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Congestion ControlCongestion Control

Router CongestionRouter Congestion

What if rate of packets arriving > rate of packets departing
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Congestion Control OverviewCongestion Control Overview

Challenge: how do we efficiently share network resources 
among billions of hosts?
• Today: TCP

Hosts adjust rate based on packet losses

• Alternative solutions
Fair queuing, RED (router support) 

Vegas, packet pair (add functionality to TCP)

Rate control, credits

Congestion Control TaxonomyCongestion Control Taxonomy

Router-centric versus host-centric
Reservation-based versus feedback-based
Window-based versus Rate-based

Queuing DisciplinesQueuing Disciplines

How to distribute buffers among users/flows
• When buffer overflows, which packet to drop?

Simple solution: FIFO
• First in, first out
• If packet comes along with no available buffer space, drop it



Fair QueuingFair Queuing

Goals:
• Allocate resources equally among all users/flows
• Low delay for interactive users
• Protection against misbehaving users

Approach: simulate general processor sharing (from OS 
world)
• Bitwise round robin
• Need to compute number of competing flows at each instant

Scheduling BackgroundScheduling Background

How do you minimize avg. response time?
• By being unfair: shortest job first

Example: equal size jobs, start at t=0
• Round robin all finish at same time
• FIFO minimizes avg. response time

Unequal size jobs
• Round robin bad if lots of jobs

Analogy: OS thrashing, spending all its time context switching 

• FIFO small jobs delayed behind big ones

TCP Congestion ProblemsTCP Congestion Problems

Original TCP sent full window of data
When links become loaded, queues fill up, leading to:
• Congestion collapse: when round-trip time exceeds 

retransmit interval this can create a stable condition in which 
every packet is being retransmitted many times

• Synchronized behavior: network oscillates between loaded 
and unloaded

Feedback loop

TCP Congestion ControlTCP Congestion Control
Adjust transmission rate to match network bandwidth
• Additive increase/multiplicative decrease

Oscillate around bottleneck capacity

• Slow start
Quickly identify bottleneck capacity

• Fast retransmit
• Fast recovery

Jacobson SolutionJacobson Solution

Transport protocols should obey conservation of packets
• Use ACKs to clock injection of new packets

Modify retransmission timer to adapt to variations in delay
Infer network bandwidth from packet loss
• Drops congestion reduce rate
• No drops no congestion increase rate

Limit send rate based on minimum of congestion window 
and advertised window

Tracking the Bottleneck BandwidthTracking the Bottleneck Bandwidth
Throughput = window size/RTT
Multiplicative decrease
• Timeout dropped packet cut window size in half

Additive increase
• ACK arrives no drop increase window size by one 

packet/window



TCP TCP ““SawtoothSawtooth””

Oscillates around bottleneck bandwidth
• Adjusts to changes in competing traffic

Additive Increase/Multiplicative Decrease
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Slow StartSlow Start

How do we find bottleneck bandwidth?
Cannot use ACKs to clock without reaching equilibrium
• Start by sending a single packet

Start slow to avoid overwhelming network

• Multiplicative increase until get packet loss
Quickly find bottleneck

Cut rate by half

• Shift into linear increase/multiplicative decrease

Slow StartSlow Start

Quickly find the bottleneck bandwidth

Slow Start
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Slow Start ProblemsSlow Start Problems

Slow start usually overshoots bottleneck
• Leading to many lost packets in window
• Can lose up to half of window size

Bursty traffic source
• Will cause bursty losses for other flows

Short flows
• Can spend entire time in slow start

Especially for large bottleneck bandwidth

Consider repeated connections to the same server
• E.g., for web connections

ACK Pacing in TCPACK Pacing in TCP

ACKs open up slots in the congestion/advertised window
• Bottleneck link determines rate to send
• ACK indicates one packet has left the network

Problems with ACK PacingProblems with ACK Pacing

ACK compression
• Variations in queuing delays on return path changes spacing 

between ACKs
• Example: ACK waits for single long packet 
• Worse with bursty cross-traffic

What happens after a timeout?



Problems with ACK PacingProblems with ACK Pacing

ACK compression
• Variations in queuing delays on return path changes spacing 

between ACKs
• Example: ACK waits for single long packet 
• Worse with bursty cross-traffic

What happens after a timeout?
• Potentially, no ACKs to time packet transmissions

Congestion avoidance
• Slow start back to last successful rate
• Back to linear increase/multiplicative increase at this point

Timeouts Dominate PerformanceTimeouts Dominate Performance
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Fast RetransmitFast Retransmit

Can we detect packet loss without a timeout?
Duplicate ACKs imply either
• Packet reordering (route change)
• Packet loss

TCP Tahoe
• Resend if see three dup ACKs
• Eliminates timeout delay
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Fast Retransmit CaveatsFast Retransmit Caveats

Requires in order packet delivery
• Dynamically adjust number of dup ACKs needed for 

retransmit?

Does not work with small windows
• Why not?
• E.g., modems

Does not work if packets lost in burst
• Why not?
• E.g., at peak of slow start

Fast RetransmitFast Retransmit
Slow Start + Congestion Avoidance 

+ Fast Retransmit
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Fast RecoveryFast Recovery

Use duplicate ACKs to maintain ACK pacing
• Dup ACK packet left network
• Every other ACK send packet

Fast recovery allows TCP to fall to half 
previous bottleneck bandwidth
• Rather than all the way back to 1 

packet/reinitiate slow start
• Slow start only at beginning/on timeout
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Fast RecoveryFast Recovery

Slow Start + Congestion Avoidance 
+ Fast Retransmit + Fast Recovery
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Delayed Delayed ACKsACKs

Problem:
• In request/response programs, you send separate ACK and 

data packets for each transaction

Goal: piggyback ACK with subsequent data packet
Solution:
• Do not ACK data immediately
• Wait 200ms (must be less than 500ms)
• Must ACK every other packet
• Must not delay duplicate ACKs

What if Two TCP Connections Share Link?What if Two TCP Connections Share Link?

Reach equilibrium independent of initial bandwidth 
(assuming equal RTTs)
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What if TCP and UDP share link?What if TCP and UDP share link?

Independent of initial rates, UDP will get priority!  TCP 
will take what’s left.
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What if Two Different TCP Implementations What if Two Different TCP Implementations 
Share Link?Share Link?

Problem: many different TCP implementations
If cut back more slowly after drops grab bigger share
If add more quickly after ACKs grab bigger share
Incentive to cause congestion collapse
• Many TCP “accelerators”
• Easy to improve perf at expense of network

Solutions?

What if Two Different TCP Implementations What if Two Different TCP Implementations 
Share Link?Share Link?

Problem: many different TCP implementations
If cut back more slowly after drops grab bigger share
If add more quickly after ACKs grab bigger share
Incentive to cause congestion collapse
• Many TCP “accelerators”
• Easy to improve perf at expense of network

Solutions?
• Per-flow fair queuing at router



TCP Congestion Control SummaryTCP Congestion Control Summary

Slow Start
Adaptive retransmission
• Account for average and variance

Fast retransmission
• Triple duplicate ACKs

Fast recovery
• Use ACKs in pipeline to avoid shrinking congestion window 

to one
• Cuts out going back to slow start when detecting congestion 

with fast retransmission

TCP VegasTCP Vegas

Overview/GoalsOverview/Goals

Goals:
• Increase useful throughput of TCP

Vegas increases throughput by 37-71%

• Decrease retransmissions
Vegas retransmits 1/5 to ½ the data of Reno

Note: easy to increase throughput at the expense of other 
connections
TCP Reno controls congestion by causing it
• Vegas aims to avoid congestion using only host-based 

measurements

ImplementationImplementation

Retrofitted x-kernel with BSD implementations of TCP 
Reno and Vegas
• Ran both simulations and real wide-area experiments

Simulated cross traffic (e.g., FTP/NNTP/Telnet) using 
tcplib

Vegas: New Retransmission MechanismVegas: New Retransmission Mechanism

Reno uses coarse-grained timeouts and triple dup-ACKs
• If bursty losses, or small window no triple dup ACK

Vegas reads system clock for every packet sent
• On ACK arrival, Vegas calculates RTT on per-packet basis

Vegas retransmits in two situations:
• On duplicate ACK, check if elapsed time for “missing”

packet exceeds RTT estimate
If so, retransmit without waiting for triple dup ACK

• On first or second ACK after retransmission also check if 
any additional packets have exceeded RTT

Why not just retransmit on single/double dup ACK?

Congestion Avoidance MechanismCongestion Avoidance Mechanism

Reno creates losses to determine available bandwidth
• Each connection can create losses for other connections
• No problem if advertised window < congestion window

Use understanding of network behavior as it approaches 
congestion (not once it gets there)
• Increased queue size increased per-packet RTT
• Decreased throughput more congestion



TCP Vegas Congestion AvoidanceTCP Vegas Congestion Avoidance

Compare expected to actual throughput
• Expected = window size / base RTT

How to measure base RTT?

• Actual = ACKs / round trip time
Pick distinguished packet once every RTT for calculation

If actual << expected, queues increasing decrease rate 
before packet drop
If actual ~= expected, queues decreasing increase rate
What if base RTT changes (route changes)?  

TCP Vegas Congestion AvoidanceTCP Vegas Congestion Avoidance

Define two parameters α < β
Let Diff = Expected – Actual
• Always a positive value

If Diff < α, linearly increase congestion window
If Diff > β, linearly decrease congestion window
If α < Diff < β, do nothing
Why can we get away with linear decrease instead of 
multiplicative decrease?
• We are avoiding congestion, not reacting to it

TCP Vegas Congestion AvoidanceTCP Vegas Congestion Avoidance

α and β are measured in terms of throughput (e.g., kb/s) 
however, they really represent extra buffers in the network
Intuitively, want each connection to occupy one extra 
buffer in the network
• If extra capacity becomes available, Vegas flows will 

capture them (since they sit in one buffer in steady state)
• In times of congestion, Vegas flows occupy too many 

buffers, so Vegas backs off

Typical values for α = 1 and β = 3
• Goal: have Vegas flows occupy between 1 and 3 router 

buffers

TCP Vegas Slow Start TCP Vegas Slow Start 

Reno doubles congestion window every RTT in slow start
• Can overshoot capacity, cause many losses

Vegas doubles congestion window every other RTT
• Only double window if actual rate is within equivalent of 1 

router buffer of expected rate
Note 1 KB buffers with 100 ms RTT equals 10 KB/s

Vegas* uses packet-pair mechanism to estimate available 
bandwidth
• Slow start to avail. bandwidth, then back to linear increase
• Why not go straight to bottleneck bandwidth?
• Vegas* did not result in significant perf/loss improvements

Vegas DiscussionVegas Discussion

Does not involve a modification to the TCP spec
• Can be deployed incrementally

Does not steal bandwidth from other implementations
Uses additional information available at hosts to better 
estimate congestion
• Congestion avoidance vs. control

Additional processor overhead
• Increases throughput/reduces wasted transmissions

Should congestion control be in hosts/routers/both?


