CPS 512/590 second midterm exam, 11/3/2015

Your name please:

Part 1. Spanner

These questions pertain to multi-version transactions as used in the Spanner system. Answer each question with a
phrase or two or maybe a sentence or two. [40 points]

a) How does Spanner enforce serializability of update (read/write) transactions?

Two-phase locking (2PL).
Many answers began discussing timestamps, but these are not pertinent to the question: Spanner uses timestamp
ordering only for transactions that are declared read-only before they start.

b) Can two Spanner transactions commit with the same timestamp?

Yes. Since Spanner has no central point of control for transactions, two transactions may commit with the same
timestamp if they have no tablets in common, or no Paxos groups in common.

This was not intended as a “trick”. | gave partial credit for No answers that revealed an understanding of how
timestamps are assigned.

c) Spanner is a key/value store. Why is it necessary for each Spanner replica group to use a Replicated State
Machine (RSM) model, which imposes an order on write requests even if they affect different keys?

A Spanner tablet is a complex data structure that stores key/value pairs lexicographically ordered by key, with an
index that supports range queries. So updates to the value for one key may affect how others are stored and/or
indexed. In the RSM model, operations on the tablet are deterministic and all replicas execute the same requests in
the same order, so all replicas reach the same state, even if the application (i.e., the tablet code) implements those
operations in a complex way.

d) A Spanner group leader may force a transaction to abort. Why / under what circumstances?

Potential deadlock. This may occur when a transaction attempts to acquire a lock held by another transaction, hen
blocking to wait for the lock could create a risk of deadlock per the “wound-wait” strategy.

/140
/140
/140
/130
/130
120

/200

CPS 512/590 second midterm exam, 11/3/2015, page 2 of 6

Part 2. Déja vu: Chubby revisited

These questions are similar to questions on the first midterm. Answer each question with a few phrases or maybe a
sentence or two. [40 points]

a) In Chubby (and in Lab #2), applications acquire and release locks with explicit acquire() and release() primitives.
Leases create the possibility that an application thread holding a lock (the lock holder) loses the lock before
releasing it. Under what conditions can this occur?

A network partition. That is the only case! (OK, it could also happen if the lock service fails.) Otherwise, the client renews the
lease as needed until the application releases the lock. The lock server does not deny a lease renewal request from a client, even
if another client is contending for the lock.

b) In this circumstance (a), how does a Chubby lock client determine that the lease has been lost? How does the
application determine that the lock has been lost?

The lock client knows the lease is lost if the lease expires, i.e., the client receives no renewal response before the
expiration time. The application receives an exception/notification (from the client) that it is in jeopardy and (later)
that it has lost its session with Chubby.

¢) Chubby maintains a single lease for each client's session with Chubby, rather than a lease for each individual lock
that a client might hold. What advantages/benefits does this choice offer for Chubby and its clients?

It is more efficient: the cost of handling lease renewals is amortized across all locks held by a client. It is also more
tolerant to transient network failures and server fail-over delays because Chubby renews a client’s session lease
automatically on every message received from a client. If the session lease is lost, then the client loses all locks and
all other Chubby resources that it holds.

Note: the per-client single session lease does NOT mean that there is now only “one big global lock” or that clients
have to implement mutual exclusion themselves. The lock abstraction is unchanged. Some students seem to be
stuck on this misconception.

CPS 512/590 second midterm exam, 11/3/2015, page 2 of 6

Part 2. Déja vu: Chubby revisited...

d) Given that Chubby can complete a write after agreement from a subset of replicas, how do the other replicas learn
of the write under normal failure-free operation?

Chubby uses a consensus protocol (Paxos) to replicate updates. The primary/leader/coordinator sends (multicasts)
the write to all replicas. Although the primary does not wait for all responses, all replicas receive the initial
multicast of the update from the primary/coordinator if there are no failures.

If there are failures, a recovering replica receives updates/slots/entries that it missed, either from the leader or from a
peer (as described for VR).

CPS 512/590 second midterm exam, 11/3/2015, page 3 of 6
Part 3. Causality

These questions pertain to the concepts employed in the Bayou system. Please keep your answers tight. [40 points]
a) Give an example of two vector clocks v, and v, in which v, < v, (v, happened-before v,).
For three nodes: v1 = (1, 0, 0), v2 = (1, 1, 0). v2 dominates v1.

Some students drew nice happened-before timelines with no vector clocks. Half credit for that: | really wanted
examples of the vector clock values themselves.

b) Give an example of two vector clocks v, and v, in which v, is concurrent with v..
For three nodes: v1 = (1, 0, 0), v2 = (0, 1, 0). Neither clock dominates the other.

c) Give hypothetical real-world example in which a client learns of updates in an order that does not respect potential
causality, i.e., that violates causal ordering. Why is this bad?

You need an example of two updates u1 and u2 with u1 < u2, and a read u3 that operates on a system state that
reflects u2 but not u1, i.e., where u2 is applied before u1. Note: if u1 and u2 in your example are concurrent, then it is
just an ordinary race and reordering them does not violate causality.

So: u1={Alice deposits $100 into empty account J}, u2 = {Bob checks J balance and withdraws $100}, u3={Bank issues
an overdraft fee on J}.
Or: u1={Alice removes Bob as friend}, u2={Alice insults Bob to her friends}, u3 = {Bob reads the insults}.

d) Bayou clients may learn of updates in different orders, yet these orders always respect causality. How does Bayou
assure this property? | can think of several acceptable one-sentence answers. Please try to answer in one carefully
worded sentence!

Replicas transfer/apply updates cumulatively in order, according to the prefix property, and order them by
logical clocks. Suppose a replica R generates an update w: before telling any other replica S about w, it first tells S
of all updates u that R had already learned of (or generated/accepted) at the time that R generated w. By definition,
this sequence includes all causally preceding updates u with u<w. Updates flood transitively through the network in
this fashion, preserving causal order at each step. Newly learned updates may be interleaved with updates learned
previously, but the ordering is by logical clock (accept-stamp order) and so cannot violate causality, and does not
change the relative order of known updates.

CPS 512/590 second midterm exam, 11/3/2015, page 4 of 6

Part 4. Consensus

These questions pertain to consensus algorithms (Viewstamped Replication (VR), Raft, and Paxos). You may answer
with reference to any variant of consensus. Please keep your answers tight. [30 points]

a) Where is consensus on the CAP triangle? How does consensus behave under a network partition?

Consensus is CP: it is consistent (sound), but becomes unavailable (i.e., not live) in a network partition or other
circumstance in which a majority of nodes are unreachable.

b) A fundamental property of consensus is that each view (also called term or ballot) has at most one primary (also
called a leader). Is it possible for a view to have no primary? How could this occur?

This could occur in VR if the designated leader for a given view has failed or is unreachable. It could happen in
Paxos or Raft if no leader obtained a majority on a given term or ballot.

¢) Unnecessary view changes (or elections/scouts) can prevent consensus from making progress. Why? Propose a
mechanism to prevent unnecessary view changes in practice.

A replica ignores the previous leader once the replica has advanced to a higher term/ballot/view. So: once a
majority of replicas have advanced, the previous round is interrupted and no further progress is possible until the view
change is complete and a new leader is initialized and accepted. (This could take some time.)

All practical consensus algorithms use carefully chosen timeouts to determine when to initiate a new view. If a replica
receives a message from the current leader before the timeout expires, it resets the timer and does not advance to a
new view. (Note: this is a leader lease.) Spanner uses long leader leases to avoid unnecessary leader changes, and
Raft randomizes the timeouts to reduce conflicts between candidate leaders. There is a tradeoff: shorter timeouts
reduce failover times when the leader fails, but they may force unnecessary view changes when the network is slow.
Longer timeouts reduce unnecessary view changes, but have longer failover times.

CPS 512/590 second midterm exam, 11/3/2015, page 5 of 6

Part 5. A little more thought [30 points]

Consider an execution of consensus with five replicas, in which a leader/primary proposes (prepares) values for a
sequence of log entries (also called op-numbers, slots, or indexes). Consider now what happens over a sequence of
views, each with a different primary (we may number them P,, P,, P5,...). Give an example in which a primary
proposes a value v that overwrites a different value w that an earlier primary proposed for the same slot, even though
the later primary was aware of w, i.e., w was accepted by at least one member of its voting majority.

The purpose of this question was to evaluate whether you really understand consensus. It is a difficult question. To

construct such an example, you need three views:

* In the first view, P1 proposes a value w, and a minority of nodes (including P1) accept it, so w does not commit.

* In the second view, P2 does not learn of w, e.g., because its voting majority includes no node that is aware of w. So
P2 proposes a value v for the same slot as w. It is immaterial whether v commits or not.

* In the third view, P3 learns of both w and v. P3 then overwrites w with v on any replicas that had accepted w, and
the example is complete.

A few points to note:

1. If w commits under P1, the example fails because it is impossible that P2 does not learn of w: since w committed, a
majority of nodes know of w, so the majority that elected P2 must include at least one node that knows of w.

2. If P2 does learn of w, the example fails because P2 proposes w again for the same slot (i.e., P2 affirms w). P2 will
never propose a conflicting value v for that slot. This is true even if w did not commit under P1. In fact, P2 cannot
always tell whether w committed under P1 or not. That is why P2 always affirms w: if w did commit, then it is
essential that P2 affirms w, so P2 always affirms w just to be safe. So: the example requires that any node that
accepts w under P1 fails under P2, so that P2 does not learn of w.

3. If there are only two views instead of three, the example fails. With two views there are only two cases: P2 either
did or did not learn of w. If P2 does not learn of w, the example fails because the question requires that the primary
that overwrites w does learn of w. If P2 does learn of w, then we are back to point 2.

4. If P3 does not learn of both v and w, the example fails. If P3 learns of w but not v, it affirms w (v could not have
committed). If P3 learns of v but not w, then it affirms v.

5. To ensure that P3 learns of w as well as v, the example requires that a node that accepted w under P1 and then
fails under P2 recovers under P3, and informs P3 of w. Moreover, some node that accepted v under P2 must
survive under P3, so P3 also learns of v. In this case and this case alone does the primary (P3) deliberately
overwrite an older accepted update (w) with a newer one (v). This is guaranteed to be safe because w could not
have committed. If w had committed, then P2 would have learned of w (point 1) and would have affirmed it (point
2) instead of proposing v for that slot.

CPS 512/590 second midterm exam, 11/3/2015, page 5 of 6

Part 5. A little more thought [30 points]...
In general, | was fairly generous with partial credit here.

Most of the answers constructed examples that were correct but did not include all of the required elements, and then
simply trailed off and declared victory. | viewed these as pretty good efforts under time pressure.

But some examples went astray in ways that exposed misconceptions about the algorithm. The most common error is
that people seem to be confused about “voting” in consensus vs. in 2PC. In consensus, acceptors/replicas never
vote no on a value proposed by the leader. They are sheep! They always follow the leader! They do whatever the
leader says and accept whatever the leader says. Always, no exceptions.

So there are no examples in which the voting majority of the new primary votes for v over w. The leader (P) never
chooses values based on a count of the votes! If P hears about a value w for slot s, it affirms w unless it also learns of
a later update v for s. In that case, P affirms v and overwrites w. P affirms v even if more of its voters had previously
accepted w for s, and not v! P may not know if v committed or not, but it does not matter, because P knows for sure
that w did not commit! If w had committed, then no previous primary (i.e., P2 in the example) would have proposed a
conflicting value (v) for the same slot (s) as w, because that primary must have learned of w and so would also have
affrmed w. This is the key step of the correctness proof for consensus.

CPS 512/590 second midterm exam, 11/3/2015, page 6 of 6

Part 6. Mashing it all together [20 points]

We might think of Bayou’s approach as “eventual consensus”: like eventual consistency the system always makes
progress as long as any replicas are reachable and/or can communicate, and like consensus, all replicas eventually
agree on the same sequence of updates (presuming that all failures eventually resolve). To achieve these properties,
Bayou must make stronger assumptions about the application than consensus does. Compare/contrast their
assumptions about the application.

Both consensus and Bayou assume that the application has an operational update API that is deterministic, so that
two replicas that execute the same sequence of operations end up in the same final state. Both maintain a replicated
log for the sequence of update operations. This is the RSM model.

Bayou further presumes that the application can handle rollback and reordering of updates and that it can detect and
resolve conflicting updates. The first need arises because replicas may learn of updates late, and so have to insert
those updates into their logs. Applications must enable this reordering and also should have some way to inform the
user that some states are “tentative” and subject to rollback and change. The second need arises because the
replicas may accept concurrent conflicting updates, which the application must reconcile (like Dynamo).

A Bayou application supplies deterministic procedures to handle these needs, including dependency checks and
merge procedures to detect and reconcile conflicts for update operations.

These procedures are application-supplied and application-specific. The Bayou replica core does not know or care
what these procedures do: it merely upcalls them at the right times, and they must work properly or the application will
fail. | got some answers that summarized elements of Bayou’s optimistic asynchronous replication model: anti-entropy
exchanges, version vectors, and so on. These are properties of the application-independent Bayou core, and they
pertain only indirectly to Bayou’s assumptions about the application.

