CPS 110 Final Exam
Spring 1999
 Synchronization
Part 1 problems are worth 50 points each. (If you completed a course evaluation, select two of the problems; you will receive automatic full credit for the third.) Any kind of pseudocode is fine as long as its meaning is clear. You may assume common primitives (e.g., linked lists), but explain any primitives whose meanings are not obvious.
1. SharedLock. A reader/writer lock (called SharedLock in the Birrell paper) is an extended version of a mutex designed to support higher concurrency for readers. SharedLock pro​vides two pairs of Acquire and Release primitives, one pair for read mode and one pair for write mode. SharedLock behaves exactly as an ordinary mutex lock, except that multiple threads may hold the lock simultaneously if they are all in read mode. Implement Shared​Lock using mutexes and condition variables. Ignore the starvation problem.

2. Bounded Buffer. A producer/consumer BoundedBuffer is the basis for pipes in Nachos. BoundedBuffer has two primitives: Read(n) and Write(n). The Write procedure produces n bytes at the tail of the buffer; Read consumes n bytes from the front of the buffer.

The BoundedBuffer has a maximum size of N bytes. Read blocks if the buffer is empty, and Write blocks if the buffer is full. A Read or Write with n > N is legal, but it will always block the caller at least once.

Implement BoundedBuffer using mutexes and condition variables. Your solution should guarantee that a Read never consumes interleaved bytes from two or more Writes.

3. Elevator. Implement an elevator controller for a single elevator. Your solution should avoid rider starvation as well as all obvious races, e.g., doors open while the elevator is in transit, riders entering and exiting while the doors are closed, etc. You may assume that the elevator is of unbounded size, i.e., it can hold all arriving riders. When your elevator stops at a floor, it should wait until all exiting riders have exited and all boarding riders have boarded.

 Brain Dumps
Complete both problems for 40 points each. Please try to keep your answers succinct.
4. Mode and Context. The following questions concern the handling of processes in a pro​tected kernel-based operating system such as Nachos. Assume that the kernel creates and initializes each process to execute a statically linked program from an executable file whose name is passed as an argument to the process create primitive (e.g., the Nachos Exec system call). The sub-parts are worth 10 points each.

(a) Explain how the kernel initializes physical memory for use by the program. How does the kernel determine the initial values for the memory allocated to the new process?

(b) Explain how the kernel initializes the program counter register (PC) and stack pointer register (SP) before switching the CPU to user mode to start the fresh process for the first time. How are the initial values of these registers determined?

(c) Once the CPU is executing in user mode in the context of the fresh process, what could cause it to switch back into kernel mode? Give three distinct examples and outline how each affects the PC and SP registers on re-entry to the kernel.

(d) Once the CPU is in kernel mode as a result of the examples in part (c), what could cause it to switch back into user mode? List as many distinct scenarios as you can think of (I can think of five or six good ones), and outline for each case how the kernel determines values for the PC and SP registers before the switch to user mode.

5. Most operating systems use variants of Least Recently Used (LRU) as a replacement policy for the file block cache (buffer cache) and the virtual memory system (page cache).

a) What is the rationale for choosing LRU as the replacement policy in each case? (5 points)

b) Outline how to implement LRU replacement for the file block cache. Consider the han​dling of dirty blocks. (10 points)

c) In general, a direct implementation of LRU is not practical for the virtual memory page cache. Explain why this is so. (10 points)

d) Explain how to approximate LRU replacement for the virtual memory page cache using the FIFO-with-second-chance algorithm. What parameters does the algorithm use to bal​ance the quality and cost of the LRU approximation? (15 points)

 Nachos
6. Answer the following trivia questions about your group’s Nachos implementation, for 10 points each. Be as specific as you can be, and as long-winded as you like.
a) What replacement policy did you implement for Lab #7?
b) Where do dirty pages go when your replacement policy evicts them from memory?
c) How does the system prevent a process from filling memory with dirty pages?
d) How does your Write system call handle user buffers that cross page boundaries?

e) If a child process exits before its parent, where do you save the dead child’s exit status?

f) How do you handle a demand fault on a text page?

g) Did you have any bugs in which the kernel corrupted process virtual memory? Explain.

