
1

Storage

Jeff Chase
Duke University

Storage: The Big Issues
1. Disks are rotational media with mechanical arms.

• High access cost caching and prefetching
• Cost depends on previous access careful block

placement and scheduling.
2. Stored data is hard state.

• Stored data persists after a restart.
• Data corruption and poor allocations also persist.
• Allocate for longevity, and write carefully.

3. Disks fail.
• Plan for failure redundancy and replication.
• RAID: integrate redundancy with striping across

multiple disks for higher throughput.

Rotational Media
SectorTrack

Cylinder

Head
Platter

Arm

Access time = seek time + rotational delay + transfer time

seek time = 5-15 milliseconds to move the disk arm and settle on a cylinder
rotational delay = 8 milliseconds for full rotation at 7200 RPM: average delay = 4 ms
transfer time = 1 millisecond for an 8KB block at 8 MB/s

Bandwidth utilization is less than 50% for any noncontiguous access at a block grain.

RAID

• Raid levels 3 through 5
• Backup and parity drives are shaded

Disks and Drivers
• Disk hardware and driver software provide

foundational support for block devices.
• OS views the block devices as a collection of volumes.

– A logical volume may be a partition of a single disk or a
concatenation of multiple physical disks (e.g., RAID).

• volume == LUN
• Each volume is an array of fixed-size sectors.

– Name sector/block by (volumeID, sector ID).
– Read/write operations DMA data to/from physical memory.

• Device interrupts OS on I/O completion.
– ISR wakes process, updates internal records, etc.

A Typical Unix File Tree

/

tmp usretc

File trees are built by grafting
volumes from different volumes
or from network servers.

Each volume is a set of directories and files; a host’s file tree is the set of
directories and files visible to processes on a given host.

bin vmunix

ls sh project users

packages

(volume root)

tex emacs

In Unix, the graft operation is
the privileged mount system call,
and each volume is a filesystem.

mount point

mount (coveredDir, volume)
coveredDir: directory pathname
volume: device specifier or network volume

volume root contents become visible at pathname coveredDir

2

Filesystems
• Files

– Sequentially numbered bytes or logical blocks.
– Metadata stored in on-disk data object

• e.g, Unix “inode”
• Directories

– A special kind of file with a set of name mappings.
• E.g., name to inode

– Pointer to parent in rooted hierarchy: .., /
• System calls

– Unix: open, close, read, write, stat, seek, sync, link,
unlink, symlink, chdir, chroot, mount, chmod, chown.

File Systems: The Big Issues
• Buffering disk data for access from the processor.

– Block I/O (DMA) needs aligned physical buffers.
– Block update is a read-modify-write.

• Creating/representing/destroying independent files.
• Allocating disk blocks and scheduling disk operations

to deliver the best performance for the I/O stream.
– What are the patterns in the request stream?

• Multiple levels of name translation.
– Pathname inode, logical physical block

• Reliability and the handling of updates.

Representing a File On Disk

logical
block 0

logical
block 1

logical
block 2

once upo
n a time
/nin a l

and far
far away
,/nlived t

he wise
and sage
wizard.

physical block pointers in the
block map are sector IDs or
physical block numbers

file attributes: may include
owner, access control list, time
of create/modify/access, etc.

block map

inode

Representing Large Files
inode

indirect
block

double
indirect
block

Suppose block size = 8KB
12 direct block map entries in the inode can map 96KB of data.
One indirect block (referenced by the inode) can map 16MB of data.
One double indirect block pointer in inode maps 2K indirect blocks.

maximum file size is 96KB + 16MB + (2K*16MB) + ...

Classical Unix
Each file system block is a clump of
sectors (4KB, 8KB, 16KB).
Inode == 128 bytes, packed into blocks.
Each inode has 68 bytes of attributes and
15 block map entries.

direct
block
map

Unix index blocks
• Intuition

– Many files are small
• Length = 0, length = 1, length < 80, ...

– Some files are huge (3 gigabytes)
• “Clever heuristic” in Unix FFS inode

– 12 (direct) block pointers: 12 * 8 KB = 96 KB
• Availability is “free” - you need inode to open() file anyway

– 3 indirect block pointers
• single, double, triple

Unix index blocks

106
105

501
502

102
101

16
15

18
17

500
100

1000 104
103

20
19

22
21

24
23

26
25

28
27

30
29

32
31

3

Unix index blocks

16
15

18
17

-1
-1

-1

Direct blocks

Indirect pointer
Double-indirect
Triple-indirect

Unix index blocks

16
15

18
17

-1
100

-1

20
19

Unix index blocks

102
101

16
15

18
17

500
100

-1

20
19

22
21

24
23

Unix index blocks

106
105

501
502

102
101

16
15

18
17

500
100

1000 104
103

20
19

22
21

24
23

26
25

28
27

30
29

32
31

Directories

0

rain: 32
hail: 48

0
wind: 18

snow: 62

directory
inode

sector 32

Entries or slots are found by a linear scan.

A Filesystem On Disk

11100010
00101101
10111101

10011010
00110001
00010101

00101110
00011001
01000100

sector 0

allocation
bitmap file

0

rain: 32

hail: 48

0
wind: 18

snow: 62

once upo
n a time
/n in a l

and far
far away
, lived th

sector 1

directory
file

This is just an example (Nachos)

4

Unix File Naming (Hard Links)
0

rain: 32

hail: 48

0
wind: 18

sleet: 48

inode 48

inode link
count = 2

directory A directory B

A Unix file may have multiple names.
Each directory entry naming the file is
called a hard link.
Each inode contains a reference count
showing how many hard links name it.

Illustrates: garbage collection by reference counting.

link system call
link (existing name, new name)
create a new name for an existing file
increment inode link count

unlink system call (“remove”)
unlink(name)
destroy directory entry
decrement inode link count
if count == 0 and file is not in active use
free blocks (recursively) and on-disk inode

Unix Symbolic (Soft) Links
A soft link is a file containing a pathname of some

other file.

0

rain: 32

hail: 48

inode 48

inode link
count = 1

directory A

0
wind: 18

sleet: 67

directory B

../A/hail/0

inode 67

The target of the link may be
removed at any time, leaving
a dangling reference.

How should the kernel
handle recursive soft links?

symlink system call
symlink (existing name, new name)
allocate a new file (inode) with type symlink
initialize file contents with existing name
create directory entry for new file with new name

Failures, Commits, Atomicity
• What guarantees does the system offer about the

hard state if the system fails?
– Durability

• Did my writes commit, i.e., are they on the disk?
– Atomicity

• Can an operation “partly commit”?
• Also, can it interleave with other operations?

– Recoverability and Corruption
• Is the metadata well-formed on recovery?

Unix Failure/Atomicity
• File writes are not guaranteed to commit until close.

– A process can force commit with a sync.
– The system forces commit every (say) 30 seconds.
– Failure could lose an arbitrary set of writes.

• Reads/writes to a shared file interleave at the
granularity of system calls.

• Metadata writes are atomic/synchronous.
• Disk writes are carefully ordered.

– The disk can become corrupt in well-defined ways.
– Restore with a scrub (“fsck”) on restart.
– Alternatives: logging, shadowing

• Want better reliability? Use a database.

The Problem of Disk Layout
• The level of indirection in the file block maps allows

flexibility in file layout.
• “File system design is 99% block allocation.” [McVoy]

• Competing goals for block allocation:
– allocation cost
– bandwidth for high-volume transfers
– stamina/longevity
– efficient directory operations

• Goal: reduce disk arm movement and seek overhead.
• metric of merit: bandwidth utilization

SectorTrack

Cylinder

Head
Platter

Arm

Bandwidth utilization
Define
b Block size
B Raw disk bandwidth (“spindle speed”)
s Average access (seek+rotation) delay per block I/O

Then
Transfer time per block = b/B
I/O completion time per block = s + (b/B)
Effective disk bandwidth for I/O request stream = b/(s + (b/B))
Bandwidth wasted per I/O: sB
Effective bandwidth utilization (%): b/(sB + b)

How to get better performance?
- Larger b (larger blocks, clustering, extents, etc.)
- Smaller s (placement / ordering, sequential access, logging, etc.)

5

0
10
20
30
40
50
60
70
80
90

100
1 2 4 8 16 32 64 12
8

25
6

s=1

s=2

s=4

Effective bandwidth (%), B = 40 MB/s

Example: BSD FFS
• Fast File System (FFS) [McKusick81]

– Clustering enhancements [McVoy91], and
improved cluster allocation [McKusick:
Smith/Seltzer96]

– FFS can also be extended with metadata
logging [e.g., Episode]

FFS Cylinder Groups
• FFS defines cylinder groups as the unit of disk locality, and it

factors locality into allocation choices.
– typical: thousands of cylinders, dozens of groups
– Strategy: place “related” data blocks in the same cylinder

group whenever possible.
• seek latency is proportional to seek distance

– Smear large files across groups:
• Place a run of contiguous blocks in each group.

– Reserve inode blocks in each cylinder group.
• This allows inodes to be allocated close to their

directory entries and close to their data blocks (for
small files).

Sequential File Write

physical
disk

sector

time in milliseconds

write
write stall
read

sync command
(typed to shell)
pushes indirect
blocks to disk

read next
block of

free space
bitmap (??)

note sequential block
allocation

sync

Sequential Writes: A Closer Look

write
write stall

140 ms
delay for

cylinder seek
etc. (???)

longer delay
for head movement

to push indirect
blocks

16 MB in one second
(one indirect block worth)

time in milliseconds

physical
disk

sector

The Problem of Metadata Updates

• Metadata updates are a second source of FFS
seek overhead.
– Metadata writes are poorly localized.

• E.g., extending a file requires writes to the inode,
direct and indirect blocks, cylinder group bit maps
and summaries, and the file block itself.

• Metadata writes can be delayed, but this incurs a
higher risk of file system corruption in a crash.
– If you lose your metadata, you are dead in the water.
– FFS schedules metadata block writes carefully to limit

the kinds of inconsistencies that can occur.
• Some metadata updates must be synchronous on

controllers that don’t respect order of writes.

6

FFS Failure Recovery
FFS uses a two-pronged approach to handling failures:
1. Carefully order metadata updates to ensure that no

dangling references can exist on disk after a failure.
– Never recycle a resource (block or inode) before zeroing all

pointers to it (truncate, unlink, rmdir).
– Never point to a structure before it has been initialized.

• E.g., sync inode on creat before filling directory entry,
and sync a new block before writing the block map.

2. Run a file system scavenger (fsck) to fix other
problems.
– Free blocks and inodes that are not referenced.
– Fsck will never encounter a dangling reference or double

allocation.

Alternative: Logging and Journaling
• Logging can be used to localize synchronous metadata

writes, and reduce the work that must be done on
recovery.

• Universally used in database systems.
• Used for metadata writes in journaling file systems

• Key idea: group each set of related updates into a
single log record that can be written to disk
atomically (“all-or-nothing”).
– Log records are written to the log file or log disk

sequentially.
• No seeks, and preserves temporal ordering.

– Each log record is trailed by a marker (e.g., checksum) that
says “this log record is complete”.

– To recover, scan the log and reapply updates.

Metadata Logging
Here’s one approach to building a fast filesystem:
1. Start with FFS with clustering.
2. Make all metadata writes asynchronous.
But, that approach cannot survive a failure, so:
3. Add a supplementary log for modified metadata.
4. When metadata changes, write new versions

immediately to the log, in addition to the
asynchronous writes to “home”.

5. If the system crashes, recover by scanning the log.
Much faster than scavenging (fsck) for large

volumes.
6. If the system does not crash, then discard the log.

Representing Small Files
• Internal fragmentation in the file system blocks can waste

significant space for small files.
– E.g., 1KB files waste 87% of disk space (and bandwidth) in a

naive file system with an 8KB block size.
– Most files are small: one study [Irlam93] shows a median

of 22KB.
• FFS solution: optimize small files for space efficiency.

– Subdivide blocks into 2/4/8 fragments (or just frags).
– Free block maps contain one bit for each fragment.

• To determine if a block is free, examine bits for all its
fragments.

– The last block of a small file is stored on fragment(s).
• If multiple fragments they must be contiguous.

[Provided for completeness]

Small-File Create Storm

write
write stall

time in milliseconds

physical
disk

sector
sync

sync

syncinodes and
file contents

(localized allocation)

delayed-write
metadata

note synchronous
writes for some

metadata

50 MB

Small-File Create: A Closer
Look

time in milliseconds

physical
disk

sector

7

Filesystems
• Each file volume (filesystem) has a type, determined by its disk

layout or the network protocol used to access it.
– ufs (ffs), lfs, nfs, rfs, cdfs, etc.
– Filesystems are administered independently.

• Modern systems also include “logical” pseudo-filesystems in the
naming tree, accessible through the file syscalls.
– procfs: the /proc filesystem allows access to process

internals.
– mfs: the memory file system is a memory-based scratch

store.
• Processes access filesystems through common syscalls

[Provided for completeness]

VFS: the Filesystem Switch

syscall layer (file, uio, etc.)
user space

Virtual File System (VFS)network
protocol

stack
(TCP/IP) NFS FFS LFS etc.*FS etc.

device drivers

• Sun Microsystems introduced the virtual file system
interface in 1985 to accommodate diverse filesystem
types cleanly.
– VFS allows diverse specific file systems to coexist

in a file tree, isolating all FS-dependencies in
pluggable filesystem modules.

Vnodes
• In the VFS framework, every file or directory in

active use is represented by a vnode object in
kernel memory.

syscall layer

NFS UFS

free vnodes

Each vnode has a standard
file attributes struct.

Vnode operations are
macros that vector to
filesystem-specific
procedures.

Generic vnode points at
filesystem-specific struct
(e.g., inode, rnode), seen
only by the filesystem.

Each specific file system
maintains a cache of its
resident vnodes.

V/Inode Cache
HASH(fsid, fileid)

VFS free list head
Active vnodes are reference- counted
by the structures that hold pointers to
them.

- system open file table
- process current directory
- file system mount points
- etc.

Each specific file system maintains its
own hash of vnodes (BSD).

- specific FS handles initialization
- free list is maintained by VFSvget(vp): reclaim cached inactive vnode from VFS free list

vref(vp): increment reference count on an active vnode
vrele(vp): release reference count on a vnode
vgone(vp): vnode is no longer valid (file is removed)

Network File System (NFS)

syscall layer

UFS

NFS
server

VFS

VFS

NFS
client

UFS

syscall layer

client
user programs

network

server

NFS Protocol
• NFS is a network protocol layered above TCP/IP.

– Original implementations (and most today) use UDP
datagram transport for low overhead.
• Maximum IP datagram size was increased to

match FS block size, to allow send/receive of
entire file blocks.

• Newer implementations use TCP as a transport.
– The NFS protocol is a set of message formats and

types for request/response (RPC) messaging.

8

NFS Vnodes

syscall layer

UFS

NFS
server

VFS

RPC/etc.

network

nfsnode

NFS client stubs

nfs_vnodeops

The nfsnode holds information
needed to interact with the server
to operate on the file.

struct nfsnode* np = VTONFS(vp);

• The NFS protocol has an operation type for
(almost) every vnode operation, with similar
arguments/results.

Vnode Operations and Attributes

directories only
vop_lookup (OUT vpp, name)
vop_create (OUT vpp, name, vattr)
vop_remove (vp, name)
vop_link (vp, name)
vop_rename (vp, name, tdvp, tvp, name)
vop_mkdir (OUT vpp, name, vattr)
vop_rmdir (vp, name)
vop_symlink (OUT vpp, name, vattr)
vop_readdir (uio, cookie)
vop_readlink (uio)

files only
vop_getpages (page**, count, offset)
vop_putpages (page**, count, sync, offset)
vop_fsync ()

vnode attributes (vattr)
type (VREG, VDIR, VLNK, etc.)
mode (9+ bits of permissions)
nlink (hard link count)
owner user ID
owner group ID
filesystem ID
unique file ID
file size (bytes and blocks)
access time
modify time
generation number

generic operations
vop_getattr (vattr)
vop_setattr (vattr)
vhold()
vholdrele()Not to be tested

Pathname Traversal
• When a pathname is passed as an argument to a system call, the

syscall layer must “convert it to a vnode”.
• Pathname traversal is a sequence of vop_lookup calls to

descend the tree to the named file or directory.

open(“/tmp/zot”)
vp = get vnode for / (rootdir)
vp->vop_lookup(&cvp, “tmp”);
vp = cvp;
vp->vop_lookup(&cvp, “zot”);

Issues:
1. crossing mount points
2. obtaining root vnode (or current dir)
3. finding resident vnodes in memory
4. caching name->vnode translations
5. symbolic (soft) links
6. disk implementation of directories
7. locking/referencing to handle races

with name create and delete operations

File Handles
• Question: how does the client tell the server which

file or directory the operation applies to?
– Similarly, how does the server return the result of

a lookup?
• In NFS, the reference is a file handle or fhandle, a

token/ticket whose value is determined by the server.
– Includes all information needed to identify the

file/object on the server, and get a pointer to it
quickly.

volume ID inode # generation # Typical NFSv3

NFS: Identity/Security
• “Classic NFS” was designed for a LAN under common

administrative control.
– Common uid/gid space
– All client kernels are trusted to properly

represent the local user identity.
– Kernels trusted to control access to cached data.

• Volume export (mount privilege) control
– Access control list at server
– Subjects are nodes (e.g., DNS name or IP address)

• Mount just gives you a root filehandle: those file
handles are capabilities.

NFS: From Concept to
Implementation

• Now that we understand the basics, how do we make
it work in a real system?
– How do we make it fast?

• Answer: caching, read-ahead, and write-behind.
– How do we make it reliable? What if a message is

dropped? What if the server crashes?
• Answer: client retransmits request until it

receives a response.
– How do we preserve the failure/atomicity model?

• Answer: well, we don’t, at least not completely.
– What about security and access control?

9

NFS as a “Stateless” Service
The NFS server maintains no transient information

about its clients; there is no state other than the file
data on disk.

Makes failure recovery simple and efficient.
• no record of open files
• no server-maintained file offsets

– Read and write requests must explicitly transmit the byte
offset for the operation.

• no record of recently processed requests
– Retransmitted requests may be executed more than once.
– Requests are designed to be idempotent whenever possible.
– E.g., no append mode for writes, and no exclusive create.

The Synchronous Write Problem

• Stateless NFS servers must commit each operation
to stable storage before responding to the client.
– Interferes with FS optimizations, e.g., clustering,

LFS, and disk write ordering (seek scheduling).
• Damages bandwidth and scalability.

– Imposes disk access latency for each request.
• Not so bad for a logged write; much worse for a

complex operation like an FFS file write.
• The synchronous update problem occurs for any

storage service with reliable update (commit).

Speeding Up NFS Writes
• Interesting solutions to the synchronous write problem, used

in high-performance NFS servers:
• Delay the response until convenient for the server.

– E.g., NFS write-gathering optimizations for clustered
writes (similar to group commit in databases).

• [NFS V3 commit operation]
– Relies on write-behind from NFS I/O daemons (iods).

• Throw hardware at it: non-volatile memory (NVRAM)
– Battery-backed RAM or UPS (uninterruptible power

supply).
– Use as an operation log (Network Appliance WAFL)...
– ...or as a non-volatile disk write buffer (Legato).

• Replicate server and buffer in memory (e.g., MIT Harp).

Detecting Server Failure with a
Session Verifier

What if y == x?
How to guarantee that y != x?
What is the implication of re-executing A and B, and after C?
Some uses: NFS V3 write commitment, RPC sessions, NFS V4 and DAFS (client).

oops...

“Do A for me.”

“OK, my verifier is x.”

“B”

“x”

“C”

“OK, my verifier is y.”

“A and B”

“y”

S, x

S´, y

The Retransmission Problem
• Sun RPC (and hence NFS) masks network errors by

retransmitting each request after a timeout.
– Handles dropped requests or dropped replies

easily, but an operation may be executed more
than once.

– Sun RPC has execute-at-least-once semantics,
but we need execute-at-most-once semantics for
non-idempotent operations.

– Retransmissions can radically increase load on a
slow server.

Solutions
1. Use TCP or some other transport protocol that

produces reliable, in-order delivery.
– higher overhead, overkill

2. Implement an execute-at-most once RPC transport.
– sequence numbers and timestamps

3. Keep a retransmission cache on the server.
– Remember the most recent request IDs and their

results, and just resend the result....does this
violate statelessness?

4. Hope for the best and smooth over non-idempotent
requests.

• Map ENOENT and EEXIST to ESUCCESS.

10

File Cache Consistency
• Caching is a key technique in distributed systems.

– The cache consistency problem: cached data may become
stale if cached data is updated elsewhere in the network.

• Solutions:
– Timestamp invalidation (NFS).

• Timestamp each cache entry, and periodically query the
server: “has this file changed since time t?”; invalidate
cache if stale.

– Callback invalidation (AFS).
• Request notification (callback) from the server if the file

changes; invalidate cache on callback.
– Leases (NQ-NFS) [Gray&Cheriton89]

Recovery in Stateless NFS
• If the server fails and restarts, there is no need to

rebuild in-memory state on the server.
– Client reestablishes contact (e.g., TCP connection).
– Client retransmits pending requests.

• Classical NFS uses a connectionless transport
(UDP).
– Server failure is transparent to the client
– No connection to break or reestablish.
– Sun/ONC RPC masks network errors by retransmitting a

request after an adaptive timeout.
• Crashed server is indistinguishable from a slow server.
• Dropped packet is indistinguishable from a crashed

server.

Drawbacks of a Stateless Service
• The stateless nature of classical NFS has

compelling design advantages (simplicity), but also
some key drawbacks:
– Recovery-by-retransmission constrains the server

interface.
• ONC RPC/UDP has execute-mostly-once semantics

(“send and pray”), which compromises performance
and correctness.

– Update operations are disk-limited.
• Updates must commit synchronously at the server.

– NFS cannot (quite) preserve local single-copy semantics.
• Files may be removed while they are open on the

client.
• Server cannot help in client cache consistency.

• Let’s look at the consistency problem...

Timestamp Validation in NFS [1985]
• NFSv2/v3 uses a form of timestamp validation like today’s Web

– Timestamp cached data at file grain.
– Maintain per-file expiration time (TTL)
– Probe for new timestamp to revalidate if cache TTL has

expired.
• Get attributes (getattr)

• NFS file cache and access primitives are block-grained, and the
client may issue many operations in sequence on the same file.
– Clustering: File-grained timestamp for block-grained

cache
– Piggyback file attributes on each response
– Adaptive TTL

• What happens on server failure? Client failure?

AFS [1985]
• AFS is an alternative to NFS developed at CMU.

• Duke still uses it.
• Designed for wide area file sharing:

– Internet is large and growing exponentially.
– Global name hierarchy with local naming contexts and

location info embedded in fully qualified names.
• Much like DNS

– Security features, with per-domain authentication /
access control.

– Whole file caching or 64KB chunk caching
• Amortize request/transfer cost

– Client uses a disk cache
• Cache is preserved across client failure.
• Again, it looks a lot like the Web.

[Provided for completeness]

Callback Invalidations in AFS-2

• AFS-1 uses timestamp validation like NFS; AFS-2
uses callback invalidations.

• Server returns “callback promise” token with file access.
– Like ownership protocol, confers a right to cache the file.
– Client caches the token on its disk.

• Token states: {valid, invalid, cancelled}
• On a sharing collision, server cancels token with a callback.

– Client invalidates cached copy of the associated file.
– Detected on client write to server: last writer wins.
– (No distinction between read/write token.)

[Provided for completeness]

11

Issues with Callback Invalidations
• What happens after a failure?

– Client invalidates its tokens on client restart.
• Invalid tokens may be revalidated, like NFS

getattr or WWW.
– Server must remember tokens across restart.
– Can the client distinguish a server failure from a

network failure?
– Client invalidates tokens after a timeout interval T

if the client has no communication with the server.
• Weakens consistency in failures.

• Then there’s the problem of update semantics: two
clients may be actively updating the same file at the
same time.

[Provided for completeness]

NQ-NFS Leases
• In NQ-NFS, a client obtains a lease on the file that

permits the client’s desired read/write activity.
• “A lease is a ticket permitting an activity; the

lease is valid until some expiration time.”
– A read-caching lease allows the client to cache

clean data.
• Guarantee: no other client is modifying the file.

– A write-caching lease allows the client to buffer
modified data for the file.
• Guarantee: no other client has the file cached.
• Allows delayed writes: client may delay issuing

writes to improve write performance (i.e., client
has a writeback cache).

[Provided for completeness]

Using NQ-NFS Leases

1. Client NFS piggybacks lease requests for a given file
on I/O operation requests (e.g., read/write).
– NQ-NFS leases are implicit and distinct from file locking.

2. The server determines if it can safely grant the
request, i.e., does it conflict with a lease held by
another client.
– read leases may be granted simultaneously to multiple clients
– write leases are granted exclusively to a single client

3. If a conflict exists, the server may send an eviction
notice to the holder.
– Evicted from a write lease? Write back.
– Grace period: server grants extensions while client writes.
– Client sends vacated notice when all writes are complete.

[Provided for completeness]

NQ-NFS Lease Recovery
• Key point: the bounded lease term simplifies

recovery.
– Before a lease expires, the client must renew the lease.
– What if a client fails while holding a lease?

• Server waits until the lease expires, then unilaterally
reclaims the lease; client forgets all about it.

• If a client fails while writing on an eviction, server waits
for write slack time before granting conflicting lease.

– What if the server fails while there are outstanding leases?
• Wait for lease period + clock skew before issuing new

leases.
– Recovering server must absorb lease renewal requests

and/or writes for vacated leases.

[Provided for completeness]

NQ-NFS Leases and Cache
Consistency

– Every lease contains a file version number.
• Invalidation cache iff version number has changed.

– Clients may disable client caching when there is
concurrent write sharing.

• no-caching lease (Sprite)
– What consistency guarantees do NQ-NFS leases

provide?
• Does the server eventually receive/accept all writes?
• Does the server accept the writes in order?
• Are groups of related writes atomic?
• How are write errors reported?
• What is the relationship to NFS V3 commit?

[Provided for completeness]

Using Disk Storage
• Typical operating systems use disks in three different ways:
• System calls allow user programs to access a “raw” disk.

– Unix: special device file identifies volume directly.
– Any process that can open the device file can read or write

any specific sector in the disk volume.
• OS uses disk as backing storage for virtual memory.

– OS manages volume transparently as an “overflow area” for
VM contents that do not “fit” in physical memory.

• 3. OS provides syscalls to create/access files residing on disk.
– OS file system modules virtualize physical disk storage as a

collection of logical files.

[Provided for completeness]

12

Alternative Structure: DOS
FAT

EOF
13
2
9
8

FREE
4

12
3

FREE
EOF
EOF

FREE

snow: 6

rain: 5

hail: 10

Disk Blocks

FAT

0

directory

root
directory

[Provided for completeness]

