CPS 110 Final Exam

December 10, 2009

This is an in-class exam. Read each question carefully before you begin working. Don’t waste any words: answers are graded on content, not style. I don’t expect you to need more than a page for any sub-question.

If you need to make any assumptions that are not clear from the question, then please state them explicitly. For code, any kind of pseudocode is fine as long as its meaning is clear. You may assume standard routines like lists, queues, hash tables, etc.

This is a closed-everything exam. The usual rules apply: use only the permitted sources of information (i.e., your brain and one page of notes), and don’t discuss your answers with anyone until the exam is over. Good luck!

Print your name:

Sign for your honor:

	Problem
	Max
	Score

	1
	60
	

	2
	100
	

	3
	80
	

	4
	40
	

	bonus
	20
	20

	total
	300
	

1 Data Dump (60 points)

This semester we studied two examples of mapping structures for address translation that are used for two different but related purposes: (1) page tables to translate a virtual address to a physical address for virtual memory, and (2) inode block maps to translate a logical offset in a file to a physical disk address.

a) Briefly outline some key design goals for such mapping structures, i.e., what properties distinguish a good design from a bad design?

b) Outline one realistic example of a translation using such a mapping structure, sufficient to illustrate the data structure and the steps to translate.

c) How does the structure of inode maps differ from page tables? What are the reasons for the differences?

d) Extra Credit. In both examples, the data mapped by these structures (file blocks and virtual memory pages) may reside on secondary storage (disk) and are cached in memory while they are in use. Discuss some differences in management of the cache: how are these examples different with respect to how the system decides which blocks or pages to keep in the cache? Specifically: would the cache management techniques you used for Project 2 (the VM project) be right for a file system? Why or why not?

e) Extra Credit. In both examples, writes may update the cached copy of the page or block in memory. Discuss some differences in the handling of updates: how are these examples different with respect to when the writes are applied to the secondary (disk) copy? Specifically: would the write handling techniques you used for Project 2 (the VM project) be right for a file system? Why or why not?

2 Twenty Questions (100 points)

Answer the following questions in the space provided: 1-3 sentences or fragments each. Any substantive answer receives full credit. There are actually 21 questions: your “worst” answer will not be counted.

(a) Data cached at multiple clients can become stale if it is updated. Many distributed systems have taken a position that stale data is acceptable if it is not stale for “too long” (e.g., the Web, DNS, and early NFS). Outline the technique used to bound staleness in those systems.

How do nonces protect against replay attacks?

Why is it useful for lock primitives to be built into the programming language (as in Java) rather than provided as a separate library?

How do one-way hashing functions protect stored passwords?

Why does your Web browser have the public keys of certain corporations “baked in”?

Why do secure transport protocols such as secure HTTP (https://...) combine both symmetric and asymmetric cryptography?

Why is creating a process (i.e., fork) more expensive than creating a thread?

Sequential reads of large files are common: what techniques do modern file systems use to complete them at the full bandwidth of the disk system?

RAID (Redundant Arrays of Individual Disks) is a common technique used to build high-throughput disk systems. Why the “R”, i.e., why should disk arrays incorporate redundancy?

If a password is compromised in a single-sign-on system (such as the Kerberos and Shibboleth systems that Duke has used for NetIDs), it is easy to revoke the old password by installing a new password at the authentication server. In contrast, it may be difficult to revoke a compromised private key in a Public Key Infrastructure (PKI) system. Why?

Modern processors provide some means for software to execute a read-modify-write of a memory location with an assurance that no other processor (core) completed an intervening write to that location. Give an example, and say what this feature is used for and why it is necessary.

Distributed systems often use periodic “are you alive?” queries (pings) or periodic “I am alive” messages (heartbeats) nodes to determine if their peers have failed. What are the pitfalls of this approach, i.e., what could go wrong? Can we do better?

Microsoft has increased support (and pressure) for developers to implement device drivers that run in user mode. Why?

Despite the existence of a functioning user-mode driver framework, it is widely accepted that drivers for many devices will continue to run in kernel mode. Why?

Why might support for threads increase the risk of stack overflow?

Is it important what replacement/eviction algorithm a TLB uses? Why might it be less important than, say, replacement policies for virtual memory?

What impact does Mesa semantics for condition variables have on the way multi-threaded programs are written?

Are digital signatures on digital documents more or less secure than ink signatures on printed documents? Justify your answer.

How are interrupts different from traps and faults, with respect to how their handlers run?

Outgoing packet queues for Ethernet devices have bounded size. What should an operating system do if a process requests to send a packet and the queue is full?

How does this choice affect the reliability of message delivery?

Incoming packet queues for Ethernet devices have bounded size. What should an Ethernet device do if a packet arrives and the host's incoming packet queue is full? How does this affect the reliability of message delivery?

3 Both Ways (80 pts)

Prove that semaphores are equivalent in power to monitors (mutex/condition variable pairs). Show how to implement each in terms of the other. Write pseudocode, but don’t bother with any code for error-checking.

(a) Implement semaphores using monitors.

(b) Implement mutexes using semaphores.

(c) Implement condition variable wait and signal using semaphores. Don’t bother with broadcast.

4 Staying Safe (40 pts)

For Project 3 you mounted a stack smash attack against a vulnerable Web server. Similar software vulnerabilities have been a vector for many damaging pathogens in the Internet. Explain why these vulnerabilities are so dangerous and discuss how we should defend against them. You may include discussion of OS-level techniques (e.g., address space randomization), although I am not asking specifically about those.

