
Sockets and Client/Server
Communication

Jeff Chase
Duke University

Services

request/response paradigm ==> client/server roles
- Remote Procedure Call (RPC)
- object invocation, e.g., Remote Method Invocation (RMI)
- HTTP (the Web)
- device protocols (e.g., SCSI)

“Do A for me.”

“OK, here’s your answer.”

“Now do B.”

“OK, here.”

Client Server

An Internet Application

TCP/IP

Client

Network
adapter

Global IP Internet

TCP/IP

Server

Network
adapter

Internet client host Internet server host

Sockets interface
(system calls)

Hardware interface
(interrupts)

User code

Kernel code

Hardware
and firmware

[CMU 15-213]

Networking Basics
• Applications Layer

– Standard apps
• HTTP
• FTP
• Telnet

– User apps
• Transport Layer

– TCP
– UDP
– Programming Interface:

• Sockets
• Network Layer

– IP
• Link Layer

– Device drivers

Application
(http,ftp,telnet,…)

Transport
(TCP, UDP,..)

Network
(IP,..)
Link

(device driver,..)

[Buyya]

A Programmer’s View of the Internet

• Hosts are mapped to a set of 32-bit IP addresses.
– 128.2.203.179

• The set of IP addresses is mapped to a set of
identifiers called Internet domain names.
– 128.2.203.179 is mapped to www.cs.cmu.edu

• A process on one Internet host can communicate with
a process on another Internet host over a connection.

[CMU 15-213]

Internet Connections

TCP byte-stream connection
(128.2.194.242, 208.216.181.15)

ServerClient

Client host address
128.2.194.242

Server host address
208.216.181.15

• Most clients and servers communicate by sending streams of
bytes over connections
– E.g., using TCP, the Transmission Control Protocol

• A socket is an endpoint of a connection between two processes.
– Unix and Windows system calls, Java APIs

[adapted from CMU 15-213]

socket socket

Sockets: the rest of the story

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

Server
(port 80)Client

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

• A host might have many open connections, possibly held
by different processes.

• A port is a unique communication endpoint on a host,
named by a 16-bit integer, and associated with a process.

Note: 51213 is an
ephemeral port allocated

by the kernel

Note: 80 is a well-known port
associated with Web servers

[CMU 15-213]

Using Ports to Identify Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client

[CMU 15-213]

(connect request)

(connect request)

More on Ports
• This port abstraction is an Internet Protocol concept.

– Source/dest port is named in every packet.
– Kernel looks at port to demultiplex incoming traffic.

• The term is commonly used to refer to a communication
endpoint in other contexts.

• How do clients know what port number to connect to?
– We have to agree on well-known ports for common

services: ICAAN again
– Look at /etc/services
– Ports 1023 and below are ‘reserved’

• Clients need a return port, but it can be an ephemeral
port assigned dynamically by the kernel.

Berkeley Sockets
• Networking protocols are implemented as part of the

OS
– The networking API exported by most OS’s is the

socket interface
– Originally provided by BSD 4.1c ~1982.

• The principal abstraction is a socket
– Point at which an application attaches to the

network
– Defines operations for creating connections,

attaching to network, sending/receiving data,
closing.

[Paul Barford]

Datagrams and Streams
Communication over the Internet uses a selected transport-layer protocol

(layer 4) built above the common IP packet protocol.
• Point-to-point communication with a socket/port at either end.
• UDP = User Datagram Protocol (AF_INET/SOCK_DGRAM)

– Send/receive messages up to 8KB (plus)
– Unreliable: messages may be lost or reordered
– Connectionless: no notion or cost of ‘establishing a connection’

• TCP = Transmission Control Protocol (AF_INET/SOCK_STREAM)
– Send/receive byte streams of arbitrary length (like a pipe)
– All bytes delivered are correct and delivered in order
– Masks transient packet loss
– Connection setup/maintenance: other end is notified if one end

closes or resets the connection, or if the connection breaks.

Unix Sockets I
• Creating a socket

int socket(int domain, int type, int protocol)
• domain = AF_INET, AF_UNIX
• type = SOCK_STREAM, SOCK_DGRAM

What is this
integer that is

returned?

Unix File Descriptors Illustrated

user space

File descriptors are a special
case of kernel object handles.

pipe

file

socket
process file
descriptor

table

kernel

system open file
table tty

Disclaimer:
this drawing is
oversimplified.

The binding of file descriptors to objects is
specific to each process, like the virtual
translations in the virtual address space.

Sending/Receiving
• Use read/write system calls and variants to

transmit/receive byte-stream data.
– “Just like files”!
– Close works too

• Alternative syscalls for sending/receiving messages
• Variants of:

int send(int socket, char *msg, int mlen, int flags)
int recv(int socket, char *buf, int blen, int flags)

Listening for a Connection
• A server (program) runs on a specific computer and

has a socket that is bound to a specific port. The
server waits and listens to the socket for a client to
make a connection request.

server Client
Connection requestport

[Buyya]

Making a Connection
• If everything goes well, the server accepts the

connection.
• Upon acceptance, the server gets a new socket bound

to a different port.
– It needs a new socket (consequently a different port number) so

that it can continue to listen to the original socket for connection
requests while serving the connected client.

server

Client
Connection

port

port po
rt

[Buyya]

Server-Side Sockets
• Bind socket to IP address/port

int bind(int socket, struct sockaddr *addr, int addr_len)

• Mark the socket as accepting connections
int listen(int socket, int backlog)

• “Passive open” accepts connection
int accept(int socket, struct sockaddr *addr, int addr_len)
(returns a new socket to talk to the client)

Client Socket
• Active Open (on client)

int connect(int socket, struct sockaddr *addr,
int addr_len)

Connection-oriented example
(TCP)

Server

Socket()

Bind()
Client

Socket()
Listen()

Accept()

Recv()

Send()

Connect()

Send()

Recv()

Block until
connect

Process
request

Connection Establishmt.

Data (request)

Data (reply)

[Paul Barford]

Connectionless example
(UDP)

Server

Socket()

Bind()
Client

Socket()
Recvfrom()

Sendto()

Bind()

Sendto()

Recvfrom()

Block until
Data from
client

Process
request

Data (request)

Data (reply)

[Paul Barford]

Socket call

• Means by which an application attached to the network
• int socket(int family, int type, int protocol)
• Family: address family (protocol family)

– AF_UNIX, AF_INET, AF_NS, AF_IMPLINK
• Type: semantics of communication

– SOCK_STREAM, SOCK_DGRAM, SOCK_RAW
– Not all combinations of family and type are valid

• Protocol: Usually set to 0 but can be set to specific value.
– Family and type usually imply the protocol

• Return value is a handle for new socket

[Paul Barford]

Bind call

• Binds a newly created socket to the specified address
• Int bind(int socket, struct sockaddr *address, int addr_len)
• Socket: newly created socket handle
• Address: data structure of address of local system

– IP address and port number (demux keys)
– Same operation for both connection-oriented and

connectionless servers
• Can use well known port or unique port

[Paul Barford]

Listen call
• Used by connection-oriented servers to indicate an

application is willing to receive connections
• Int(int socket, int backlog)
• Socket: handle of newly creates socket
• Backlog: number of connection requests that can be

queued by the system while waiting for server to
execute accept call.

[Paul Barford]

Accept call

• After executing listen, the accept call carries out a
passive open (server prepared to accept connects).

• Int accept(int socket, struct sockaddr *address, int addr_len)
• It blocks until a remote client carries out a

connection request.
• When it does return, it returns with a new socket

that corresponds with new connection and the
address contains the clients address

[Paul Barford]

Connect call

• Client executes an active open of a connection
• Int connect(int socket, struct sockaddr *address, int addr_len)
• Call does not return until the three-way handshake

(TCP) is complete
• Address field contains remote system’s address
• Client OS usually selects random, unused port

[Paul Barford]

Send(to), Recv(from)
• After connection has been made, application uses

send/recv to data
• Int send(int socket, char *message, int msg_len, int flags)

– Send specified message using specified socket
• Int recv(int scoket, char *buffer, int buf_len, int flags)

– Receive message from specified socket into specified buffer

[Paul Barford]

Implementing a Server (Java)
1. Open the Server Socket:

ServerSocket server;
DataOutputStream os;
DataInputStream is;
server = new ServerSocket(PORT);

2. Wait for the Client Request:
Socket client = server.accept();

3. Create I/O streams for communicating to the client
is = new DataInputStream(client.getInputStream());
os = new DataOutputStream(client.getOutputStream());

4. Perform communication with client
Receive from client: String line = is.readLine();
Send to client: os.writeBytes("Hello\n");

5. Close sockets: client.close();

[Buyya]

Implementing a Client (Java)
1. Create a Socket Object:
client = new Socket(server, port_id);

2. Create I/O streams for communicating with the
server.
is = new DataInputStream(client.getInputStream());
os = new DataOutputStream(client.getOutputStream());

3. Perform I/O or communication with the server:
– Receive data from the server:

String line = is.readLine();
– Send data to the server:

os.writeBytes("Hello\n");
4. Close the socket when done:
client.close();

[Buyya]

A simple server (simplified code)
// SimpleServer.java: a simple server program
import java.net.*;
import java.io.*;
public class SimpleServer {

public static void main(String args[]) throws IOException {
// Register service on port 1234
ServerSocket s = new ServerSocket(1234);
Socket s1=s.accept(); // Wait and accept a connection
// Get a communication stream associated with the socket
OutputStream s1out = s1.getOutputStream();
DataOutputStream dos = new DataOutputStream (s1out);
// Send a string!
dos.writeUTF("Hi there");
// Close the connection, but not the server socket
dos.close();
s1out.close();
s1.close();

}
}

[Buyya]

A simple client (simplified code)
// SimpleClient.java: a simple client program
import java.net.*;
import java.io.*;
public class SimpleClient {

public static void main(String args[]) throws IOException {
// Open your connection to a server, at port 1234
Socket s1 = new Socket("mundroo.cs.mu.oz.au",1234);
// Get an input file handle from the socket and read the input
InputStream s1In = s1.getInputStream();
DataInputStream dis = new DataInputStream(s1In);
String st = new String (dis.readUTF());
System.out.println(st);
// When done, just close the connection and exit
dis.close();
s1In.close();
s1.close();

}
}

[Buyya]

ServerSocket & Exceptions
• public ServerSocket(int port) throws IOException

– Creates a server socket on a specified port.
– A port of 0 creates a socket on any free port. You can use

getLocalPort() to identify the (assigned) port on which this socket
is listening.

– The maximum queue length for incoming connection indications (a
request to connect) is set to 50. If a connection indication arrives
when the queue is full, the connection is refused.

• Throws:
– IOException - if an I/O error occurs when opening the socket.
– SecurityException - if a security manager exists and its

checkListen method doesn't allow the operation.

[Buyya]

How does the Web work?
• The canonical example in your Web browser

Click here

• “here” is a Uniform Resource Locator (URL)

http://www-cse.ucsd.edu

• It names the location of an object (document) on a
server.

[Geoff Voelker]

In Action…

Client Server

http://www-cse.ucsd.edu

– Client uses DNS to resolves name of server (www-
cse.ucsd.edu)

– Establishes an HTTP connection with the server over
TCP/IP

– Sends the server the name of the object (null)
– Server returns the object

HTTP

[Voelker]

HTTP in a Nutshell

HTTP supports request/response message exchanges of arbitrary length.
Small number of request types: basically GET and POST, with supplements.

object name, + content for POST
optional query string
optional request headers

Responses are self-typed objects (documents) with attributes and tags.
optional cookies
optional response headers

GET /path/to/file/index.html HTTP/1.0

Content-type: MIME/html, Content-Length: 5000,...

Client Server

The Dynamic Web

HTTP began as a souped-up FTP that supports hypertext URLs.
Service builders rapidly began using it for dynamically-generated content.
Web servers morphed into Web Application Servers.

Common Gateway Interface (CGI)
Java Servlets and JavaServer Pages (JSP)
Microsoft Active Server Pages (ASP)
“Web Services”

GET program-name?arg1=x&arg2=y

Content-type: MIME/html, Content-Length: 5000,...

execute
program

Client Server

Web Servers

Web
server

HTTP request

HTTP response
(content)

• Clients and servers communicate
using the HyperText Transfer
Protocol (HTTP)
– Client and server establish

TCP connection
– Client requests content
– Server responds with

requested content
– Client and server close

connection (usually)
• E.g., HTTP/1.1

– IETF RFC 2616, June, 1999.

Web
client

(browser)

[CMU 15-213]

Web Content
• Web servers return content to clients

– content: a sequence of bytes with an associated MIME
(Multipurpose Internet Mail Extensions) type

• Example MIME types
– text/html HTML document
– text/plain Unformatted text
– application/postscript Postcript document
– image/gif Binary image encoded in GIF format
– image/jpeg Binary image in JPEG format

[CMU 15-213]

Static and Dynamic Content
• The content returned in HTTP responses can be

either static or dynamic.
– Static content: content stored in files and

retrieved in response to an HTTP request
• Examples: HTML files, images, audio clips.

– Dynamic content: content produced on-the-fly in
response to an HTTP request
• Example: content produced by a program

executed by the server on behalf of the client.
• Bottom line: All Web content is associated with a file

that is managed by the server.

[CMU 15-213]

URLs
• Each file managed by a server has a unique name called a URL

(Universal Resource Locator)
• URLs for static content:

– http://www.cs.cmu.edu:80/index.html
– http://www.cs.cmu.edu/index.html
– http://www.cs.cmu.edu

• Identifies a file called index.html, managed by a Web
server at www.cs.cmu.edu that is listening on port 80.

• URLs for dynamic content:
– http://www.cs.cmu.edu:8000/cgi-bin/adder?15000&213

• Identifies an executable file called adder, managed by a
Web server at www.cs.cmu.edu that is listening on port
8000, that should be called with two argument strings: 15000
and 213.

[CMU 15-213]

How Clients and Servers Use URLs
• Example URL: http://www.aol.com:80/index.html
• Clients use prefix (http://www.aol.com:80) to infer:

– What kind of server to contact (Web server)
– Where the server is (www.aol.com)
– What port it is listening on (80)

• Servers use suffix (/index.html) to:
– Determine if request is for static or dynamic content.

• No hard and fast rules for this.
• Convention: executables reside in cgi-bin directory

– Find file on file system.
• Initial “/” in suffix denotes home directory for requested

content.
• Minimal suffix is “/”, which all servers expand to some

default home page (e.g., index.html).

[CMU 15-213]

Anatomy of an HTTP
Transaction

unix> telnet www.aol.com 80 Client: open connection to server
Trying 205.188.146.23... Telnet prints 3 lines to the terminal
Connected to aol.com.
Escape character is '^]'.
GET / HTTP/1.1 Client: request line
host: www.aol.com Client: required HTTP/1.1 HOST header

Client: empty line terminates headers.
HTTP/1.0 200 OK Server: response line
MIME-Version: 1.0 Server: followed by five response headers
Date: Mon, 08 Jan 2001 04:59:42 GMT
Server: NaviServer/2.0 AOLserver/2.3.3
Content-Type: text/html Server: expect HTML in the response body
Content-Length: 42092 Server: expect 42,092 bytes in the resp body

Server: empty line (“\r\n”) terminates hdrs
<html> Server: first HTML line in response body
... Server: 766 lines of HTML not shown.
</html> Server: last HTML line in response body
Connection closed by foreign host. Server: closes connection
unix> Client: closes connection and terminates

[CMU 15-213]

HTTP Requests

• HTTP request is a request line, followed by zero or
more request headers

• Request line: <method> <uri> <version>
– <version> is HTTP version of request (HTTP/1.0 or
HTTP/1.1)

– <uri> is typically URL for proxies, URL suffix for servers.
• A URL is a type of URI (Uniform Resource Identifier)
• See http://www.ietf.org/rfc/rfc2396.txt

– <method> is either GET, POST, OPTIONS, HEAD, PUT,
DELETE, or TRACE.

[CMU 15-213]

HTTP Responses
• HTTP response is a response line followed by zero or more response

headers.
• Response line:
• <version> <status code> <status msg>

– <version> is HTTP version of the response.
– <status code> is numeric status.
– <status msg> is corresponding English text.

• 200 OK Request was handled without error
• 403 Forbidden Server lacks permission to access file
• 404 Not found Server couldn’t find the file.

• Response headers: <header name>: <header data>
– Provide additional information about response
– Content-Type: MIME type of content in response body.
– Content-Length: Length of content in response body.

[CMU 15-213]

HTTP Server
• HTTP Server

– Creates a socket (socket)
– Binds to an address
– Listens to setup accept backlog
– Can call accept to block waiting for connections
– (Can call select to check for data on multiple socks)

• Handle request
– GET /index.html HTTP/1.0\n

<optional body, multiple lines>\n
\n

Inside your server

packet
queues

listen
queue

accept
queue

Server application
(Apache,

Tomcat/Java, etc)

Measures
offered load
response time
throughput
utilization

Web Server Processing Steps

Accept Client
Connection

Read HTTP
Request Header

Find
File

Send HTTP
Response Header

Read File
Send Data

