
CongestionCongestion

Adolfo Rodriguez
CPS 214

February 19, 2004

Congestion ControlCongestion Control

Router CongestionRouter Congestion

What if rate of packets arriving > rate of packets departing

1.5 Mbps

10 Mbps

10 Mbps

10 Mbps

Congestion Control OverviewCongestion Control Overview

Challenge: how do we efficiently share network resources
among billions of hosts?
• Today: TCP

Hosts adjust rate based on packet losses

• Alternative solutions
Fair queuing, RED (router support)

Vegas, packet pair (add functionality to TCP)

Rate control, credits

Congestion Control TaxonomyCongestion Control Taxonomy

Router-centric versus host-centric
Reservation-based versus feedback-based
Window-based versus Rate-based

Queuing DisciplinesQueuing Disciplines

How to distribute buffers among users/flows
• When buffer overflows, which packet to drop?

Simple solution: FIFO
• First in, first out
• If packet comes along with no available buffer space, drop it

Fair QueuingFair Queuing

Goals:
• Allocate resources equally among all users/flows
• Low delay for interactive users
• Protection against misbehaving users

Approach: simulate general processor sharing (from OS
world)
• Bitwise round robin
• Need to compute number of competing flows at each instant

Scheduling BackgroundScheduling Background

How do you minimize avg. response time?
• By being unfair: shortest job first

Example: equal size jobs, start at t=0
• Round robin all finish at same time
• FIFO minimizes avg. response time

Unequal size jobs
• Round robin bad if lots of jobs

Analogy: OS thrashing, spending all its time context switching

• FIFO small jobs delayed behind big ones

TCP Congestion ProblemsTCP Congestion Problems

Original TCP sent full window of data
When links become loaded, queues fill up, leading to:
• Congestion collapse: when round-trip time exceeds

retransmit interval this can create a stable condition in which
every packet is being retransmitted many times

• Synchronized behavior: network oscillates between loaded
and unloaded

Feedback loop

TCP Congestion ControlTCP Congestion Control
Adjust transmission rate to match network bandwidth
• Additive increase/multiplicative decrease

Oscillate around bottleneck capacity

• Slow start
Quickly identify bottleneck capacity

• Fast retransmit
• Fast recovery

Jacobson SolutionJacobson Solution

Transport protocols should obey conservation of packets
• Use ACKs to clock injection of new packets

Modify retransmission timer to adapt to variations in delay
Infer network bandwidth from packet loss
• Drops congestion reduce rate
• No drops no congestion increase rate

Limit send rate based on minimum of congestion window
and advertised window

Tracking the Bottleneck BandwidthTracking the Bottleneck Bandwidth
Throughput = window size/RTT
Multiplicative decrease
• Timeout dropped packet cut window size in half

Additive increase
• ACK arrives no drop increase window size by one

packet/window

TCP TCP ““SawtoothSawtooth””

Oscillates around bottleneck bandwidth
• Adjusts to changes in competing traffic

Additive Increase/Multiplicative Decrease

0
2
4
6
8

10
12
14
16
18

0 3 6 9 12 15 18 21 24 27
round-trip times

window
(in segs)

Slow StartSlow Start

How do we find bottleneck bandwidth?
Cannot use ACKs to clock without reaching equilibrium
• Start by sending a single packet

Start slow to avoid overwhelming network

• Multiplicative increase until get packet loss
Quickly find bottleneck

Cut rate by half

• Shift into linear increase/multiplicative decrease

Slow StartSlow Start

Quickly find the bottleneck bandwidth

Slow Start

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8round-trip times

window
(in segs)

Slow Start ProblemsSlow Start Problems

Slow start usually overshoots bottleneck
• Leading to many lost packets in window
• Can lose up to half of window size

Bursty traffic source
• Will cause bursty losses for other flows

Short flows
• Can spend entire time in slow start

Especially for large bottleneck bandwidth

Consider repeated connections to the same server
• E.g., for web connections

ACK Pacing in TCPACK Pacing in TCP

ACKs open up slots in the congestion/advertised window
• Bottleneck link determines rate to send
• ACK indicates one packet has left the network

Problems with ACK PacingProblems with ACK Pacing

ACK compression
• Variations in queuing delays on return path changes spacing

between ACKs
• Example: ACK waits for single long packet
• Worse with bursty cross-traffic

What happens after a timeout?

Problems with ACK PacingProblems with ACK Pacing

ACK compression
• Variations in queuing delays on return path changes spacing

between ACKs
• Example: ACK waits for single long packet
• Worse with bursty cross-traffic

What happens after a timeout?
• Potentially, no ACKs to time packet transmissions

Congestion avoidance
• Slow start back to last successful rate
• Back to linear increase/multiplicative increase at this point

Timeouts Dominate PerformanceTimeouts Dominate Performance

0

2

4

6

8

10

12

14

16

18

0 3 6 9 12 15 18 21 24 27 30 33 36 39round-trip times

window
(in segs)

Fast RetransmitFast Retransmit

Can we detect packet loss without a timeout?
Duplicate ACKs imply either
• Packet reordering (route change)
• Packet loss

TCP Tahoe
• Resend if see three dup ACKs
• Eliminates timeout delay

1

2
3

4
5

2

2
2
2

2

6

Fast Retransmit CaveatsFast Retransmit Caveats

Requires in order packet delivery
• Dynamically adjust number of dup ACKs needed for

retransmit?

Does not work with small windows
• Why not?
• E.g., modems

Does not work if packets lost in burst
• Why not?
• E.g., at peak of slow start

Fast RetransmitFast Retransmit
Slow Start + Congestion Avoidance

+ Fast Retransmit

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28round-trip times

window
(in segs)

Fast RecoveryFast Recovery

Use duplicate ACKs to maintain ACK pacing
• Dup ACK packet left network
• Every other ACK send packet

Fast recovery allows TCP to fall to half
previous bottleneck bandwidth
• Rather than all the way back to 1

packet/reinitiate slow start
• Slow start only at beginning/on timeout

1

2
3

4
5

2

2

2
2

2

3

6

Fast RecoveryFast Recovery

Slow Start + Congestion Avoidance
+ Fast Retransmit + Fast Recovery

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20 22 24round-trip times

window
(in segs)

Delayed Delayed ACKsACKs

Problem:
• In request/response programs, you send separate ACK and

data packets for each transaction

Goal: piggyback ACK with subsequent data packet
Solution:
• Do not ACK data immediately
• Wait 200ms (must be less than 500ms)
• Must ACK every other packet
• Must not delay duplicate ACKs

What if Two TCP Connections Share Link?What if Two TCP Connections Share Link?

Reach equilibrium independent of initial bandwidth
(assuming equal RTTs)

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
round-trip times

window
(in segs)

What if TCP and UDP share link?What if TCP and UDP share link?

Independent of initial rates, UDP will get priority! TCP
will take what’s left.

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18round-trip times

window
(in segs)

UDP
TCP

What if Two Different TCP Implementations What if Two Different TCP Implementations
Share Link?Share Link?

Problem: many different TCP implementations
If cut back more slowly after drops grab bigger share
If add more quickly after ACKs grab bigger share
Incentive to cause congestion collapse
• Many TCP “accelerators”
• Easy to improve perf at expense of network

Solutions?

What if Two Different TCP Implementations What if Two Different TCP Implementations
Share Link?Share Link?

Problem: many different TCP implementations
If cut back more slowly after drops grab bigger share
If add more quickly after ACKs grab bigger share
Incentive to cause congestion collapse
• Many TCP “accelerators”
• Easy to improve perf at expense of network

Solutions?
• Per-flow fair queuing at router

TCP Congestion Control SummaryTCP Congestion Control Summary

Slow Start
Adaptive retransmission
• Account for average and variance

Fast retransmission
• Triple duplicate ACKs

Fast recovery
• Use ACKs in pipeline to avoid shrinking congestion window

to one
• Cuts out going back to slow start when detecting congestion

with fast retransmission

TCP VegasTCP Vegas

Overview/GoalsOverview/Goals

Goals:
• Increase useful throughput of TCP

Vegas increases throughput by 37-71%

• Decrease retransmissions
Vegas retransmits 1/5 to ½ the data of Reno

Note: easy to increase throughput at the expense of other
connections
TCP Reno controls congestion by causing it
• Vegas aims to avoid congestion using only host-based

measurements

ImplementationImplementation

Retrofitted x-kernel with BSD implementations of TCP
Reno and Vegas
• Ran both simulations and real wide-area experiments

Simulated cross traffic (e.g., FTP/NNTP/Telnet) using
tcplib

Vegas: New Retransmission MechanismVegas: New Retransmission Mechanism

Reno uses coarse-grained timeouts and triple dup-ACKs
• If bursty losses, or small window no triple dup ACK

Vegas reads system clock for every packet sent
• On ACK arrival, Vegas calculates RTT on per-packet basis

Vegas retransmits in two situations:
• On duplicate ACK, check if elapsed time for “missing”

packet exceeds RTT estimate
If so, retransmit without waiting for triple dup ACK

• On first or second ACK after retransmission also check if
any additional packets have exceeded RTT

Why not just retransmit on single/double dup ACK?

Congestion Avoidance MechanismCongestion Avoidance Mechanism

Reno creates losses to determine available bandwidth
• Each connection can create losses for other connections
• No problem if advertised window < congestion window

Use understanding of network behavior as it approaches
congestion (not once it gets there)
• Increased queue size increased per-packet RTT
• Decreased throughput more congestion

TCP Vegas Congestion AvoidanceTCP Vegas Congestion Avoidance

Compare expected to actual throughput
• Expected = window size / base RTT

How to measure base RTT?

• Actual = ACKs / round trip time
Pick distinguished packet once every RTT for calculation

If actual << expected, queues increasing decrease rate
before packet drop
If actual ~= expected, queues decreasing increase rate
What if base RTT changes (route changes)?

TCP Vegas Congestion AvoidanceTCP Vegas Congestion Avoidance

Define two parameters α < β
Let Diff = Expected – Actual
• Always a positive value

If Diff < α, linearly increase congestion window
If Diff > β, linearly decrease congestion window
If α < Diff < β, do nothing
Why can we get away with linear decrease instead of
multiplicative decrease?
• We are avoiding congestion, not reacting to it

TCP Vegas Congestion AvoidanceTCP Vegas Congestion Avoidance

α and β are measured in terms of throughput (e.g., kb/s)
however, they really represent extra buffers in the network
Intuitively, want each connection to occupy one extra
buffer in the network
• If extra capacity becomes available, Vegas flows will

capture them (since they sit in one buffer in steady state)
• In times of congestion, Vegas flows occupy too many

buffers, so Vegas backs off

Typical values for α = 1 and β = 3
• Goal: have Vegas flows occupy between 1 and 3 router

buffers

TCP Vegas Slow Start TCP Vegas Slow Start

Reno doubles congestion window every RTT in slow start
• Can overshoot capacity, cause many losses

Vegas doubles congestion window every other RTT
• Only double window if actual rate is within equivalent of 1

router buffer of expected rate
Note 1 KB buffers with 100 ms RTT equals 10 KB/s

Vegas* uses packet-pair mechanism to estimate available
bandwidth
• Slow start to avail. bandwidth, then back to linear increase
• Why not go straight to bottleneck bandwidth?
• Vegas* did not result in significant perf/loss improvements

Vegas DiscussionVegas Discussion

Does not involve a modification to the TCP spec
• Can be deployed incrementally

Does not steal bandwidth from other implementations
Uses additional information available at hosts to better
estimate congestion
• Congestion avoidance vs. control

Additional processor overhead
• Increases throughput/reduces wasted transmissions

Should congestion control be in hosts/routers/both?

