
1

The Classical OS Model in UnixThe Classical OS Model in Unix

Nachos Exec/Exit/Join ExampleNachos Exec/Exit/Join Example

Exec parent Exec child

Join Exit

SpaceID pid = Exec(“myprogram”, 0);
Create a new process running the
program “myprogram”.

int status = Join(pid);
Called by the parent to wait for a
child to exit, and “reap” its exit
status. Note: child may have
exited before parent calls Join!

Exit(status);
Exit with status, destroying
process. Note: this is not the
only way for a proess to exit!.

Unix Unix Fork/Exec/Exit/WaitFork/Exec/Exit/Wait ExampleExample

fork parent fork child

wait exit

int pid = fork();
Create a new process that is a clone of
its parent.

exec*(“program” [, argvp , envp]);
Overlay the calling process virtual
memory with a new program, and
transfer control to it.

exit(status);
Exit with status, destroying the process.

int pid = wait*(&status);
Wait for exit (or other status change) of
a child.

exec
initialize
child context

Elements of the Unix Process and I/O ModelElements of the Unix Process and I/O Model

1. rich model for IPC and I/O: “ everything is a file”
file descriptors: most/all interactions with the outside world are

through system calls to read/write from file descriptors, with a
unified set of syscalls for operating on open descriptors of
different types.

2. simple and powerful primitives for creating and
initializing child processes

fork : easy to use, expensive to implement

3. general support for combining small simple programs to
perform complex tasks

standard I/O and pipelines: good programs don’t know/care
where their input comes from or where their output goes

Unix File DescriptorsUnix File Descriptors

Unix processes name I/O and IPC objects by integers
known as file descriptors.
• File descriptors 0, 1, and 2 are reserved by convention

for standard input, standard output , and standard error .
“Conforming” Unix programs read input from stdin, write

output to stdout, and errors to stderr by default.

• Other descriptors are assigned by syscalls to open/create
files, create pipes, or bind to devices or network sockets.
pipe, socket, open,creat

• A common set ofsyscalls operate on open file
descriptors independent of their underlying types.
read, write, dup, close

Unix File Descriptors IllustratedUnix File Descriptors Illustrated

user space

File descriptors are a special
case of kernel object handles.

pipe

file

socket

process file
descriptor

table

kernel

system open file
table

tty

Disclaimer:
this drawing is
oversimplified.

The binding of file descriptors to objects is
specific to each process, like the virtual
translations in the virtual address space.

2

The Concept of ForkThe Concept of Fork

The Unix system call for process creation is called fork().

The fork system call creates a child process that is a clone of
the parent.

• Child has a (virtual) copy of the parent’s virtual memory.
• Child is running the same program as the parent.
• Child inherits open file descriptors from the parent.

(Parent and child file descriptors point to a common entry in the
system open file table.)

• Child begins life with the same register values as parent.

The child process may execute a different program in its
context with a separate exec() system call.

Example: Process Creation in UnixExample: Process Creation in Unix

int pid;
int status = 0;

if (pid= fork()) {
/* parent */
…..
pid = wait(&status);

} else {
/* child */
…..
exit(status);

}

Parent uses wait to sleep until
the child exits; wait returns
child pid and status.

Wait variants allow wait on a
specific child, or notification of
stops and other signals.

The fork syscall returns
twice: it returns a zero to the
child and the child process
ID (pid) to the parent.

What’s So Cool About What’s So Cool About ForkFork

1. fork is a simple primitive that allows process creation
without troubling with what program to run, args, etc.

Serves some of the same purposes as threads.

2. fork gives the parent program an opportunity to initialize
the child process…especially the open file descriptors.

Unix syscalls for file descriptors operate on the current process.
Parent program running in child process context may open/close

I/O and IPC objects, and bind them to stdin, stdout, and stderr.
Also may modify environment variables, arguments, etc.

3. Using the common fork/exec sequence, the parent (e.g., a command
interpreter or shell) can transparently cause children to read/write from
files, terminal windows, network connections, pipes, etc.

Producer/Consumer PipesProducer/Consumer Pipes

outputinput

char inbuffer[1024];
char outbuffer[1024];

while (inbytes != 0) {
inbytes = read(stdin, inbuffer, 1024);
outbytes = process data frominbuffer to outbuffer;
write(stdout, outbuffer, outbytes);

}

Pipes support a simple form of
parallelism with built-in flow control .

e.g.: sort <grades | grep Dan | mail sprenkle

Unix as an Extensible SystemUnix as an Extensible System

“Complex software systems should be built incrementally
from components.”
• independently developed

• replaceable, interchangeable, adaptable

The power of fork/exec/exit/wait makes Unix highly
flexible/extensible...at the application level.
• write small, general programs and string them together

general stream model of communication

• this is one reason Unix has survived

These system calls are also powerful enough to implement
powerful command interpreters (shell).

The ShellThe Shell

The Unix command interpreters run as ordinary user
processes with no special privilege.

This was novel at the time Unix was created: other systems
viewed the command interpreter as a trusted part of the OS.

Users may select from a range of interpreter programs
available, or even write their own (to add to the confusion).

csh, sh, ksh, tcsh, bash: choose your flavor...or use perl.

Shells use fork/exec/exit/wait to execute commands composed
of program filenames, args, and I/O redirection symbols.

Shells are general enough to run files of commands (scripts) for
more complex tasks, e.g., by redirecting shell’s stdin.

Shell’s behavior is guided by environment variables.

3

Limitations of the Unix Process ModelLimitations of the Unix Process Model

The pure Unix model has several shortcomings/limitations:
• Any setup for a new process must be done in its context.
• Separated Fork/Exec is slow and/or complex to implement.

A more flexible process abstraction would expand the ability
of a process to manage another externally.

This is a hallmark of systems that support multiple operating
system “personalities” (e.g., NT) and “microkernel” systems
(e.g., Mach).

Pipes are limited to transferring linear byte streams between a
pair of processes with a common ancestor.

Richer IPC models are needed for complex software systems
built as collections of separate programs.

Process InternalsProcess Internals

+ +
user ID

process ID
parent PID
sibling links

children

virtual address space process descriptor

resources

thread

stack

Each process has a thread
bound to the VAS.

The thread has a saved user
context as well as a system

context.

The kernel can manipulate
the user context to start the

thread in user mode
wherever it wants.

Process state includes
a file descriptor table,
links to maintain the
process tree, and a

place to store the exit
status.

The address space is
represented by page

table, a set of
translations to physical

memory allocated from a
kernel memory manager .

The kernel must
initialize the process

memory with the
program image to run.

Mode Changes for Exec/ExitMode Changes for Exec/Exit

Syscall traps and “returns” are not always paired.
Exec “returns” (to child) from a trap that “never happened”

Exit system call trap never returns

system may switch processes between trap and return

In contrast, interrupts and returns are strictly paired.

Exec
call

Exec
entry to

user space

Exit
call

Exec
return

Join
call

Join
returnparent

child

transition from user to kernel mode (callsys)

transition from kernel to user mode (retsys)

Exec enters the child by
doctoring up a saved user

context to “return” through.

A Typical Unix File TreeA Typical Unix File Tree

/

tmp usretc

File trees are built by grafting
volumes from different volumes
or from network servers.

Each volume is a set of directories and files; a host’s file tree is the set of
directories and files visible to processes on a given host.

bin vmunix

ls sh project users

packages

(volume root)

tex emacs

In Unix, the graft operation is
the privileged mount system call,
and each volume is a filesystem.

mount point
mount (coveredDir, volume)

coveredDir: directory pathname
volume: devicespecifier or network volume

volume root contents become visible at pathname coveredDir

FilesystemsFilesystems

Each file volume (filesystem) has a type, determined by its
disk layout or the network protocol used to access it.

ufs (ffs), lfs, nfs, rfs, cdfs, etc.

Filesystemsare administered independently.

Modern systems also include “logical” pseudo -filesystems in
the naming tree, accessible through the file syscalls.

procfs: the /proc filesystem allows access to process internals.

mfs: the memory file system is a memory -based scratch store.

Processes access filesystems through common system calls.

QuestionsQuestions

A process is an execution of a program within a private
virtual address space (VAS).

1. What are the system calls to operate on processes?

2. How does the kernel maintain the state of a process?
Processes are the “basic unit of resource grouping”.

3. How is the process virtual address space laid out?
What is the relationship between the program and the process?

4. How does the kernel create a new process?
How to allocate physical memory for processes?

How to create/initialize the virtual address space?

