Congestion

Adolfo Rodriguez
CPS 214
February 19, 2004

Congestion Control

Router Congestion

I 5w

=

e What if rate of packets arriving > rate of packets departing

Congestion Control Overview

o Challenge: how do we efficiently share network resources
among billions of hosts?
» Today: TCP
Hosts adjust rate based on packet losses
* Alternative solutions
Fair queuing, RED (router support)
Vegas, packet pair (add functionality to TCP)

Rate control, credits

Congestion Control Taxonomy

e Router-centric versus host-centric
e Reservation-based versus feedback-based

o Window-based versus Rate-based

r Scienes 2| bt

Queuing Disciplines

e How to distribute buffers among users/flows

* When buffer overflows, which packet to drop?
e Simple solution: FIFO

< First in, first out

« If packet comes along with no available buffer space, drop it




Fair Queuing Scheduling Background

o Goals: e How do you minimize avg. response time?
« Allocate resources equally among all users/flows « By being unfair: shortest job first
+ Low delay for interactive users e Example: equal size jobs, start at t=0
* Protection against misbehaving users « Round robin = all finish at same time
e Approach: simulate general processor sharing (from OS + FIFO =» minimizes avg. response time
world)

e Unequal size jobs
* Bitwise round robin = Round robin = bad if lots of jobs
* Need to compute number of competing flows at each instant Analogy: OS thrashing, spending all its time context switching

« FIFO =» small jobs delayed behind big ones

m m

TCP Congestion Problems TCP Congestion Control

e Original TCP sent full window of data o Adjust transmission rate to match network bandwidth

. . « Additive increase/multiplicative decrease
e When links become loaded, queues fill up, leading to: . P )
. L Oscillate around bottleneck capacity
« Congestion collapse: when round-trip time exceeds
retransmit interval this can create a stable condition in which

every packet is being retransmitted many times Quickly identify bottleneck capacity

+ Slow start

« Synchronized behavior: network oscillates between loaded « Fast retransmit

and unloaded « Fast recovery

Feedback loop

m m

Jacobson Solution Tracking the Bottleneck Bandwidth

e Transport protocols should obey conservation of packets ® Throughput = window size/RTT

* Use ACKs to clock injection of new packets ® Multiplicative decrease

o Modify retransmission timer to adapt to variations in delay + Timeout =¥ dropped packet % cut window size in half

o Infer network bandwidth from packet loss ® Additive increase

* ACK arrives = no drop = increase window size by one
packet/window

+ Drops = congestion = reduce rate
» No drops = no congestion = increase rate

e Limit send rate based on minimum of congestion window
and advertised window

m :




TCP “Sawtooth”

e Oscillates around bottleneck bandwidth

+ Adjusts to changes in competing traffic

Additive Increase/Multiplicative Decrease

window 10
(in segs) 8
6

4
2
0

round

QS © 9 O & Q o > A\
> rolindtrip times ¥

Slow Start

e How do we find bottleneck bandwidth?
e Cannot use ACKs to clock without reaching equilibrium

« Start by sending a single packet

Start slow to avoid overwhelming network

» Multiplicative increase until get packet loss
Quickly find bottleneck
Cut rate by half

« Shift into linear increase/multiplicative decrease

Slow Start Problems

e Slow start usually overshoots bottleneck
 Leading to many lost packets in window
+ Can lose up to half of window size
e Bursty traffic source
* Will cause bursty losses for other flows
o Short flows
+ Can spend entire time in slow start
Especially for large bottleneck bandwidth
o Consider repeated connections to the same server

« E.g., for web connections

Slow Start
e Quickly find the bottleneck bandwidth
Slow Start
300
250
200
window,
(in segs)150
100
50
0 2mung-lrip lf'mes 6 7 8
ACK Pacing in TCP
B
Py
! —
Sender Receiver
- =T .J
- ap—
A~ [
o ACKSs open up slots in the congestion/advertised window
 Bottleneck link determines rate to send
« ACK indicates one packet has left the network

Problems with ACK Pacing

o ACK compression

* Variations in queuing delays on return path changes spacing
between ACKs

« Example: ACK waits for single long packet
* Worse with bursty cross-traffic

e What happens after a timeout?




Problems with ACK Pacing

e ACK compression

 Variations in queuing delays on return path changes spacing
between ACKs

« Example: ACK waits for single long packet

« Worse with bursty cross-traffic
e What happens after a timeout?

« Potentially, no ACKs to time packet transmissions
e Congestion avoidance

« Slow start back to last successful rate

« Back to linear increase/multiplicative increase at this point

m

Timeouts Dominate Performance

18
16
14
12

window 10
(insegs) g
6
4
2
0
AR '\f’mund-%&'ptﬁes« S HE P

Fast Retransmit

e Can we detect packet loss without a timeout? 1

e Duplicate ACKs imply either
 Packet reordering (route change)
 Packet loss

e TCP Tahoe
+ Resend if see three dup ACKs

« Eliminates timeout delay

K o

m

m

Fast Retransmit Caveats

e Requires in order packet delivery

+ Dynamically adjust number of dup ACKs needed for
retransmit?

e Does not work with small windows
* Why not?
» E.g., modems
e Does not work if packets lost in burst
* Why not?
« E.g., at peak of slow start

m :

Fast Retransmit

Slow Start + Congestion Avoidance
18 + Fast Retransmit

windowi®
(insegs) s
6
4
2

0

N @“v *x o N I ) © VA o 2
S lndtriptimes © Y P P P

Fast Recovery

e Use duplicate ACKs to maintain ACK pacing
* Dup ACK => packet left network
+ Every other ACK = send packet

e Fast recovery allows TCP to fall to half
previous bottleneck bandwidth

* Rather than all the way back to 1
packet/reinitiate slow start

 Slow start only at beginning/on timeout




Fast Recovery

Slow Start + Congestion Avoidance
18 + Fast Retransmit + Fast Recovery

window 10
(insegs) ¢

6

S N A RGN
rSuncHtfip tirtes

Delayed ACKs

e Problem:

* In request/response programs, you send separate ACK and
data packets for each transaction

e Goal: piggyback ACK with subsequent data packet
e Solution:

* Do not ACK data immediately

* Wait 200ms (must be less than 500ms)

* Must ACK every other packet

* Must not delay duplicate ACKs

What if Two TCP Connections Share Link?

e Reach equilibrium independent of initial bandwidth

(assuming equal RTTs)

window s
(insegs)

6

0123 456 7 8 910111213 14 15 16 17 18 19
round-trip times

What if TCP and UDP share link?

e Independent of initial rates, UDP will get priority! TCP
will take what’s left.

window 10 — UDP
(insegs) g Tcp
6
4

0 [ e e e i

£ O N > )
round-triptimes

What if Two Different TCP Implementations
Share Link?
Problem: many different TCP implementations
If cut back more slowly after drops =» grab bigger share
If add more quickly after ACKs =» grab bigger share
Incentive to cause congestion collapse
* Many TCP “accelerators”

« Easy to improve perf at expense of network

Solutions?

What if Two Different TCP Implementations
Share Link?

e Problem: many different TCP implementations

e If cut back more slowly after drops =» grab bigger share
e If add more quickly after ACKs = grab bigger share
e Incentive to cause congestion collapse
* Many TCP “accelerators”
« Easy to improve perf at expense of network
e Solutions?

« Per-flow fair queuing at router




TCP Congestion Control Summary

o Slow Start
e Adaptive retransmission
« Account for average and variance
e Fast retransmission TCP Vegas
« Triple duplicate ACKs
e Fast recovery
« Use ACKs in pipeline to avoid shrinking congestion window
to one

« Cuts out going back to slow start when detecting congestion
with fast retransmission

m

Overview/Goals Implementation
e Goals: e Retrofitted x-kernel with BSD implementations of TCP
« Increase useful throughput of TCP Reno and Vegas
Vegas increases throughput by 37-71% » Ran both simulations and real wide-area experiments
 Decrease retransmissions o Simulated cross traffic (e.g., FTP/NNTP/Telnet) using
Vegas retransmits 1/5 to 2 the data of Reno th'ib

o Note: easy to increase throughput at the expense of other
connections

e TCP Reno controls congestion by causing it

* Vegas aims to avoid congestion using only host-based
measurements

m

Vegas: New Retransmission Mechanism Congestion Avoidance Mechanism
e Reno uses coarse-grained timeouts and triple dup-ACKs e Reno creates losses to determine available bandwidth

« If bursty losses, or small window=>no triple dup ACK « Each connection can create losses for other connections
e Vegas reads system clock for every packet sent « No problem if advertised window < congestion window

* On ACK arrival, Vegas calculates RTT on per-packet basis e Use understanding of network behavior as it approaches
e Vegas retransmits in two situations: congestion (not once it gets there)

* On duplicate ACK, check if elapsed time for “missing” « Increased queue size=increased per-packet RTT

packet exceeds RTT estimate > .

If so, retransmit without waiting for triple dup ACK * Decreased throughput= more congestion

+ On first or second ACK after retransmission also check if
any additional packets have exceeded RTT

e Why not just retransmit on single/double dup ACK?

m :




TCP Vegas Congestion Avoidance

Compare expected to actual throughput
« Expected = window size / base RTT
How to measure base RTT?
« Actual = ACKs/ round trip time

Pick distinguished packet once every RTT for calculation

If actual << expected, queues increasing =» decrease rate
before packet drop

If actual ~= expected, queues decreasing = increase rate

What if base RTT changes (route changes)?

TCP Vegas Congestion Avoidance

o Define two parameters o <
e Let Diff = Expected — Actual

« Always a positive value
o If Diff < q, linearly increase congestion window
e If Diff > B, linearly decrease congestion window
e If o <Diff <, do nothing

e Why can we get away with linear decrease instead of
multiplicative decrease?

* We are avoiding congestion, not reacting to it

Camputer Sc

TCP Vegas Congestion Avoidance

a and B are measured in terms of throughput (e.g., kb/s)
however, they really represent extra buffers in the network

Intuitively, want each connection to occupy one extra
buffer in the network

« If extra capacity becomes available, Vegas flows will
capture them (since they sit in one buffer in steady state)

« In times of congestion, Vegas flows occupy too many
buffers, so Vegas backs off

Typical values foro=1and =3

« Goal: have Vegas flows occupy between 1 and 3 router
buffers

Camputer Sc

Vegas Discussion

Does not involve a modification to the TCP spec

« Can be deployed incrementally
Does not steal bandwidth from other implementations
Uses additional information available at hosts to better
estimate congestion

« Congestion avoidance vs. control
Additional processor overhead

« Increases throughput/reduces wasted transmissions

Should congestion control be in hosts/routers/both?

TCP Vegas Slow Start

e Reno doubles congestion window every RTT in slow start
 Can overshoot capacity, cause many losses
e Vegas doubles congestion window every other RTT
* Only double window if actual rate is within equivalent of 1
router buffer of expected rate
Note 1 KB buffers with 100 ms RTT equals 10 KB/s
e Vegas* uses packet-pair mechanism to estimate available
bandwidth
« Slow start to avail. bandwidth, then back to linear increase
» Why not go straight to bottleneck bandwidth?
* Vegas* did not result in significant perf/loss improvements

Camputer Sc




