
Machines and VirtualizationMachines and Virtualization

Systems and Networks
Jeff Chase

Spring 2006

Memory Protection Memory Protection

Paging Virtual memory provides protection by:
• Each process (user or OS) has different virtual memory

space.
• The OS maintain the page tables for all processes.
• A reference outside the process allocated space cause an

exception that lets the OS decide what to do.
• Memory sharing between processes is done via different

Virtual spaces but common physical frames.

[Kedem, CPS 104, Fall05]

Architectural Foundations of OS KernelsArchitectural Foundations of OS Kernels

• One or more privileged execution modes (e.g., kernel mode)
protected device control registers

privileged instructions to control basic machine functions

• System call trap instruction and protected fault handling
User processes safely enter the kernel to access shared OS services.

• Virtual memory mapping
OS controls virtual-physical translations for each address space.

• Device interrupts to notify the kernel of I/O completion etc.
Includes timer hardware and clock interrupts to periodically return

control to the kernel as user code executes.

• Atomic instructions for coordination on multiprocessors

Memory and the CPUMemory and the CPU
0

2n

code library

OS data

OS code

Program A
dataData

Program B

Data

registers

CPU

R0

Rn

PC

main memory

x

x

Kernel ModeKernel Mode
0

2n

code library

OS data

OS code

Program A
dataData

Program B

Data

registers

CPU

R0

Rn

PC

main memory

x

x

mode

CPU mode (a field
in some status

register) indicates
whether the CPU is
running in a user
program or in the
protected kernel.

Some instructions or
register accesses are
only legal when the
CPU is executing in

kernel mode.

physical
address
space

Introduction to Virtual AddressingIntroduction to Virtual Addressing

text
data
BSS

user stack
args/env

kernel

data

virtual
memory

(big?)

physical
memory
(small?)

virtual-to-physical
translations

User processes
address memory
through virtual

addresses.

The kernel and the
machine collude to

translate virtual
addresses to

physical addresses.

The kernel controls
the virtual-physical
translations in effect

for each space.

The machine does not
allow a user process
to access memory
unless the kernel
“says it’s OK”.

The specific mechanisms for
implementing virtual address translation

are machine-dependent.

Processes and the KernelProcesses and the Kernel

data data
processes
in private

virtual
address
spaces

system call traps ...and upcalls (e.g.,
signals)

shared kernel
code and data

in shared
address space

Threads or
processes
enter the
kernel for
services.

The kernel sets
up process
execution
contexts to

“virtualize” the
machine.

CPU and devices force entry to the kernel to handle exceptional events.

The KernelThe Kernel
• Today, all “real” operating systems have protected kernels.

The kernel resides in a well-known file: the “machine”
automatically loads it into memory (boots) on power-on/reset.

Our “kernel” is called the executive in some systems (e.g., XP).

• The kernel is (mostly) a library of service procedures shared
by all user programs, but the kernel is protected:

User code cannot access internal kernel data structures directly,
and it can invoke the kernel only at well-defined entry points
(system calls).

• Kernel code is like user code, but the kernel is privileged:

The kernel has direct access to all hardware functions, and
defines the machine entry points for interrupts and exceptions.

Protecting Entry to the KernelProtecting Entry to the Kernel

Protected events and kernel mode are the architectural
foundations of kernel-based OS (Unix, XP, etc).
• The machine defines a small set of exceptional event types.
• The machine defines what conditions raise each event.
• The kernel installs handlers for each event at boot time.

e.g., a table in kernel memory read by the machine

The machine transitions to kernel mode
only on an exceptional event.

The kernel defines the event handlers.

Therefore the kernel chooses what code
will execute in kernel mode, and when.

user

kernel

interrupt or
exceptiontrap/return

Example: System Call TrapsExample: System Call Traps

User code invokes kernel services by initiating system call traps.
• Programs in C, C++, etc. invoke system calls by linking to a

standard library of procedures written in assembly language.
the library defines a stub or wrapper routine for each syscall

stub executes a special trap instruction (e.g., chmk or callsys or int)

syscall arguments/results passed in registers or user stack

read() in Unix libc.a library (executes in user mode):

#define SYSCALL_READ 27 # code for a read system call
move arg0…argn, a0…an # syscall args in registers A0..AN
move SYSCALL_READ, v0 # syscall dispatch code in V0
callsys # kernel trap
move r1, _errno # errno = return status
return

Alpha CPU architecture

FaultsFaults
Faults are similar to system calls in some respects:

• Faults occur as a result of a process executing an instruction.
Fault handlers execute on the process kernel stack; the fault handler

may block (sleep) in the kernel.

• The completed fault handler may return to the faulted context.

But faults are different from syscall traps in other respects:
• Syscalls are deliberate, but faults are “accidents”.

divide-by-zero, dereference invalid pointer, memory page fault

• Not every execution of the faulting instruction results in a fault.
may depend on memory state or register contents

The Role of EventsThe Role of Events

A CPU event is an “unnatural” change in control flow.
Like a procedure call, an event changes the PC.

Also changes mode or context (current stack), or both.

Events do not change the current space!

The kernel defines a handler routine for each event type.
Event handlers always execute in kernel mode.

The specific types of events are defined by the machine.

Once the system is booted, every entry to the kernel occurs as a
result of an event.

In some sense, the whole kernel is a big event handler.

CPU Events: Interrupts and ExceptionsCPU Events: Interrupts and Exceptions

An interrupt is caused by an external event.
device requests attention, timer expires, etc.

An exception is caused by an executing instruction.
CPU requires software intervention to handle a fault or trap.

unplanned deliberate
sync fault syscall trap
async interrupt AST

control flow

event handler (e.g.,
ISR: Interrupt Service

Routine)

exception.cc

AST: Asynchronous System Trap
Also called a software interrupt or an
Asynchronous or Deferred Procedure Call
(APC or DPC)

Note: different “cultures” may use some of these terms (e.g.,
trap, fault, exception, event, interrupt) slightly differently.

Mode, Space, and ContextMode, Space, and Context

At any time, the state of each processor is defined by:
1. mode: given by the mode bit

Is the CPU executing in the protected kernel or a user program?

2. space: defined by V->P translations currently in effect
What address space is the CPU running in? Once the system is

booted, it always runs in some virtual address space.

3. context: given by register state and execution stream
Is the CPU executing a thread/process, or an interrupt handler?

Where is the stack?

These are important because the mode/space/context
determines the meaning and validity of key operations.

The Virtual Address SpaceThe Virtual Address Space
A typical process VAS space includes:

• user regions in the lower half
V->P mappings specific to each process
accessible to user or kernel code

• kernel regions in upper half
shared by all processes, but accessible only to

kernel code
• NT (XP?) on x86 subdivides kernel region into an

unpaged half and a (mostly) paged upper half at
0xC0000000 for page tables and I/O cache.

• Win95/98 uses the lower half of system space as a
system-wide shared region.

text
data
BSS

user stack
args/env

0

data

kernel text
and

kernel data

2n-1

2n-1

0x0

0xffffffff

A VAS for a private address space system (e.g., Unix, NT/XP) executing on a typical 32-bit system (e.g., x86).

sbrk()
jsr

Process and Kernel Address SpacesProcess and Kernel Address Spaces

data

0

2n-1-1

2n-1

2n-1

data

0x7FFFFFFF

0x80000000

0xFFFFFFFF

0x0

n-bit virtual
address
space

32-bit virtual
address
space

The OS Directs the MMUThe OS Directs the MMU

The OS controls the operation of the MMU to select:
(1) the subset of possible virtual addresses that are valid for

each process (the process virtual address space);
(2) the physical translations for those virtual addresses;
(3) the modes of permissible access to those virtual addresses;

read/write/execute

(4) the specific set of translations in effect at any instant.
need rapid context switch from one address space to another

MMU completes a reference only if the OS “says it’s OK”.
MMU raises an exception if the reference is “not OK”.

Virtual Address TranslationVirtual Address Translation

VPN offset

29 013Example: typical 32-bit
architecture with 8KB pages.

address
translation

Virtual address translation maps a
virtual page number (VPN) to a
physical page frame number (PFN):
the rest is easy.

PFN

offset

+

00
virtual address

physical address{

Deliver exception to
OS if translation is not
valid and accessible in
requested mode.

Completing a VM ReferenceCompleting a VM Reference

raise
exception

probe
page table

load
TLB

probe
TLB

access
physical
memory

access
valid?

page
fault?

signal
process

allocate
frame

page on
disk?

fetch
from disk

zero-fillload
TLB

start
here

MMU

OS

Virtual Memory as a CacheVirtual Memory as a Cache

text
dataidata

wdata

header

symbol
table, etc.
program
sections

text
data
BSS

user stack
args/env

kernel

data

process
segments

physical
page frames

virtual
memory

(big)

physical
memory
(small)

executable
file

backing
storage

virtual-to-physical
translations

pageout/eviction

page fetch

Wrapping UpWrapping Up

There is lots more to say about address translation, but we
don’t want to spend too much time on it now.
• On NT/x86, each address space has a page directory
• One page: 4K bytes, 1024 4-byte entries (PTEs)
• Each PDIR entry points to a “page table”
• Each “page table” is one page with 1024 PTEs
• each PTE maps one 4K page of the address space
• Each page table maps 4MB of memory: 1024*4K
• One PDIR for a 4GB address space, max 4MB of tables
• Load PDIR base address into a register to activate the VAS

What did we just do?What did we just do?

We used special machine features to “virtualize” a core
resource: memory.
• Each process/space only gets some of the memory.
• The OS decides how much you get.
• The OS decides what parts of the program and its data are in

memory, and what parts you will have to wait for.
• You can’t tell exactly what you have.
• The OS isolates each process from its competitors.

Virtualization involves a clean abstract interface with a level
of indirection that enables the system to interpose on
important actions, securely and transparently, in order to
cover up ugly details of the environment.

Sharing the CPUSharing the CPU

We have seen how an operating system can share and
“virtualize” one hardware resource: memory.

How can does an OS share the CPU among multiple running
programs (processes)?
• Safely
• Fairly (?)
• Efficiently

Sharing DisksSharing Disks

How should the OS mediate/virtualize/share the disk(s)
among multiple users or programs?
• Safely
• Fairly
• Securely
• Efficiently
• Effectively
• Robustly

Classical View: The QuestionsClassical View: The Questions

The basic issues/questions in this course are how to:
• allocate memory and storage to multiple programs?
• share the CPU among concurrently executing programs?
• suspend and resume programs?
• share data safely among concurrent activities?
• protect one executing program’s storage from another?
• protect the code that implements the protection, and

mediates access to resources?
• prevent rogue programs from taking over the machine?
• allow programs to interact safely?

A Simple Page TableA Simple Page Table

PFN 0
PFN 1

PFN i

page #i offset

user virtual address

PFN i
+

offset

process page table

physical memory
page frames

In this example, each
VPN j maps to PFN j,

but in practice any
physical frame may be

used for any virtual page.

Each process/VAS has
its own page table.

Virtual addresses are
translated relative to

the current page table.

The page tables are
themselves stored in
memory; a protected

register holds a pointer to
the current page table.

Page Tables (2)Page Tables (2)

32 bit address with 2 page table fields
Two-level page tables

Second-level page tables

Top-level
page table

[from Tanenbaum]

