
The Classical OS Model in UnixThe Classical OS Model in Unix

A Lasting Achievement?A Lasting Achievement?

“Perhaps the most important achievement of Unix is to
demonstrate that a powerful operating system for
interactive use need not be expensive…it can run on
hardware costing as little as $40,000.”

The UNIX Time-Sharing System*
D. M. Ritchie and K. Thompson

DEC PDP-11/24

http://histoire.info.online.fr/pdp11.html

Elements of the UnixElements of the Unix

1. rich model for IPC and I/O: “everything is a file”
file descriptors: most/all interactions with the outside world are

through system calls to read/write from file descriptors, with a
unified set of syscalls for operating on open descriptors of
different types.

2. simple and powerful primitives for creating and
initializing child processes

fork: easy to use, expensive to implement
Command shell is an “application” (user mode)

3. general support for combining small simple programs to
perform complex tasks

standard I/O and pipelines

A Typical Unix File TreeA Typical Unix File Tree

/

tmp usretc

File trees are built by grafting
volumes from different volumes
or from network servers.

Each volume is a set of directories and files; a host’s file tree is the set of
directories and files visible to processes on a given host.

bin vmunix

ls sh project users

packages

(volume root)

tex emacs

In Unix, the graft operation is
the privileged mount system call,
and each volume is a filesystem.

mount point
mount (coveredDir, volume)

coveredDir: directory pathname
volume: device specifier or network volume

volume root contents become visible at pathname coveredDir

The ShellThe Shell

The Unix command interpreters run as ordinary user
processes with no special privilege.

This was novel at the time Unix was created: other systems
viewed the command interpreter as a trusted part of the OS.

Users may select from a range of interpreter programs
available, or even write their own (to add to the confusion).

csh, sh, ksh, tcsh, bash: choose your flavor...or use perl.

Shells use fork/exec/exit/wait to execute commands composed
of program filenames, args, and I/O redirection symbols.

Shells are general enough to run files of commands (scripts) for
more complex tasks, e.g., by redirecting shell’s stdin.

Shell’s behavior is guided by environment variables.

Using the shellUsing the shell
• Commands: ls, cat, and all that
• Current directory: cd and pwd
• Arguments: echo
• Signals: ctrl-c
• Job control, foreground, and background: &, ctrl-z, bg, fg
• Environment variables: printenv and setenv
• Most commands are programs: which, $PATH, and /bin
• Shells are commands: sh, csh, ksh, tcsh, bash
• Pipes and redirection: ls | grep a
• Files and I/O: open, read, write, lseek, close
• stdin, stdout, stderr
• Users and groups: whoami, sudo, groups

Other application programs

cc

Other application programs

Hardware

Kernel

sh who a.out

date

wc

grep
edvi

ld
as

comp

cpp
nroff

Questions about ProcessesQuestions about Processes

A process is an execution of a program within a private
virtual address space (VAS).

1. What are the system calls to operate on processes?
2. How does the kernel maintain the state of a process?

Processes are the “basic unit of resource grouping”.

3. How is the process virtual address space laid out?
What is the relationship between the program and the process?

4. How does the kernel create a new process?
How to allocate physical memory for processes?

How to create/initialize the virtual address space?

Process InternalsProcess Internals

+ +
user ID

process ID
parent PID

sibling links
children

virtual address space process descriptor (PCB)

resources

thread

stack

Each process has a thread
bound to the VAS.

The thread has a saved user
context as well as a system

context.

The kernel can manipulate
the user context to start the

thread in user mode
wherever it wants.

Process state includes
a file descriptor table,
links to maintain the
process tree, and a

place to store the exit
status.

The address space is
represented by page

table, a set of
translations to physical

memory allocated from a
kernel memory manager.

The kernel must
initialize the process

memory with the
program image to run.

Process CreationProcess Creation
Two ways to create a process

• Build a new empty process from scratch
• Copy an existing process and change it appropriately

Option 1: New process from scratch
• Steps

Load specified code and data into memory;
Create empty call stack

Create and initialize PCB (make look like context-switch)
Put process on ready list

• Advantages: No wasted work
• Disadvantages: Difficult to setup process correctly and to express

all possible options
Process permissions, where to write I/O, environment variables
Example: WindowsNT has call with 10 arguments

[Remzi Arpaci-Dusseau]

Process CreationProcess Creation
Option 2: Clone existing process and change

• Example: Unix fork() and exec()
Fork(): Clones calling process
Exec(char *file): Overlays file image on calling process

• Fork()
Stop current process and save its state
Make copy of code, data, stack, and PCB
Add new PCB to ready list
Any changes needed to PCB?

• Exec(char *file)
Replace current data and code segments with those in specified file

• Advantages: Flexible, clean, simple
• Disadvantages: Wasteful to perform copy and then overwrite of

memory

[Remzi Arpaci-Dusseau]

Process Creation in UnixProcess Creation in Unix

int pid;
int status = 0;

if (pid = fork()) {
/* parent */
…..
pid = wait(&status);

} else {
/* child */
…..
exit(status);

}

Parent uses wait to sleep until
the child exits; wait returns
child pid and status.

Wait variants allow wait on a
specific child, or notification of
stops and other signals.

The fork syscall returns
twice: it returns a zero to the
child and the child process
ID (pid) to the parent.

Unix Unix Fork/Exec/Exit/WaitFork/Exec/Exit/Wait ExampleExample

fork parent fork child

wait exit

int pid = fork();
Create a new process that is a clone of
its parent.

exec*(“program” [, argvp, envp]);
Overlay the calling process virtual
memory with a new program, and
transfer control to it.

exit(status);
Exit with status, destroying the process.
Note: this is not the only way for a
process to exit!

int pid = wait*(&status);
Wait for exit (or other status change) of
a child, and “reap” its exit status.
Note: child may have exited before
parent calls wait!

exec
initialize
child context

How are Unix shells implemented?How are Unix shells implemented?
while (1) {

Char *cmd = getcmd();

intretval = fork();

if (retval == 0) {

// This is the child process

// Setup the child’s process environment here

// E.g., where is standard I/O, how to handle signals?

exec(cmd);

// exec does not return if it succeeds

printf(“ERROR: Could not execute %s\n”, cmd);

exit(1);

} else {

// This is the parent process; Wait for child to finish

intpid = retval;

wait(pid);

}

}

[Remzi Arpaci-Dusseau]

The Concept of ForkThe Concept of Fork

fork creates a child process that is a clone of the parent.
• Child has a (virtual) copy of the parent’s virtual memory.
• Child is running the same program as the parent.
• Child inherits open file descriptors from the parent.

(Parent and child file descriptors point to a common entry in the
system open file table.)

• Child begins life with the same register values as parent.

The child process may execute a different program in its
context with a separate exec() system call.

WhatWhat’’s So Cool About s So Cool About ForkFork

1. fork is a simple primitive that allows process creation
without troubling with what program to run, args, etc.

Serves the purpose of “lightweight” processes (like threads?).

2. fork gives the parent program an opportunity to initialize
the child process…e.g., the open file descriptors.

Unix syscalls for file descriptors operate on the current process.
Parent program running in child process context may open/close

I/O and IPC objects, and bind them to stdin, stdout, and stderr.
Also may modify environment variables, arguments, etc.

3. Using the common fork/exec sequence, the parent (e.g., a command
interpreter or shell) can transparently cause children to read/write from
files, terminal windows, network connections, pipes, etc.

Unix File DescriptorsUnix File Descriptors

Unix processes name I/O and IPC objects by integers
known as file descriptors.
• File descriptors 0, 1, and 2 are reserved by convention

for standard input, standard output, and standard error.
“Conforming” Unix programs read input from stdin, write

output to stdout, and errors to stderr by default.

• Other descriptors are assigned by syscalls to open/create
files, create pipes, or bind to devices or network sockets.
pipe, socket, open, creat

• A common set of syscalls operate on open file
descriptors independent of their underlying types.
read, write, dup, close

The Flavor of Unix: An ExampleThe Flavor of Unix: An Example

char buf[BUFSIZE];
int fd;

if ((fd = open(“../zot”, O_TRUNC | O_RDWR) == -1) {
perror(“open failed”);
exit(1);

}
while(read(0, buf, BUFSIZE)) {

if (write(fd, buf, BUFSIZE) != BUFSIZE) {
perror(“write failed”);
exit(1);

}
}

The perror C library
function examines errno
and prints type of error.

Pathnames may be relative
to process current directory.

Process does not specify
current file offset: the
system remembers it.

Process passes status back to
parent on exit, to report
success/failure.

Open files are named to by
an integer file descriptor.

Standard descriptors (0, 1, 2) for
input, output, error messages
(stdin, stdout, stderr).

Unix File Descriptors IllustratedUnix File Descriptors Illustrated

user space

File descriptors are a special
case of kernel object handles.

pipe

file

socket

process file
descriptor

table

kernel

system open file
table tty

Disclaimer:
this drawing is
oversimplified.

The binding of file descriptors to objects is
specific to each process, like the virtual
translations in the virtual address space.

Kernel Object HandlesKernel Object Handles

Instances of kernel abstractions may be viewed as “objects”
named by protected handles held by processes.
• Handles are obtained by create/open calls, subject to

security policies that grant specific rights for each handle.
• Any process with a handle for an object may operate on the

object using operations (system calls).
Specific operations are defined by the object’s type.

• The handle is an integer index to a kernel table.

port

file

etc.
object

handles
user space kernel

Microsoft NT object handles
Unix file descriptors

Unix File Unix File SyscallsSyscalls

int fd; /* file descriptor */
fd = open(“/bin/sh”, O_RDONLY, 0);
fd = creat(“/tmp/zot”, 0777);
unlink(“/tmp/zot”);

char data[bufsize];
bytes = read(fd, data, count);
bytes = write(fd, data, count);
lseek(fd, 50, SEEK_SET);

mkdir(“/tmp/dir”, 0777);
rmdir(“/tmp/dir”);

process file
descriptor table

system open
file table

/

etc tmpbin

Controlling ChildrenControlling Children

1. After a fork, the parent program has complete control over
the behavior of its child.

2. The child inherits its execution environment from the
parent...but the parent program can change it.
• user ID (if superuser), global variables, etc.
• sets bindings of file descriptors with open, close, dup
• pipe sets up data channels between processes
• setuid to change effective user identity

3. Parent program may cause the child to execute a different
program, by calling exec* in the child context.

Producer/Consumer PipesProducer/Consumer Pipes

outputinput

char inbuffer[1024];
char outbuffer[1024];

while (inbytes != 0) {
inbytes = read(stdin, inbuffer, 1024);
outbytes = process data from inbuffer to outbuffer;
write(stdout, outbuffer, outbytes);

}

Pipes support a simple form of
parallelism with built-in flow control.

e.g.: sort <grades | grep Dan | mail varun

Example: Pipes

Setting Up PipesSetting Up Pipes

int pfd[2] = {0, 0}; /* pfd[0] is read, pfd[1] is write */
int in, out; /* pipeline entrance and exit */

pipe(pfd); /* create pipeline entrance */
out = pfd[0]
in = pfd[1];

/* loop to create a child and add it to the pipeline */
for (i = 1; i < procCount; i++) {

out = setup_child(out);
}

/* pipeline is a producer/consumer bounded buffer */
write(in, ..., ...);
read(out,...,...);

parent

children

in out

Example: Pipes

Setting Up a Child in a PipelineSetting Up a Child in a Pipeline

int setup_child(int rfd) {
int pfd[2] = {0, 0}; /* pfd[0] is read, pfd[1] is write */
int i, wfd;

pipe(pfd); /* create right-hand pipe */
wfd = pfd[1]; /* this child’s write side */
if (fork()) { /* parent */

close(wfd); close(rfd);
} else { /* child */

close(pfd[0]); /* close far end of right pipe */
close(0); close(1);
dup(rfd); dup(wfd);
close(rfd); close(wfd);
...

}
return(pfd[0]);

}

rfd wfd

pfd[1]
pfd[0]

new child
new right-hand
pipeline segment

Example: Pipes

Sharing Open File InstancesSharing Open File Instances

shared seek
offset in shared
file table entry

system open
file table

user ID
process ID

process group ID
parent PID
signal state

siblings
children

user ID
process ID

process group ID
parent PID
signal state

siblings
children

process file
descriptorsprocess

objects

shared file
(inode or vnode)

child

parent

Unix as an Extensible SystemUnix as an Extensible System

“Complex software systems should be built incrementally
from components.”
• independently developed
• replaceable, interchangeable, adaptable

The power of fork/exec/exit/wait makes Unix highly
flexible/extensible...at the application level.
• write small, general programs and string them together

general stream model of communication

• this is one reason Unix has survived

These system calls are also powerful enough to implement
powerful command interpreters (shell).

The Birth of a ProgramThe Birth of a Program

int j;
char* s = “hello\n”;

int p() {
j = write(1, s, 6);
return(j);

}

myprogram.c

compiler

…..
p:

store this
store that
push
jsr _write
ret
etc.

myprogram.s

assembler data

myprogram.o

linker

object
file

data program

(executable file)
myprogram

datadatadata

libraries
and other

objects

WhatWhat’’s in an Object File or Executable?s in an Object File or Executable?

int j = 327;
char* s = “hello\n”;
char sbuf[512];

int p() {
int k = 0;
j = write(1, s, 6);
return(j);

}

text

dataidata

wdata

header

symbol
table

relocation
records

Used by linker; may be
removed after final link
step and strip.

Header “magic number”
indicates type of image.

Section table an array
of (offset, len, startVA)

program sections

program instructions
p

immutable data (constants)
“hello\n”

writable global/static data
j, s

j, s ,p,sbuf

The Program and the Process VASThe Program and the Process VAS

text
dataidata

wdata

header

symbol
table

relocation
records
program

text
data
BSS

user stack
args/env

kernel

data

process VAS

sections segments

BSS
“Block Started by Symbol”
(uninitialized global data)
e.g., heap and sbuf go here.

Args/env strings copied
in by kernel when the
process is created.

Process text segment
is initialized directly
from program text

section.

Process data
segment(s) are

initialized from idata
and wdata sections.

Process stack and BSS
(e.g., heap) segment(s) are

zero-filled.

Process BSS segment may be
expanded at runtime with a
system call (e.g., Unix sbrk)
called by the heap manager

routines.

Text and idata segments
may be write-protected.

Using Region Mapping to Build a VASUsing Region Mapping to Build a VAS

sections

text
dataidata

wdata

header

symbol
table

relocation
records

text
dataidata

wdata

header

symbol
table

relocation
records

BSS

user stack
args/env

kernel u-area

text
data

text
data

executable
image

library (DLL)

loader

segments

Memory-mapped files are used internally
for demand-paged text and initialized static data.

BSS and user stack are
“anonymous” segments.
1. no name outside the process
2. not sharable
3. destroyed on process exit

Unix Signals 101Unix Signals 101

Signals notify processes of internal or external events.
• the Unix software equivalent of interrupts/exceptions
• only way to do something to a process “from the outside”
• Unix systems define a small set of signal types

Examples of signal generation:
• keyboard ctrl-c and ctrl-z signal the foreground process
• synchronous fault notifications, syscall errors
• asynchronous notifications from other processes via kill
• IPC events (SIGPIPE, SIGCHLD)
• alarm notifications signal == “upcall”

Process Handling of SignalsProcess Handling of Signals

1. Each signal type has a system-defined default action.
abort and dump core (SIGSEGV, SIGBUS, etc.)

ignore, stop, exit, continue

2. A process may choose to block (inhibit) or ignore some
signal types.

3. The process may choose to catch some signal types by
specifying a (user mode) handler procedure.

specify alternate signal stack for handler to run on

system passes interrupted context to handler

handler may munge and/or return to interrupted context

Sharing DisksSharing Disks

How should the OS mediate/virtualize/share the disk(s)
among multiple users or programs?
• Safely
• Fairly
• Securely
• Efficiently
• Effectively
• Robustly

Rotational Media [2002]Rotational Media [2002]

SectorTrack

Cylinder

Head
Platter

Arm

Access time = seek time + rotational delay + transfer time

seek time = 5-15 milliseconds to move the disk arm and settle on a cylinder
rotational delay = 8 milliseconds for full rotation at 7200 RPM: average delay = 4 ms
transfer time = 1 millisecond for an 8KB block at 8 MB/s

Bandwidth utilization is less than 50% for any noncontiguous access at a block grain.

Unix PhilosophyUnix Philosophy
Rule of Modularity: Write simple parts connected by clean interfaces.
Rule of Composition: Design programs to be connected to other

programs.
Rule of Separation: Separate policy from mechanism; separate interfaces

from engines.
Rule of Representation: Fold knowledge into data so program logic can

be stupid and robust.
Rule of Transparency: Design for visibility to make inspection and

debugging easier.
Rule of Repair: When you must fail, fail noisily and as soon as possible
Rule of Extensibility: Design for the future, because it will be here

sooner than you think.
Rule of Robustness: Robustness is the child of transparency and

simplicity.

[Eric Raymond]

Unix Philosophy: SimplicityUnix Philosophy: Simplicity
Rule of Economy: Programmer time is expensive; conserve it in

preference to machine time.
Rule of Clarity: Clarity is better than cleverness.
Rule of Simplicity: Design for simplicity; add complexity only where you

must.
Rule of Parsimony: Write a big program only when it is clear by

demonstration that nothing else will do.
Rule of Generation: Avoid hand-hacking; write programs to write

programs when you can.
Rule of Optimization: Prototype before polishing. Get it working before

you optimize it.

[Eric Raymond]

Unix Philosophy: InterfacesUnix Philosophy: Interfaces

Rule of Least Surprise: In interface design, always
do the least surprising thing.

Rule of Silence: When a program has nothing
surprising to say, it should say nothing.

[Eric Raymond]

Rule of Diversity: Distrust all claims for “one true way”.

Worse is Better?Worse is Better?

The following slides are “extra” slides that were not explicitly
discussed in class. Based on what we did talk about, they
should not be too mysterious, but don’t worry about them for the
midterm exam. We will plan to come back to them later.

SmallSmall--File Create StormFile Create Storm

write
write stall

time in milliseconds

physical
disk

sector
sync

sync

syncinodes and
file contents

(localized allocation)

delayed-write
metadata

note synchronous
writes for some

metadata

50 MB

Representing Large FilesRepresenting Large Files
inode

direct
block
map

(12 entries)

indirect
block

double
indirect
block

UFS Inodes represent large files using a
hierarchical block map, similar to a
hierarchical page table.

Each file system block is a clump of sectors (4KB, 8KB, 16KB).
Inodes are 128 bytes, packed into blocks.
Each inode has 68 bytes of attributes and 15 block map entries.

suppose block size = 8KB
12 direct block map entries in the inode can map 96KB of data.
One indirect block (referenced by the inode) can map 16MB of data.
One double indirect block pointer in inode maps 2K indirect blocks.

maximum file size is 96KB + 16MB + (2K*16MB) + ...

VnodesVnodes

In the VFS framework, every file or directory in active use is
represented by a vnode object in kernel memory.

syscall layer

NFS UFS

free vnodes

Active vnodes are reference-
counted by the structures that
hold pointers to them, e.g.,
the system open file table.

Each vnode has a standard
file attributes struct.

Vnode operations are
macros that vector to
filesystem-specific
procedures.

Generic vnode points at
filesystem-specific struct
(e.g., inode, rnode), seen
only by the filesystem.

Each specific file system
maintains a hash of its
resident vnodes.

VnodeVnode Operations and AttributesOperations and Attributes

directories only
vop_lookup (OUT vpp, name)
vop_create (OUT vpp, name, vattr)
vop_remove (vp, name)
vop_link (vp, name)
vop_rename (vp, name, tdvp, tvp, name)
vop_mkdir (OUT vpp, name, vattr)
vop_rmdir (vp, name)
vop_symlink (OUT vpp, name, vattr, contents)
vop_readdir (uio, cookie)
vop_readlink (uio)

files only
vop_getpages (page**, count, offset)
vop_putpages (page**, count, sync, offset)
vop_fsync ()

vnode attributes (vattr)
type (VREG, VDIR, VLNK, etc.)
mode (9+ bits of permissions)
nlink (hard link count)
owner user ID
owner group ID
filesystem ID
unique file ID
file size (bytes and blocks)
access time
modify time
generation number

generic operations
vop_getattr (vattr)
vop_setattr (vattr)
vhold()
vholdrele()

Unix Symbolic (Soft) LinksUnix Symbolic (Soft) Links

Unix files may also be named by symbolic (soft) links.
• A soft link is a file containing a pathname of some other file.

0

rain: 32

hail: 48

inode 48

inode link
count = 1

directory A

0
wind: 18

sleet: 67

directory B

../A/hail/0

inode 67

symlink system call
symlink (existing name, new name)
allocate a new file (inode) with type symlink
initialize file contents with existing name
create directory entry for new file with new name

The target of the link may be
removed at any time, leaving
a dangling reference.

How should the kernel
handle recursive soft links?

Unix File Naming (Hard Links)Unix File Naming (Hard Links)

0

rain: 32

hail: 48

0
wind: 18

sleet: 48

inode 48

inode link
count = 2

directory A directory B

A Unix file may have multiple names.

link system call
link (existing name, new name)
create a new name for an existing file
increment inode link count

unlink system call (“remove”)
unlink(name)
destroy directory entry
decrement inode link count
if count = 0 and file is not in active use
free blocks (recursively) and on-disk inode

Each directory entry naming the
file is called a hard link.

Each inode contains a reference count
showing how many hard links name it.

Process Blocking with Sleep/WakeupProcess Blocking with Sleep/Wakeup

A Unix process executing in kernel mode may block by
calling the internal sleep() routine.
• wait for a specific event, represented by an address
• kernel suspends execution, switches to another ready process
• wait* is the first example we’ve seen

also: external input, I/O completion, elapsed time, etc.

Another process or interrupt handler may call wakeup (event
address) to break the sleep.
• search sleep hash queues for processes waiting on event
• processes marked runnable, placed on internal run queue

Process States and TransitionsProcess States and Transitions

running
(user)

running
(kernel)

readyblocked

Run

Wakeup

interrupt,
exception

Sleep

Yield

trap/return

Mode Changes for Exec/ExitMode Changes for Exec/Exit

Syscall traps and “returns” are not always paired.
Exec “returns” (to child) from a trap that “never happened”
Exit system call trap never returns
system may switch processes between trap and return

In contrast, interrupts and returns are strictly paired.

Exec
call

Exec
entry to

user space

Exit
call

Exec
return

Join
call

Join
returnparent

child

transition from user to kernel mode (callsys)

transition from kernel to user mode (retsys)

Exec enters the child by
doctoring up a saved user

context to “return” through.

Kernel Stacks and Trap/Fault HandlingKernel Stacks and Trap/Fault Handling

data

Processes
execute user

code on a user
stack in the user

portion of the
process virtual
address space.

Each process has a
second kernel stack
in kernel space (the
kernel portion of the

address space).

stack

stack

stack

stack

System calls
and faults run
in kernel mode
on the process
kernel stack.

syscall
dispatch

table

System calls run
in the process

space, so copyin
and copyout can

access user
memory.

The syscall trap handler makes an indirect call through the system
call dispatch table to the handler for the specific system call.

Internal View of a Unix ProcessInternal View of a Unix Process

data

exec args
env, etc.

process object
or

process descriptor
(allocated from

kernel process table)

user ID
process ID

process group ID
parent PID
signal state

siblings
children

current directory
memory region list

executable file
process group

sessionunused k-stack region
and “fencepost”

kernel stack

signal handlers
process stats

“user area” and
UPAGES

PCB

process file
descriptor
table

system open
file table

(FreeBSD)

(There used to be a lot
more stuff in here.)

process control block
(PCB) for saving

context (machine state)
on context switches

Implementation of ForkImplementation of Fork

1. Clone kernel state associated with the parent process.
Allocate new process descriptor and initialize it.

Copy key fields from parent process struct.

Increment reference counts on shared objects (e.g., VM regions).

2. Clone kernel stack, including kernel/user context.
Copy portions of stack, but just what we need.

How to address both user spaces at once (read from parent, write to child)?

Save parent context (registers) on child stack.
Are pointers in context and kernel stack valid in the child?

3. Mark child ready and (eventually) run it.
Enter child process by “returning” from fork syscall trap.

Safe Handling of Safe Handling of SyscallSyscall ArgsArgs/Results/Results

1. Decode and validate by-value arguments.
Process (stub) leaves arguments in registers or on the stack.

2. Validate by-reference (pointer) IN arguments.
Validate user pointers and copy data into kernel memory with a

special safe copy routine, e.g., copyin().

3. Validate by-reference (pointer) OUT arguments.
Copy OUT results into user memory with special safe copy

routine, e.g., copyout().

4. Set up registers with return value(s); return to user space.
Stub may check to see if syscall failed, possibly raising a user

program exception or storing the result in a variable.

Example: Mechanics of an Alpha Example: Mechanics of an Alpha SyscallSyscall TrapTrap
1. Machine saves return address and switches to kernel stack.

save user SP, global pointer(GP), PC on kernel stack

set kernel mode and transfer to a syscall trap handler (entSys)

2. Trap handler saves software state, and dispatches.
save some/all registers/arguments on process kernel stack

vector to syscall routine through sysent[v0: dispatchcode]

3. Trap handler returns to user mode.
when syscall routine returns, restore user register state

execute privileged return-from-syscall instruction (retsys)

machine restores SP, GP, PC and sets user mode

emerges at user instruction following the callsys

Questions About System Call HandlingQuestions About System Call Handling

1. Why do we need special copyin and copyout routines?
validate user addresses before using them

2. What would happen if the kernel did not save all registers?
3. Where should per-process kernel global variables reside?

syscall arguments (consider size) and error code

4. What if the kernel executes a callsys instruction? What if
user code executes a retsys instruction?

5. How to pass references to kernel objects as arguments or
results to/from system calls?

pointers? No: use integer object handles or descriptors (also
sometimes called capabilities).

VM Internals: Mach/BSD ExampleVM Internals: Mach/BSD Example

start, len,
prot

start, len,
prot

start, len,
prot

start, len,
prot

address
space (task)

vm_map
lookup
enter

pmap

page table

system-wide
phys-virtual map

pmap_enter()
pmap_remove()

pmap_page_protect
pmap_clear_modify
pmap_is_modified
pmap_is_referenced
pmap_clear_reference

putpage
getpage

memory
objects

One pmap (physical map)
per virtual address space.

page cells (vm_page_t)
array indexed by PFN

PerformancePerformance--Driven OS DesignDriven OS Design

1. Design implementations to reduce costs of primitives to
their architecturally imposed costs.

Identify basic architectural operations in a primitive, and
streamline away any fat surrounding them.

“Deliver the hardware.”

2. Design system structures to minimize the architecturally
imposed costs of the basic primitives.

If you can’t make it cheap, don’t use it as much.

3. Microbenchmarking is central to this process.
[lmbench] is about microbenchmaking methodology.

Costs of Process Creation by Costs of Process Creation by ForkFork

• one syscall trap, two return-from-trap, one process switch.
• allocate UPAGES, copy/zero-fill UPAGES through alias
• initialize page table, copy one stack page (at least)

fits in L2/L3? Depends on size of process?

• cache actions on UPAGES? for context switch?
(consider virtually indexed writeback caches and TLB)

user ID
process ID

process group ID
parent PID

children, etc.
kernel stack

signal handlers
process stats

PCB

UPAGES (uarea)

Costs of ExecCosts of Exec

1. Deallocate process pages and translation table.
TLB invalidate

2. Allocate/zero-fill and copyin/copyout the arguments and
base stack frame.

3. Read executable file header and reset page translations.
map executable file sections on VAS segments

4. Handle any dynamic linking.
jump tables or load-time symbol resolution

Pathname TraversalPathname Traversal

When a pathname is passed as an argument to a system call,
the syscall layer must “convert it to a vnode”.

Pathname traversal is a sequence of vop_lookup calls to descend
the tree to the named file or directory.

open(“/tmp/zot”)
vp = get vnode for / (rootdir)
vp->vop_lookup(&cvp, “tmp”);
vp = cvp;
vp->vop_lookup(&cvp, “zot”);

Issues:
1. crossing mount points
2. obtaining root vnode (or current dir)
3. finding resident vnodes in memory
4. caching name->vnode translations
5. symbolic (soft) links
6. disk implementation of directories
7. locking/referencing to handle races

with name create and delete operations

Delivering SignalsDelivering Signals

1. Signal delivery code always runs in the process context.
2. All processes have a trampoline instruction sequence

installed in user-accessible memory.
3. Kernel delivers a signal by doctoring user context state to

enter user mode in the trampoline sequence.
First copies the trampoline stack frame out to the signal stack.

4. Trampoline sequence invokes the signal handler.
5. If the handler returns, trampoline returns control to kernel

via sigreturn system call.
Handler gets a sigcontext (machine state) as an arg; handler may

modify the context before returning from the signal.

When to Deliver Signals?When to Deliver Signals?

run
user

run
kernel

readyblocked

run

wakeup

trap/fault

sleep

preempted

suspend/run

new

fork

zombie exit

swapout/swapin swapout/swapin

(suspend)

Interrupt low-
priority sleep if
signal is posted.

Check for posted
signals after wakeup.

Deliver signals
when resuming
to user mode.

Deliver signals
when returning
to user mode
from trap/fault.

FilesystemsFilesystems

Each file volume (filesystem) has a type, determined by its
disk layout or the network protocol used to access it.

ufs (ffs), lfs, nfs, rfs, cdfs, etc.

Filesystems are administered independently.

Modern systems also include “logical” pseudo-filesystems in
the naming tree, accessible through the file syscalls.

procfs: the /proc filesystem allows access to process internals.

mfs: the memory file system is a memory-based scratch store.

Processes access filesystems through common system calls.

Limitations of the Unix Process ModelLimitations of the Unix Process Model

The pure Unix model has several shortcomings/limitations:
• Any setup for a new process must be done in its context.
• Separated Fork/Exec is slow and/or complex to implement.

A more flexible process abstraction would expand the ability
of a process to manage another externally.

This is a hallmark of systems that support multiple operating
system “personalities” (e.g., NT) and “microkernel” systems
(e.g., Mach).

Pipes are limited to transferring linear byte streams between a
pair of processes with a common ancestor.

Richer IPC models are needed for complex software systems
built as collections of separate programs.

