. Energy Accounting

In the simulator, we currently identify eight major
power-consuming components. These include the CPU,
LCD, Backlight, Pen on the digitizer, Hardware Keys, Se-
rial port, IR, and Sound. Weaccount for power and en-
ergy consumption of the first six. Each of the components
can individually be in some state. Each particular state
of each component has an associated value of power con-
sumption expressed in milliwatts. Given the power mea-
surements for each individual component, it is easy to com-
pute the power consumption values of the whole Palm de-
vice in each system-wide power state. For each power state,
its power consumption value is calculated to be the sum of
the power value consumed by each individual component of
the Palm in that power state. Some components may con-
tribute 0(mW) to the overall power consumption of certain
power states of the Palm. After the initial state has been de-
termined, the rest of the states are acquired by monitoring
power state transitions. The power state transition occurs
when one of the components of the currently active power
state changes its state. In the simulator, the transitions be-

tween power states are caused by a certain system event or
system call aimed at changing state of the particular compo-
nent. For instance, the application may use HwrLCDSleep
call in order to turn off the LCD. This call will also change
the current global power state of the simulator.

For every power state encountered, we maintain a struc-
ture that keeps information about it, such as power and ac-
tive components. Power usage is computed by determining
states of all components of the Palm, and summing up their
associated power values. Also, for each power state, we
maintain the list of activation periods. Each activation pe-
riod specifies the time when its associated power state was
in force. The active power state is always timed starting and
ending when a power state transition causes a change. A
timer is reset upon the change of the power state. Using the
starting and ending times, we are able to compute the power
state’s energy usage. When a transition out of a power state
occurs, information about the active period of that power
state is logged. This information includes starting and end-
ing times of the active period, total energy consumed dur-
ing that active period, owning application, and other related
information. Owning application refers to the application
program that has been running during the active period of
the power state. In this way, we are able to compute statis-
tics for each application. This data, in conjunction with the
execution logs in the original POSE, allow useful analysis
(see Section 6).

5. Power Measurement Method and Results

This section describes the methodology that was devel-
oped to quantify the power consumption of a device. We
designed the methodology to be general enough to be used
to characterize the power consumption of many devices, so
first we describe the design goals of the methodology in
general terms. Next we describe the experimental design
and the programs implemented to take measurements on a
device. Finally, we present selected measurements taken on
the Palm III/e or IBM Workpad device. Such measurements
provide the parameter values for the simulator.

5.1. Design goals

We intend that the measurements taken with this method-
ology can be used with the energy model developed in Sec-
tion 3 and provide the power measurements for the tools
that will use the model (Section 4). Our goal is that the
experiments must be able to capture transient energy con-
sumption, as well as steady state power consumption. It is
also of primary importance that the measurements be accu-
rate and that the act of taking measurements have minimal
effects on the power consumed by the device. Further, we
require that the experimental apparatus be as inexpensive



and widely available as possible. We limit the equipment to
readily available laboratory instrumentation: a power sup-
ply, voltmeter, and oscilloscope.

Since the model specifies that state transitions be as-
signed an energy cost, our measurement methodology is
able to capture transient energy consumption. This is im-
portant because the energy consumed by changing the de-
vice state may, in some cases, be significant. We have found
that transient effects were much more difficult to measure
than steady state power consumption, and most of the dis-
cussion of measurement methodology addresses the ques-
tion of how to measure the energy of state transitions.

5.2. Experimental design

We connected a Workpad device to a power supply with
an oscilloscope measuring the voltage across a small resis-
tor,Rtest (as shown in Figure 1).

Power
Supply

RtestVtest

Vsupply

IBM
Workpad

Oscilloscope

time

vo
lta

ge

Figure 1. Experimental Setup.

The resistorRtest is necessary because our oscilloscope
probes measure voltage and not current. Current probes that
measure very small currents (milliamperes) are available for
some oscilloscopes [10], but are relatively uncommon. The
value ofRtest must be small, so that the voltage drop across
the resistor (Vtest) does not make the voltage at the device
terminals too low, but large enough thatVtest is measurable.
To make sure the voltage at the device is sufficient, we turn
up the supply voltage so that the test which draws the most
current (max(Itest)) will not cause the voltage at the de-
vice terminals to be below the required minimum voltage
(Vdevice minimum).

VSupply �max(Itest)Rtest > Vdevice minimum (1)

Since we did not know the maximum allowable device
voltage, we conservatively chose the smallestRtest, such
that equation 1 is true, and that produces a sufficiently mea-
surable signal.

We compute the steady state power by multiplying the
current times the voltage at the device terminals. This kind
of measurement is possible with even the simplest instru-
mentation, substituting a voltmeter for the oscilloscope in
Figure 1.

Power = (VSupply � Vtest)Itest (2)

We assume a constant supply voltage. One critical re-
quirement of our experiments is a power supply that can
provide sufficient current to the device over the course of
the tests. If the power supply is current limited, the voltage
level will drop when the device begins to draw too much
current [13]. In our experiments we can assume that the
voltage is constant because we use a power supply that can
source 30 Watts at 3.5 volts (about 60 times more power
than is used by the device). We have also verified that the
voltage was constant using the second oscilloscope channel
during the most power consuming tests.

Whereas the steady state power consumption is easy to
measure with a voltmeter, the transient power consumption
is hard to measure with only a voltmeter. It is not possible
to determine the exact time of the system call or to differen-
tiate the power consumed by starting the test from the test
itself. Thus we use the oscilloscope to record the voltage as
a function of time, starting when a voltage threshold level
is exceeded. An in-band marker signal provides a clear ref-
erence point in the voltage versus time trace. The marker
consists of a configurable delay before and after the test,
and an in-band sync pulse before and after the test. The
typical way of executing a test using in-band synchroniza-
tion markers is the following:

1. start test– by pressing an on-screen button in the test
application.

2. delay – configurable delay with processor indoze
mode, using the SysTaskDelay() system call allows the
transient effects of starting the test to settle.

3. in-band synchronization pulse– a subroutine with a
known voltage versus time curve generates a large
spike in the power consumption. This spike is used
to trigger the scope to start recording (the scope is set
to use a level sensitive trigger). The sync signal must
be repeatable and, in order to reliably trigger the scope,
should have a peak voltage level that is greater than the
voltage levels before, during, and after the test.

4. system call– the system call that changes the device
state.

5. measurement period– usually, a delay which allows
the device state to settle. The processor is indoze
mode. The exception is the tests of abusyCPU.

6. system call– the system call that restores the device
state.

7. end synchronization pulse– a second time reference



8. end delay

There are several reasons that the experiments were de-
signed this way. The in-band synchronization signal pro-
vides a convenient trigger for the oscilloscope, and a neces-
sary time reference for the transient behavior of the system
call. The delay allows the transient effects of starting the
test to reach a steady state. There is a negligible amount
of overhead when the delay timer expires, and immediately
thereafter the system call is made. The system call causes a
state change, and the subsequent delay allows the system to
reach a steady state, while the oscilloscope is used to mea-
sure the transient effects of the state change. After the delay,
another system call is made to restore the state, followed by
another delay, followed by a synchronization pulse and a
delay.

As we noted in Section 3, the power consumption of
some devices is not directly influenced by system calls.
These require exceptional tests. In the case of the CPU, it is
sufficient to measure the power of the device in each of the
three states:sleep, doze, busy. We compute the busy state
power by putting the processor in a tight loop. The transi-
tion costs between CPU states are assumed to be negligible.
In the case of the serial link, we parameterize the measure-
ments using the bit rate and flow control as parameters.

External devices pose a difficult set of problems. They
may require serial or other external communication rather
than system calls to change states. For example, we are
aware of several Global Positioning System (GPS) devices
that are controlled over a serial link with serial command
sequences. The energy consumption associated with these
commands cannot be monitored without actually parsing
the command string. Another complication external devices
pose is they may have separate energy source, which the
main device cannotaccess or monitor.

5.3. Measurement Programs

Several Palm applications have been built to help mea-
sure the power consumption of the device.

ThePowerandMillywatt applications provide a user in-
terface to call some of the basic functions of the device for
measurement intervals.Powerputs the device into a steady
state for a long (10 seconds) period of time, during which
we can monitor the power consumption. Many of the tests
originally performed withPower were subsumed with the
development ofMillywatt. The Millywatt application im-
plements the configurable markers and delays described in
Section 5.2 and is designed specifically for transient energy.

Another category of Palm applications are being used to
validate the results of the simulator. TheEnergy Monitor
program keeps track of the device state using the energy
model described in Section 3 directly on the Palm. The
program uses theHackmaster[7] interface to patch system

calls. A patch routine is executed before the system call
which records the time of the state transition. The current
implementation can track the total running time, backlight
on time, and LCD on time. While the current implemen-
tation does not monitor all of the device states, it serves
to demonstrate the feasibility of a resident energy monitor
running under the PalmOS, without the knowledge or coop-
eration of the operating system or application programs. In
addition, several Palm applications have been instrumented
to track the time spent in their own power states while they
are running. When these programs are subsequently run on
the simulator, results can be compared. This validation ef-
fort is on-going work.

5.4. Measurement Results

This section describes selected results of the power and
energy measurements of a Workpad device (Palm III/e
equivalent) running PalmOS 3.1. ThePowerandMillyWatt
application programs were used to make these measure-
ments. We used the following lab equipment: Power supply
(HP 3611A - 0-20V, 0-1.5A), Multimeter (HP 34401A), and
Oscilloscope (HP 54600B - 100 MHz, 2 channel + external
trigger).

CPU, LCD, Backlight, Buttons, Pen

We measured the power consumption of the basic hard-
ware subsystems of an IBM WorkPad device using our ex-
perimental setup.Rtest was measured to be 7.451
, and
VSupply was 3.5 volts. Table 1 shows the results. The values
are in milliwatts, and are relative to the default mode that
is defined as: CPU doze, LCD ON, Serial port CLOSED,
Backlight OFF, Buttons UP, Pen UP, Sound OFF. The sys-
tem call in the last column is that which we associate with
the device state. In most cases this is the system call used
to change the device state. The CPU Busy state does not
have a system call for reasons described previously. We as-
sociate button presses and pen taps with the EvtGetEvent()
system call. These are handled at the lowest level by inter-
rupts, the generation of events, and an intermediate level of
system calls, but EvtGetEvent is the “visible” system call
which notifies the application that an event occurred.

Serial link

The serial link is the hardware subsystem most critical for
wireless or wireline communication since this is the stan-
dard way to connect a modem device to the Palm. Such
modems generally have their own power source. The re-
sults do not reflect the power consumption of the attached
external device, only the energy impact on the PDA itself.
For each experiment, the user chooses the baud rate and
flow control options.



Device State Power (mW) System Call
CPU Busy 104.502 none

Idle 0.0 SysTaskIdle
Sleep -44.377 SysSleep

LCD On 0.0 LCDWake
Off -20.961 LCDSleep

Backlight On 94.262 HwrBacklight()
Off 0.0 HwrBacklight()

Button pushed 45.796 EvtGetEvent()
Pen On screen 82.952 EvtGetEvent()
Pen +Graffitti 86.029 EvtGetEvent()

Table 1. Steady state power of IBM WorkPad
(relative to default mode defined in section
5.4), with associated system calls

System Call Transient Energy (mJ)
CPU Sleep 2.025
CPUWake 11.170
HwrLCDWake 11.727
KeySleep 2.974
PenOpen 1.935

Table 2. Transient energy of IBM WorkPad
for significant system calls relative to energy
consumed in default mode defined in section
5.4 for the same amount of time.

The steady state power (in excess of the default mode)
of sending on the serial link with the SerOpen, SerSetSet-
tings(), and SerSend() system calls vary between 89.8 mW
and 94.7 mW for various bit rates and flow control settings.
The energy for a one Mbit send ranges from 308 J (300 bps,
no flow control) to 1.6 J (56K, hardware flow control). The
steady state power (in excess of the default mode) of re-
ceiving on the serial link ranges from 20.2 mW (300 bps,
no flow control) to 109.3 mW (56K, hardware flow control)
with the energy for a one Mbit receive ranging from 94.2 J
(300 bps, hardware flow control) to 1.77 J (56K, no flow
control).

Transition Energy

Only the following system calls were found to have non-
negligible relative energy consumption during the transi-
tion period:CPUSleep CPUWake HwrLCDWake KeySleep
PenOpen. Table 2 shows the results, with values in milli-
Joules.

6. Programmer Feedback

A substantial part of this project included developing
the graphical user interface that would convey information
gathered using the simulator to the user. We have developed
a package that allows creation, display, and dynamic run-
time modification of various types of charts. This package
is used to interpret information acquired using the simula-
tor and display it graphically to the user. In addition, the
chart package provides a convenient interface to construct,
modify, and display charts. Currently, there are six types
of charts supported in the package. Figure 2 shows a sam-
ple of data acquired from running of the simulator. This
pie chart shows the total percentage of energy consumed
by each power component state throughout an execution.
Other charts include bar graphs representing each power

Figure 2. Pie Chart of Energy Use Breakdown.

state and its total consumed energy, broken down by each
component, over all activation intervals of that state. Each
of these components is listed in the chart legend. Data can
be filtered and presented on a per-application basis. An-
other useful feature present in the simulator is the ability to
log important execution events, producing traces. System
calls and events are logged at varying granularity, produc-
ing traces of the system’s and applications’ execution.

7. Related work

The Advanced Configuration and Power Interface
(ACPI) specification [5] is a lower-level OS/device in-
terface, providing one framework for gross system-wide
power states and per-component power states as a basis for
the development of OS-directed power management. Our
model is compatible with the ACPI framework.



Our model bears some resemblance to the instruction-
level power estimation model of [11] (at a different level of
abstraction, but for similar experimental reasons). We plan
to pursue an effort to characterize the power consumption
of the Dragonball at the instruction level in the near future.

The SimplePower simulator [15, 14] is a cycle-accurate,
execution driven, simulator. This framework is an architec-
tural level simulator that deals with the processor datapath,
memory and bus energy. Integrating our device level model
with such a finer grain, lower level model would yield an
attractive hierarchical approach.

Our measurement work is related to the PowerScope
toolkit [3] which combines hardware instrumentation with
CPU statistical profiling techniques to map power consump-
tion to program structure. In their method, the multi-meter
interrupts the processor under test which seems intrusive. In
addition, the approach of assuming a causal relationship be-
tween program counter and measured power may be prob-
lematic. Our approach is qualitatively different in the re-
lationship between the multimeter and device (i.e. trigger-
ing method) and that the events traced represent power state
transitions at a certain level of abstraction. This allows us to
account for power consumption levels caused by an earlier,
perhaps unrelated, activity but still in effect and observable
(e.g. an earlier disk spinup for which the timeout has not
yet expired).

This work is also related to the StateProfiler tool devel-
oped by [8]. The model is not fully generalized and the
tools do not capture transient information.

8. Conclusion

In this paper, we have presented a model that captures the
energy use characteristics of a popular mobile device, the
Palm organizer. The model has served as the basis for both
(1) a simulation framework for estimating the energy that
might be used by Palm applications under development and
(2) a measurement methodology that can supply the empir-
ical power values for key components of the device. The
model also lends itself to OS-level monitoring of energy
consumption at power state transitions triggered by system
calls. The contribution is to enhance a familiar program
development tool for an existing mobile platform with the
ability to evaluate the energy implications of higher level
design decisions.

Future work includes incorporating a better CPU model
with supporting measurements at the instruction level, pro-
viding a way to extend the model to capture the power states
of external devices “hiding” behind the serial interface, such
as wireless modems with their own power sources, and val-
idating the results of the simulator against the results of the
Monitor implementation. To be complete, the IR and sound
devices need to be added to the simulator. The transient

state energy consumption also needs to be integrated into
the simulator. Finally, more extensive analysis tools are
needed to answer causality questions, linking the observed
energy consumption to source code constructs.

References

[1] C. Bey, E. Freeman, and J. Ostrem. Palm OS program-
mer’s companion. http://www.palmos.com/dev/tech/docs
/palmos/, 1999.

[2] C. S. Ellis. The Case for Higher-Level Power Management.
In Proceedings of the 7th Workshop on Hot Topics in Oper-
ating Systems, Rio Rico, AZ, March 1999.

[3] J. Flinn and M. Satyanarayanan. PowerScope: A tool for
profiling the energy usage of mobile applications. InWork-
shop on Mobile Computing Systems and Applications (WM-
CSA), pages 2–10, February 1999.

[4] G. Hewgill. Copilot: Design and Development.Handheld
Systems, 6(3), May/June 1998.

[5] Intel Corporation, Microsoft Corporation, and Toshiba
Corporation. Advanced Configuration and Power Inter-
face Specification. http://www.teleport.com/acpi, December
1996.

[6] J. Ishaq. Mastering shared libraries. http://www.wwg.com/
newsview/shared.shrml, 1999.

[7] E. Keyes. How to write a hack. http://www.dagger-
ware.com/hackapi.htm.

[8] J. Lorch. A complete picture of the energy consumption of a
portable computer. Master’s thesis, University of California,
Berkeley, December 1995.

[9] K. Rollin. The Palm OS Emulator.Handheld Systems, 6(3),
May/June 1998.

[10] Tektronix. Current measurements. http://www.tek.com/
Measurement/Products/catalog/Accessories/probes/cur-
rent measurements/, 1999.

[11] V. Tiwari, S. Malik, and A. Wolfe. Power Analysis of Em-
bedded Software: A First Step Towards Software Power
Minimization. IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, 2(4):437–445, December 1994.

[12] A. Vahdat, A. Lebeck, and C. Ellis. Every Joule is pre-
cious: The case for revisiting operating system design for
energy efficiency. InSIGOPS European Workshop, Septem-
ber 2000. to appear.

[13] J. Van der Spiegel. Basics of power supplies:
Use of the HP e363a programmable power supply.
http://www.ee.upenn.edu/rca/instruments/HPpower/PS-
3631A.html#SimplifiedView, January 1997.

[14] N. Vijaykrishnan, M. Kandemir, M. Irwin, H. Kim, and
W. Ye. A unified energy framework with integrated
hardware-software optimizations. InInternational Sympo-
sium on Computer Architecture (ISCA), June 2000.

[15] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. Irwin. The
Design and Use of SimplePower: A cycle-accurate energy
estimation tool. InDesign Automation Conference, June
2000.


