Asynchronous Replication and Bayou

Idea: build available/scalable information services with read-any-write-any replication and a weak consistency model.
- no denial of service during transient network partitions
- supports massive replication without massive overhead
- "ideal for the Internet and mobile computing" [Golding92]

Problems: replicas may be out of date, may accept conflicting writes, and may receive updates in different orders.

Asynchronous Replication

Synchronous Replication

Partial Solution: Allow writes to any N replicas (a quorum of size N). To be safe, reads must also request data from a quorum of replicas.

Basic scheme: connect each client (or front-end) with every replica: writes go to all replicas, but client can read from any replica (read-one-write-all replication).

How to ensure that each replica sees updates in the "right" order?

Epidemic Algorithms

PARC developed a family of weak update protocols based on a disease metaphor (epidemic algorithms [Demers et. al. OSR 1988]):
- Each replica periodically "touches" a selected "susceptible" peer site and "infects" it with updates.
 - Transfer every update known to the carrier but not the victim.
 - Partner selection is randomized using a variety of heuristics.
- Theory shows that the epidemic eventually infects the entire population with high probability (assuming it is connected).
 - Probability that replicas that have not yet converged decreases exponentially with time.
 - Heuristics (e.g., push vs. pull) affect traffic load and the expected time-to-convergence.

Grapevine and Clearinghouse (Xerox)

Weakly consistent replication was used in earlier work at Xerox PARC:
- Grapevine and Clearinghouse name services
 - Updates were propagated by unreliable multicast ("direct mail").
- Periodic anti-entropy exchanges among replicas ensure that they eventually converge, even if updates are lost.
 - Arbitrary pairs of replicas periodically establish contact and resolve all differences between their databases.
 - Various mechanisms (e.g., MD5 digests and update logs) reduce the volume of data exchanged in the common case.
 - Deletions handled as a special case via "death certificates" recording the delete operation as an update.

How to Ensure That Replicas Converge

1. Using any form of epidemic (randomized) anti-entropy, all updates will (eventually) be known to all replicas.
2. Imposing a global order on updates guarantees that all sites (eventually) apply the same updates in the same order.
3. Assuming conflict detection is deterministic, all sites will detect the same conflicts.
 - Write conflicts cannot (generally) be detected when a site accepts a write; they appear when updates are applied.
4. Assuming conflict resolution is deterministic, all sites will resolve all conflicts in exactly the same way.
Issues and Techniques for Weak Replication

2. How to impose a global ordering on updates? Logical clocks and delayed delivery (or delayed commitment) of updates survive transient link failures.
4. How to determine which updates to propagate to a peer on each anti-entropy exchange? Vector clocks or vector timestamps.
5. When can a site safely commit or stabilize received updates? Receiver acknowledgement by vector clocks (TSAE protocol).

Bayou Basics

1. Highly available, weak replication for mobile clients. Beware: every device is a “server”... let’s call ‘em sites.
2. Update conflicts are detected/resolved by rules specified by the application and transmitted with the update. Interpreted dependency checks and merge procedures.
3. Stale or tentative data may be observed by the client, but may mutate later. The client is aware that some updates have not yet been confirmed.

Clocks

1. Physical clocks: Protocols to control drift exist, but physical clock timestamps cannot assign an ordering to “nearly concurrent” events.
2. Logical clocks: 'A's current time is later than the timestamp of any event B knows about, no matter where it happened or who told A about it.’
3. Vector clocks: Order(N) timestamps that say exactly what A knows about events on B, even if A heard it from C.
4. Matrix clocks: Order(N^2) timestamps that say what A knows about what B knows about events on C. Acknowledgement vectors: an O(N) approximation to matrix clocks.

Causality and Logical Time

Constraint: The update ordering must respect potential causality.
- Communication patterns establish a happened-before order on events, which tells us when ordering might matter.
- Event e2 happened-before e1 iff e2 could possibly have affected the generation of e1. We say that e2 ≤ e1.
- Events e1 and e2 are potentially causally related.
- In Bayou, users or applications may perceive inconsistencies if causal ordering of updates is not respected at all replicas. An update u should be ordered after all updates w known to the accepting site at the time u was accepted. E.g., the newsgroup example in the text.

Update Ordering

Problem: how to ensure that all sites recognize a fixed order on updates, even if updates are delivered out of order?
Solution: Assign timestamps to updates at their accepting site, and order them by source timestamp at the receiver.
- Assign nodes unique IDs: break ties with the origin node ID.
- What (if any) ordering exists between updates accepted by different sites?
 Comparing physical timestamps is arbitrary: physical clocks drift. Even a protocol to maintain loosely synchronized physical clocks cannot assign a meaningful ordering to events that occurred at “almost exactly the same time”.
- In Bayou, received updates may affect generation of future updates, since they are immediately visible to the user.
Logical Clocks

Solution: timestamp updates with *logical clocks* [Lamport]

- Timestamping updates with the originating node's logical clock LC induces a partial order that respects potential causality.

 Clock condition: $e_i < e_j$ implies that $LC(e_i) < LC(e_j)$

1. Each site maintains a monotonically increasing clock value LC.
2. Globally visible events (e.g., updates) are timestamped with the current LC value at the generating site.
3. Piggyback current clock value on all messages.

 - Receiver resets local LC:
 - if $LC_{s} > LC_{r}$ then $LC_{r} = LC_{s} + 1$

Logical Clocks: Example

![Logical Clocks Diagram]

Flooding and the Prefix Property

In Bayou, each replica's knowledge of updates is determined by its pattern of communication with other nodes.

- Anti-entropy *floods* updates.
 - Tag each update originating from site i with accept stamp (i, LC_i).
 - Updates from each site are bulk-transmitted causally in an order consistent with their source accept stamps.

- Flooding guarantees the *prefix property* of received updates.
 - If a site knows an update u originating at site i with accept stamp LC_u, then it also knows all preceding updates w originating at site i those with accept stamps $LC_w < LC_u$.

Which Updates to Propagate?

In an anti-entropy exchange, A must send B all updates known to A that are not yet known to B.

- **Problem:** which updates are those?
 - *one-way “push” anti-entropy exchange (Bayou reconciliation)*

Causality and Reconciliation

In general, a transfer from A must send B all updates that did not *happen-before* any update known to B.

- **Can we determine which updates to propagate by comparing logical clocks $LC(A)$ and $LC(B)$?** NO.
Motivation for Vector Clocks

Logical clocks induce an order consistent with causality, but it is actually stronger than causality.

- The converse of the clock condition does not hold: it may be that \(LC(e_1) < LC(e_2) \) even if \(e_1 \) and \(e_2 \) are concurrent.
- If \(A \) could know anything \(B \) knows, then \(LC_A > LC_B \), but if \(LC_A < LC_B \), then that doesn't make it so: "false positives".
- Concurrent updates may be ordered unnecessarily.
- \(e_1 \) happened-before \(e_2 \) if and only if \(TS(e_1) \) dominates \(TS(e_2) \)

We need a clock mechanism that is not so sloppy about capturing causality.

Vector Clocks

Vector clocks (aka vector timestamps or version vectors) are a more detailed representation of what a site might know.

1. In a system with \(N \) nodes, each site keeps a vector timestamp \(TS[N] \) as well as a logical clock \(LC \).
 \[TS[i] \] at site \(i \) is the most recent value of site \(j \)'s logical clock that site \(i \) "heard about".
 \[TS[j] = LC \] each site \(i \) keeps its own \(LC \) in \(TS[i] \).
2. When site \(i \) generates a new event, it increments its logical clock.
 \[TS[i] = TS[i] + 1 \]
3. A site \(r \) observing an event (e.g., receiving a message) from site \(i \) sets its \(TS \), to the pairwise maximum of \(TS_i \) and \(TS_r \).
 For each site \(i \), \(TS[i] = \max(TS[i], TS[j]) \)

The Prefix Property and Reconciliation

Vector clocks work for anti-entropy transfers because they precisely encapsulate which updates a site has seen.

- The prefix property must hold for this to work.
 If a site knows an update \(u \) originating at site \(i \) with accept stamp \(LC_i \), then it also knows all preceding updates \(w \) originating at site \(i \); those with accept stamps \(LC_w < LC_i \).
 \[TS_u[1] \text{ exceeds the origin timestamp (} LC \text{) of the latest update generated by } i \text{ and received at } B. \]
- Updates \(w \) from \(i \) with origin timestamps \(LC(w) > TS_u[1] \) are exactly those updates that did not happen-before \(TS_u \).
 If \(LC(w) > TS_u[1] \), then \(TS_u \) cannot dominate \(TS[w] \), so \(w \) cannot be known to \(B \).
 (Conversely left as an exercise.)
When to Discard or Stabilize Updates?

Problem 1: when can a site discard its pending updates?
When can A know that every other site has seen some update u?
Problem 2: when to commit (stabilize) pending updates?
A committed update w is stable; no other update u can arrive with u < w; w will never need to be rolled back.

These two questions are equivalent:
• Suppose we know that each peer site i has received this update w.
• If and only if A knows about what i, then after A talks to C, C knows that B knows about what w.

Solution 1: Matrix Clocks

Matrix clocks extend vector clocks to capture “what A knows about what B knows about C”.
• Each site maintains a matrix $MC(N,N)$.
 - Row j of i’s matrix clock MC_i is the most recent value of j’s vector clock TS_i that i has heard about.
 - $MC_{i,j} = LC_i$, and $MC_{i,i} =$ TS_i.
 - $MC_{j,k} =$ what i knows about what j knows about what happened at k.
• If A sends a message to B, then MC_B is set to the pairwise maximum of MC_A and MC_B.
• If A knows that B knows u, then after A talks to C, C knows that B knows u too.

Solution 2: Acknowledgment Stamps

Matrix clocks require N^2 state for a system with N nodes. Propagate N^2 state on each exchange.

For anti-entropy, we can conservatively approximate the matrix clock using only N^2 state. [Golding]
• After A passes updates to B, compute B’s ack stamp as the lowest LC entry in TS_B.
• Each node keeps an acknowledgment summary vector $AS(N)$ of ack stamps for every other node “last it heard”.
 (AS vector just has the min value of each row in the matrix clock.)
• In an anti-entropy exchange from A to B, compute AS_A as a pairwise maximum of AS_B and AS_A.
 AS_A does not tell i what j knows about k, but it does say that j knows about every event at k prior to $AS_A(i,j)$ for every k.

Golding’s TSAE Protocol

Golding defined a Timestamped Anti-Entropy (TSAE) protocol that predates Bayou.
• designed for replicated Internet services (e.g., refdbms)
• reconciliation by two-way pairwise anti-entropy exchanges
• flooded updates
• studied role of network topology in partner selection
• uses logical clocks for accept stamps
• total commit ordering defined by logical clocks
• propagates knowledge of peer replica state by ack stamps and ack vectors

The Need for Propagating Acknowledgments

Vector clocks tell us what B knows about C, but they do not reflect what A knows about what B knows about C.
Nodes need this information to determine when it is safe to discard/stabilize updates.
• A can always tell if B has seen an update u by asking B for its vector clock and looking at it.
 - If a originated at site i, then B knows about u if and only if TS_B covers its accept stamp LC_i, $TS_B(i) >= LC_i$.
• A can only know that every site has seen u by looking at the vector clocks for every site.
 - Even if B recently received updates from C, A cannot tell (from looking at B’s vector clock) if B got u from C or if B was already aware of it when C contacted it.

Ack Vectors in TSAE: Example

At the end of this example, everyone knows that everyone has seen all updates with accept stamps of 1, regardless of where they originated.
What else would be known if we used matrix clocks instead?
The Trouble With Ack Vectors

Matrix clocks and ack vectors can impede forward progress in the presence of failures.

- If a replica \(A \) fails or becomes disconnected, other nodes recognize that it is “getting behind.” No node’s ack stamp can advance beyond the accept stamp \(LC(w) \) of the last update \(w \) received by \(A \).
- If a replica gets behind, other nodes cannot retire (discard) received updates \(u \) with \(LC(u) > LC(w) \).
- One solution is to forcibly remove the disconnected node \(A \) from the replica set.

How to bring \(A \) up to date if it later rejoins the replica set? How to order updates generated by \(A \) while disconnected?

Committing Updates in Bayou

Bayou commits updates more aggressively using a primary-commit protocol.

- A single site is designated as the primary.
- The primary commits updates as it receives them. Primary assigns a commit sequence number (CSN) to each committed update.
- The final total update order is defined by CSN order.
- Sites learn of commitment through anti-entropy transfers. A site may learn of an update before learning that the update has been committed by the primary.
- Sites learn of commitment in CSN order. Updates known to be committed are stable; their order will never change.

Reconciliation with CSNs

Each site also maintains a knownCSN counter, the CSN of the latest committed update the site knows has committed.

In an anti-entropy transfer, \(A \) looks at \(B \)’s knownCSN. If \(A \) knows update \(w \) has committed, and \(CSN(w) > \text{knownCSN}_A \), then \(A \) notifies \(B \) that \(w \) has committed.

Drums Update Logs: Example

Bayou Update Logs: Example

Bayou Update Logs: Example

Bayou Update Logs: Example

Discarding Updates in Bayou

Any site \(A \) may truncate any prefix of the stable (committed) portion of its update log to reclaim space.

- \(A \) needs no record of known-committed updates for itself. Committed updates are never rolled back, since commits are received in CSN order, the same as the final order.
- \(A \) keeps stable updates in its log only so it can tell other sites about those updates.
- How can \(A \) reconcile with peers needing discarded updates?
 - Easy: may discard stable updates if there is some other way to reconcile, e.g., send entire committed database state before sending updates.
 - Truncation is a tradeoff: it recovers local storage, but may make later reconciliations more expensive.
Reconciliation with Update Log Truncation

Each site maintains an omitCSN stamp to characterize the omitted log prefix.

omitCSN_A is the latest CSN omitted from A’s log.

An incremental update transfer is insufficient if omitCSN_A > knownCSN_B.

“Here’s what I know: ((knownCSN_B, TSB))

Here’s what I know that you don’t know: ((knownCSN_A - knownCSN_B), (TSA - TSB)).”

Reconciling a Lagging Server

What if a server is too far out of date for an incremental transfer?

• A can’t just send its entire database state.
 B must know about A’s pending tentative updates in case they must be rolled back.

• B may possess updates not known to A; these cannot be discarded.
 Instead, A must send a “committed view” of its database with all tentative updates rolled back.

 …then complete the protocol as before by sending logged updates and commit records unknown to B.

 As described in the paper, Bayou rolls back all logged updates including committed updates, but I don’t see why this is necessary.

 B then rolls its log forward in the usual way, including any new updates from A, possibly interleaved with updates B already had.

Reconciling Using Transportable Media

1. “Sender” dumps its replica state on media (e.g., a floppy).
 E.g., A dumps its update log to the disk, prefixed by (omitCSN_A, omitTS_A) and (CSN_A, TSA).

2. “Receiver” must ask two questions:
 • Am I advanced enough to accept the updates on this disk?
 Is CSN_I > omitCSN_A?
 • Will I learn anything from the updates on this disk?
 Is CSN_I > CSN_I? Or is TSA[k] > TSI[k], for any k?

3. This is exactly like network anti-entropy transfer...

 …except the receiver has access to the sender’s state, and executes both sides of the protocol.

That Pesky “O-Vector”

Problem: what if B has a logged update w that was already committed and discarded by A?

B saw w, but did not know that it was committed.

B cannot tell from omitCSN that A’s committed view reflects w.

B must be prevented from reapplying w.

• Solution: Each site also keeps an omitTS timestamp vector to characterize the omitted prefix of its update log.

omitTS_A[i] is the highest accept stamp of any update originating at site i that was omitted from A’s log.

On a full database transfer, roll back A’s state to omitTS_A, send that state with omitTS_A,

then set omitTS_B = omitTS_A. This is safe because omitTS_A must dominate the “old” omitTS_B.

• B strikes from its log any updates w covered by omitTS_A.

Questions About Bayou

1. What is the effect of a failed primary?
2. What will happen when you reconnect your laptop after you return from a long vacation on a tropical island?
3. If it was a working vacation with some buddies, can you assume that your replicas will converge in the absence of the primary to define the commit order?
4. Can you assume that the interleaving of updates observed during your vacation will be preserved when you reconnect?
5. What if one person goes home and reconnects before the others?
6. How to create/retire replicas and notify peers that they exist?

Write Conflicts in Optimistic Replication

Problem: replicas may accept conflicting writes.

How to detect/resolve the conflicts?

Asynchronous replication is optimistic: since replicas can accept writes independently, it assumes that concurrent writes accepted by different replicas will be nonconflicting.

Systems with synchronous replication may choose to be optimistic to improve availability, e.g., to accept writes issued to a subset of replicas that do not constitute a quorum.
Detecting Update Conflicts: Traditional View

Many systems view updates u and w as nonconflicting iff:
- u and w update different objects (e.g., files or records)
- u and w update the same object, but one writer had observed the other’s update before making its own.

In other words, an update conflict occurs when two processes p and q generate “concurrent” updates to the same object.
- p and q updated the same object, but neither update happened-before the other.
- Updates to an object must follow a well-defined causal chain. Potential causality must induce a total order on the updates.

Example: Coda

Coda is a highly-available replicated file system (successor to AFS) that supports disconnected operation.
- Data is stored in files, which are grouped in volumes, which are stored on servers.
 - Files are the granularity of caching by clients.
- Volumes are the granularity of replication.
 - VSG = Volume Storage Group = set of servers for a volume.
- Availability by read-any/write-all-available replication.
 - On an open, read the file from the “most up-to-date” member of the Available VSG (AVSG).
 - On a close after write, send the new version of the file to all members of the AVSG.

Version Vectors in Coda

How to characterize the “up-to-dateness” of a file version?
Solution: Coda Version Vectors.
- Coda nodes maintain a version vector CVV for each file F.
 - CVV has one element for each server in the file’s VSG.
 - $CVV[i]$ is the # of writes received on this version of F at server i.
- On an open, client sets CVV to the server’s CVV.
- On a close, client updates CVV and propagates it to the AVSG.
 - Increment $CVV[i]$ for each server i that acknowledges the write.
 - We can compare the $CVVs$ to tell if one version of F has updates not reflected in the other.
Two versions conflict if neither CVV dominates the other.

Application-Specific Reconciliation

Only the application can decide how to reconcile conflicting updates detected as writes are applied.
E.g., refdbms.
- Discard updates and deletions for already-deleted records.
- Change entry tag names to resolve add/add conflicts.
 - e.g., change Lamport75 to Lamport75a
- field-specific update conflict resolution

Update Conflicts: the Bayou Approach

Bayou rejects the traditional “blind” view of conflicts:
- Updates might conflict even if they affect different records.
 - Example: two meeting-room records that contain the same room number and overlapping times.
 - Example: two bibliography database entries that describe the same document.
 - Example: two bibliography database entries that describe different documents using the same tag.
- Concurrent updates to the same record might not conflict.
 - Writes don’t conflict if they commute, e.g., they update different fields of the same record.
Detecting/resolving conflicts is application-specific.

Handling Update Conflicts in Bayou

- The primary commit protocol ensures that all sites commit the same writes in the same order.
- But this is not sufficient to guarantee that replicas converge.
 - Dependency checks and merge procedures handle conflicts.
 - Check/merge can examine any state in the replica.
- Check and merge procedures must be deterministic.
 - Limit inputs to the current contents of the database.
 - Execute with fixed resource bounds so they fail deterministically.
- Check/merge is executed every time a write is applied.
 - Rollback must be able to undo the effects of a merge.