TheClassicd OSModd in Unix

HRLR 1S p—

Nachos Exec/Exit/Join Example

ppacel D pid= Exec(“myprogram”, 0);
Exec parent Exec child Create a new process running the
program “ myprogrant .

>
int status = Join(pid);

Called by the parent to wait for a
child to exit, and “ reap” itsexit
status. Note: child may have
exited before parent calls Join!

Join it xit(status);
N Exit with status, destroying
- process. Note: thisis not the
l only way for a_proess to exit!.

Unix Fork/Exec/Exit/Wait Example

int pid = fork();
fork parent f i d Create a new process that is a clone of

its parent.
initialize

child context

exec*(*program” [, argvp, envp]);

xec Overlay the calling process virtual
memory with a new program, and
transfer control to it.

exit(status);
Exit with status, destroying the process.
wait i int pid = wait* (& status);
- - N Wait for exit (or other status change) of
l il

Elements of the Unix Processand I/O Model

1. richmodel for IPC and I/O: “ everythingisafile”
file descriptors: most/all interactions with the outside world are
through system calls to read/write fromfile descriptors, with a
unified set of syscalls for operating on open descriptors of
different types.
2. simple and powerful primitives for creating and
initializing child processes
fork: easy to use, expensive to implement
3. general support for combining small simple programsto
perform complex tasks

standard 1/0 and pipelines good programs don’t know/care
where their input comes from or where their output goes

LR T ——

Unix File Descriptors

Unix processes name 1/0 and | PC objects by integers
known asfile descriptors.
* Filedescriptors0, 1, and 2 arereserved by convention
for standardinput, standardoutput, andstandard error .

“Conforming” Unix programsread input from stdin, write
output to stdout, and errors to stderr by default.

« Other descriptors are assigned by syscallsto open/create
files, create pipes, or bind to devices or network sockets.

pipe, socket, open, creat

» A common set of syscalls operate on openfile
descriptorsindependent of their underlying types.
read, write, dup, close

[R TS p—

Unix File Descriptors lllustrated

r file
> pipe
process file R
descriptor > socket

user space

I

table
system open file I":|
File descriptors are a special table Y
case of kernel object handles. L

The binding of file descriptors to objectsis
specific to each process, like the virtual
translationsiin the virtual address space.

LR T S —

this drawing is
oversimplified

The Concept of Fork

The Unix system call for process creation is calledfork().

Thefork system call createsachild processthat isaclone of
the parent.
« Childhasa(virtual) copy of the parent’ svirtual memory.
« Child isrunning the same program asthe parent.
« Child inherits open filedescriptorsfrom the parent.

(Parent and child file descriptors point to acommon entry in the
system openfiletable.)

« Child beginslifewith the sameregister valuesas parent.

The child process may execute adifferent programinits
context with a separate exec() system call.

HRLR 1S p—

What's So Cool AboutFork

1. fork isasimple primitive that allows process creation
without troubling with what program to run, args, etc.
Serves some of the same purposes as threads.
2. fork gives the parent program an opportunity toinitialize
the child process...especially the open file descriptors.
Unix syscalls for file descriptors operate on the current process.

Parent program running in child process context may open/close
1/0 and IPC objects, and bind them to stdin, stdout, and stiderr.

Also may modify environment variables, arguments, etc.
3. Using the common fork/exec sequence, the parent (e.g., acommand

interpreter or shell) can transparently cause children to read/write from
files, termina windows, network connections, pipes, etc.

JRLR TS —

Unix as an Extensible System

“Complex software systems should be built incrementally
from components.”

« independently developed
« replaceable, interchangeable, adaptable
The power of fork/exec/exit/wait makes Unix highly
flexible/extensible...at the application level.
« writesmall, general programsand string them together
general stream model of communication
« thisisonereason Unix hassurvived

These system calls are also powerful enough to implement
powerful command interpreters (shell).

[R TS p—

Example: Process Creation in Unix

he fork syscall returns
ice: it returns a zero to the
ild'and the child process
id) to the parent.

int pid;
int status = 0;

arent useswait to sleep until
H i = the child exits; wait returns
if (pid ;9”’%23& 4 hild pid and status.

ait variants allow wait on a

pid = wait(& status); ecific child, or notification of
} else{ ops and other signals.

/* child */

é}ii'f(stalus);

LR TS —

Producer/Consumer Pipes

char inbuffer[1024];
char outbuffer[1024]; Pipes support asimple form of
parallelism with built-in flow control .
while (inbytes !=0) {
inbytes = read(stdin inbuffer, 1024);
outbytes= process data frominbuffer to outbuffer;
write(stdout, outbuffer, outbytes);

e.g.: sort <grades | grep Dan | mail sprenkie

The Shell

The Unix command interpretersrun as ordinary user
processes with no special privilege.
Thiswas novel at thetime Unix was created: other systems
viewed the command interpreter asatrusted part of the OS.
Users may select from arange of interpreter programs
available, or even write their own (to add to the confusion).
csh, sh, ksh, tcsh, bash: choose your flavor...or use perl.
Shells use fork/exec/exit/wait to execute commands composed

of program filenames, args, and I/O redirection symbols.

Shellsare general enough to run files of commands (scripts for
more complex tasks, e.g., by redirecting shell’s stdin.

Shell’s behavior is guided byenvironment variables

LR T S —

Limitations of the Unix Process M ode|

The pure Unix model has several shortcomings/limitations:
« Any setupfor anew processmust bedoneinitscontext.
« Separated Fork/Execis sow and/or complex to implement.
A more flexible process abstraction would expand the ability
of aprocess to manage another externally.
Thisisahalmark of systemsthat support multiple operating
system “persondities’ (e.g., NT) and “microkernel” systems
(e.g., Mach).
Pipes are limited to transferring linear byte streams between a
pair of processes with acommon ancestor.
Richer |PC models are needed for complex software systems
built as collections of separate programs.

LR TS P —

Process Internals

virtual address space thread process descriptor
user ID
O rocess1D
! N~ R 8
Sbiinglinks
dilden esources
The address space is Each process has athread
represented by page bound to the VAS. Process state includes
taple, aset of) afile descriptor table,
translations to physical Thethread has a saved user links to maintain the
memory dllocated froma. ¢yt aswell asasystem processtree, and a
kernel memory manager . context. place to store the exit
status.
~ Thekernel must The kernel can manipulate
initialize the process the user context to start the
memory with the thread in user mode
program image to run. wherever it wants.

LR TS —

Mode Changesfor Exec/Exit

Syscall trapsand “returns” are not always paired.
Exec “returns’ (to child) from atrap that “ never happened”
Exit system call trap never returns
system may switch processes between trap and return

In contrast, interrupts and returns are strictly paired.

Exec Exec Join

- 4 ErEE | r?;m
= L

Exec enters the child by
doctoring up a saved user
context to “return” through.

transition from user to kernel mode (callsys)

Exec Exit
entryto call Kernel ode (retsys)
user space

LR TS e a—

A Typical Unix File Tree

Each volumeisaset of directoriesand files; ahost’sfile tree is the set of
directories and files visible to processes on agiven host.

A

File trees are built by grafting
volumes from different volumes
or from network servers.

In Unix, the graft operation is
the privileged mount system call, |
and each volume is a filesystem
mount (coveredDir, volume)
coveredDir: directory pathname

volume devicespecifier or network volume
volume oot at p: edDir

LR TS —

Filesystems

Each file volume (fil esystem) has atype, determined by its
disk layout or the network protocol used to accessit.
ufs (ffs), Ifs, nfs, rfs, cdfs, etc.
Filesystemsare administered independently.
Modern systemsalso include“logical” pseudo-filesystems in
the naming tree, accessible through thefile syscalls.
procfs: the /proc filesystem allows access to process internals.
mfs: the memory file systemisamemory -based scratch store.

Processes access filesystems through common system calls.

LR TS e a—

uestions

A processis an execution of aprogram within aprivate
virtual address space (VAS).
1. What are the system calls to operate on processes?
2. How does the kernel maintain the state of a process?
Processes are the “basic unit of resource grouping”.
3. How isthe process virtual address space laid out?
What is the relationship between the program and the process?
4. How does the kernel create a new process?
How to allocate physical memory for processes?
How to createfinitialize the virtual address space?

LR TS S —

