
Peer-to-Peer and Large-
Scale Distributed Systems

Jeff Chase
Duke University

Note
• For CPS 196, Spring 2006, I skimmed a tutorial giving

a broad view of the area. It is by Joe Hellerstein at
Berkeley and is available at:
– db.cs.berkeley.edu/jmh/talks/vldb04-p2ptut-final.ppt

• I also used some of the following slides on DHTs, all
of which are adapted more or less intact from
presentations graciously provided by Sean Rhea.
They pertain to his Award Paper on Bamboo in Usenix
2005.

What’s a DHT?
• Distributed Hash Table

– Peer-to-peer algorithm to offering put/get interface
– Associative map for peer-to-peer applications

• More generally, provide lookup functionality
– Map application-provided hash values to nodes
– (Just as local hash tables map hashes to memory locs.)
– Put/get then constructed above lookup

• Many proposed applications
– File sharing, end-system multicast, aggregation trees

How DHTs Work

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

put(k1,v1) get(k1)

k1

v1

k1,v1

How do we
ensure the put

and the get
find the same

machine?

Step 1: Partition Key Space
• Each node in DHT will store some k,v pairs
• Given a key space K, e.g. [0, 2160):

– Choose an identifier for each node, idi ∈ K,
uniformly at random

– A pair k,v is stored at the node whose identifier is
closest to k

0 2160

Step 2: Build Overlay Network

• Each node has two sets of neighbors
• Immediate neighbors in the key space

– Important for correctness
• Long-hop neighbors

– Allow puts/gets in O(log n) hops

0 2160

Step 3: Route Puts/Gets Thru Overlay

• Route greedily, always making progress

0 2160

k

get(k)

How Does Lookup Work?

0…

10…

110…

111…

Lookup ID

Source

Response

• Assign IDs to nodes
– Map hash values to node

with closest ID
• Leaf set is successors and

predecessors
– All that’s needed for

correctness
• Routing table matches

successively longer prefixes
– Allows efficient lookups

How Bad is Churn in Real Systems?

50% < 2.4 minutesKazaaGDS03

50% < 60 minutesOvernetBSV03

50% < 1 minuteFastTrackSW02

31% < 10 minutesGnutella, NapsterCLL02

50% < 60 minutesGnutella, NapsterSGG02

Session TimeSystems ObservedAuthors

time
arrive depart arrive depart

Session
Time

Lifetime

An hour is an incredibly short MTTF!

Note on CPS 196, Spring 2006
• We did not cover any of the following material on

managing DHT’s under churn.

Routing Around Failures
• Under churn, neighbors may have failed
• To detect failures, acknowledge each hop

0 2160

k

ACK
ACK

Routing Around Failures
• If we don’t receive an ACK, resend through

different neighbor

0 2160

k

Timeout!

Computing Good Timeouts
• Must compute timeouts carefully

– If too long, increase put/get latency
– If too short, get message explosion

0 2160

k

Timeout!

Computing Good Timeouts
• Chord errs on the side of caution

– Very stable, but gives long lookup latencies

0 2160

k

Timeout!

Calculating Good Timeouts
• Use TCP-style timers

– Keep past history of latencies
– Use this to compute timeouts

for new requests
• Works fine for recursive lookups

– Only talk to neighbors, so
history small, current

RecursiveIterative

• In iterative lookups, source
directs entire lookup
– Must potentially have good

timeout for any node

Recovering From Failures
• Can’t route around failures forever

– Will eventually run out of neighbors
• Must also find new nodes as they join

– Especially important if they’re our immediate
predecessors or successors:

0 2160

responsibility

Recovering From Failures
• Can’t route around failures forever

– Will eventually run out of neighbors
• Must also find new nodes as they join

– Especially important if they’re our immediate
predecessors or successors:

0 2160

old responsibility

new responsibility

new node

Recovering From Failures

• Obvious algorithm: reactive recovery
– When a node stops sending acknowledgements,

notify other neighbors of potential
replacements

– Similar techniques for arrival of new nodes

B0 2160C DAA

Recovering From Failures

• Obvious algorithm: reactive recovery
– When a node stops sending acknowledgements,

notify other neighbors of potential
replacements

– Similar techniques for arrival of new nodes

B0 2160C DAA

B failed, use D B failed, use A

The Problem with Reactive
Recovery

• What if B is alive, but network is congested?
– C still perceives a failure due to dropped ACKs
– C starts recovery, further congesting network
– More ACKs likely to be dropped
– Creates a positive feedback cycle

B0 2160C DAA

B failed, use D B failed, use A

The Problem with Reactive
Recovery

• What if B is alive, but network is congested?
• This was the problem with Pastry

– Combined with poor congestion control, causes
network to partition under heavy churn

B0 2160C DAA

B failed, use D B failed, use A

Periodic Recovery
• Every period, each node sends its neighbor list to

each of its neighbors

B0 2160C DAA

my neighbors are A, B, D, and E

Periodic Recovery
• Every period, each node sends its neighbor list to

each of its neighbors

B0 2160C DAA

my neighbors are A, B, D, and E

Periodic Recovery
• Every period, each node sends its neighbor list to

each of its neighbors
– Breaks feedback loop

B0 2160C DAA

my neighbors are A, B, D, and E

Periodic Recovery
• Every period, each node sends its neighbor list to

each of its neighbors
– Breaks feedback loop
– Converges in logarithmic number of periods

B0 2160C DAA

my neighbors are A, B, D, and E

