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ABSTRACT
We study the problem of finding a recommendation for an un-
informed user in a social network by weighting and aggregating
the opinions offered by the informed users in the network. In so-
cial networks, an informed user may try to manipulate the rec-
ommendation by performing a false-name manipulation, wherein
the user submits multiple opinions through fake accounts. To that
end, we impose a no harm axiom: false-name manipulations by
a user should not reduce the weight of other users in the net-
work. We show that this axiom has deep connections to false-name-
proofness. While it is impossible to design a mechanism that is best
for every network subject to this axiom, we propose an intuitive
mechanism LEGIT+, and show that it is uniquely optimized for
small networks. Using real-world datasets, we show that our mech-
anism performs very well compared to two baseline mechanisms in
a number of metrics, even on large networks.

Keywords
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1. INTRODUCTION
Consider the following problem. An agent wants to receive a rec-

ommendation on a specific item—say, a movie the agent has not
previously watched. Others have evaluated this item, perhaps by
giving it a “thumbs up” or “thumbs down” (0 or 1), or by rating it
on a more detailed scale, say, from 0 to 5. We want to give the agent
in question an aggregate rating, such as “73% positive” or 2.7. Al-
ternatively, perhaps the question is merely whether to recommend
this item to the agent at all, in which case the aggregate outcome
must be binary. How should we arrive at this aggregate outcome?

For simplicity, let us assume that we do not have any informa-
tion about which agents have preferences most similar to the agent
in question. In this case, a natural approach is to simply take the
average of all the ratings so far. One problem is that if ratings are
not binary, this is not strategy-proof: when the current average is
2.7, an agent who feels the item is a 4 may prefer to report 5 to
pull the average closer to his evaluation. As is well known in so-
cial choice theory, a good alternative is to choose the median rating
instead: this is in fact group-strategy-proof (when preferences are
single-peaked, as is likely to be the case here) [21, 4, 6]. Note that
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for binary ratings, the median is simply the majority choice.
The median, however, remains vulnerable to another type of ma-

nipulation, commonly known as false-name manipulation [36]: an
agent can rate the same item many times by opening fake accounts,
and move the median closer to his evaluation. Thus, the median is
not false-name-proof. In fact, without imposing further structure on
the problem, no reasonable rule is false-name-proof [9, 30, 31]. On
the other hand, if we assume that agents are organized as the nodes
of a (say, undirected) social network, possibilities open up [10].
For example, rather than reporting to the agent the median of all
the ratings, we can simply report the median of his friends’ ratings.
Assuming that the agent will not be duped into befriending fake
accounts, this will in fact be false-name-proof.

The downside of this methodology is that, with the exception of
very popular items, none or very few of the agent’s friends may
have rated the item. Consequently, the median-of-friends rule con-
veys too little information. Could we include the friends of the
agent’s friends as well? Done naïvely, this may give the friends an
incentive to create many fake friends of their own. But more sub-
tly, when a friend does not rate the item, we can pretend that his
rating was the median of his friends’ ratings. This does not give the
friends an incentive to create fake accounts: all this would do for
them is change their own hallucinated ratings, but they can more
easily just specify those ratings directly. This median-of-medians
approach closely resembles the majority-of-majorities rule from
Andersen et al. [2]. Note, however, that this rule ends up double-
counting the rating of an agent who is a friend of two of the agent’s
friends. Can we circumwent this issue? Also, can we retrieve rat-
ings from deeper in the social network?

Our results. In this paper, we focus on a two-step approach. In the
first step, we use a weight-selecting mechanism to assign weights to
the agents offering an opinion/rating, called voters, without looking
at their opinions (thus, looking only at the network structure). In the
second step, we perform a weighted aggregation of the opinions to
output a recommendation by only looking at the weights assigned
to voters and their opinions. To make the weight-selecting mech-
anism robust to false-name manipulations, we impose a no harm
axiom: false-name manipulations by an agent should not reduce the
weight of other agents in the network.

We show that with weighted median aggregation, the no harm
axiom implies false-name-proofness (Theorem 1) and, under some
conditions, is actually equivalent to false-name-proofness (Theo-
rem 2). We thus focus on designing weight-selecting mechanisms
subject to this axiom.

We focus on the case where, ideally, we would like to weight the
voters uniformly. As explained in detail in Section 2, this is for mul-
tiple reasons. While this does not utilize the network structure for
inferring the closeness in opinions of two nodes, it clearly outlines



how to use the network structure for a distinct purpose — achiev-
ing the no harm axiom. Section 6 discusses how our results can
be extended to take into account correlation among opinions. Sec-
ond, weighting the voters equally can indeed be ideal, e.g., when
aggregating independent noisy estimates of an underlying objec-
tive ground truth (see Section 5), or when the goal is not to find a
recommendation but to conduct a fair vote.

Unfortunately, weighting all the voters uniformly violates the no
harm axiom. What is the “most uniform” weight vector we can
return subject to this axiom? In order to formalize what “more
uniform” means, we use the classic leximin criterion that com-
pares weight vectors by their smallest weights (preferring the vec-
tor with greater smallest weight), and then breaks ties using the sec-
ond smallest weights, and so on. We show that a weight-selecting
mechanism cannot always return the leximin-optimal weight vec-
tor subject to the no harm axiom (Theorem 4). We then present
an intuitive mechanism and show that it is uniquely optimized for
small networks subject to the no harm axiom (Theorem 5), that is,
(informally) if a mechanism outputs a more uniform weight vector
than our mechanism does on some network, then there is a strict
subgraph of the network on which our mechanism outputs a more
uniform weight vector.

Using a non-trivial result from graph theory [15], we show that
our mechanism can be computed in linear time in the size of the
network (Theorem 6). In Section 5, we present experiments with
real-world social networks in which our mechanism significantly
outperforms two baseline mechanisms in a number of metrics.

Related work. Recommendation systems have been studied exten-
sively in the machine learning literature, see, e.g., [14, 1, 26, 5].
Popular techniques include content-based recommendation [25],
where the decision of whether to suggest an item to a target user
is made by considering the attributes of the item and the tar-
get user’s previously expressed preferences; collaborative filter-
ing [13], where the preferences of other users in the network are
given, and their similarity with the target user’s preferences is
learned to find a good recommendation; or, both combined [3]. In
contrast, we solely focus on the use of the social network struc-
ture to design recommendation mechanisms that are robust to false-
name manipulations.

Besides the works cited previously, false-name manipulations
have also been studied rigorously in a variety of anonymous en-
vironments, such as combinatorial auctions [35, 34, 36, 32, 17],
matching [29], and voting [33].

2. MODEL
We are given a social network (or simply, a network), which is

an undirected simple graph1 denoted G. The set of nodes and the
set of edges of G are denoted V (G) and E(G) (or V and E, when
the graph is clear from the context), respectively. For T ⊆ V , let
GT denote the subgraph of G induced by T .

Our task is to find a recommendation for a given node v∗ ∈ V .
This task could arise in a number of contexts: we may want to de-
cide whether to recommend a given movie or restaurant to an indi-
vidual (in which case, we want a binary recommendation), or we
may want to show the rating of the movie or restaurant (in which
case, we no longer want a binary recommendation). To aid our
decision-making, a set of nodes S ⊆ V \ {v∗} offer their per-
sonal opinion. We call these nodes voters, and denote the opinion
offered by voter v ∈ S as rv . Target node v∗ is not a voter itself.
As we explain in Section 3, the mechanisms of our interest must
1A simple graph has no self-loops and at most one edge between
every pair of vertices.

discard voters not connected to v∗; thus, for simplicity we assume
that G is connected and has at least one voter.

Weight-Selecting Mechanisms: In this paper, we are interested in
finding recommendations through a two-step approach: i) using a
weight-selecting mechanism to assign a weight to each voter in the
network only as a function of the network structure G, the subset
of voters S, and the target node v∗ (thus, independent of the vot-
ers’ opinions), and ii) using a weighted aggregation function that
takes as input the weights assigned by the weight-selecting mech-
anism and the voters’ opinions, and outputs the final recommen-
dation. Popular choices for the weighted aggregation function in-
clude weighted mean and weighted median; Section 3.1 discusses
how this choice impacts the overall recommendation system. For
the remaining parts of the paper, we are only interested in studying
weight-selecting mechanisms and their properties (the first step).
For a weight-selecting mechanism — ignorant of the voters’ opin-
ions — a problem instance is given by the tuple (G,S, v∗).

Definition 1 (Weight-Selecting Mechanisms). Given an instance
(G,S, v∗), a weight-selecting mechanism outputs a weight vector
w = (wv)v∈S such that wv ≥ 0 for v ∈ S, and

∑
v∈S wv = 1.

Weight-selecting mechanisms are compelling because they al-
low harmonious aggregation of opinions of various formats, rang-
ing from binary to real-valued opinions.

False-Name Manipulations: In the absence of additional restric-
tions, one can simply choose the weight-selecting mechanism that
returns the most appropriate weight vector for the setting of inter-
est. In this paper, however, we consider an important restriction that
stems from game-theoretic considerations: preventing false-name
manipulations.

Online social networks typically lack a proof of authenticity of
nodes, thus allowing users to easily create fake accounts. In this
case, a weight-selecting mechanism may inadvertently provide an
incentive to a malicious user for creating multiple fake accounts
and voting through them in order to gain a higher total weight, and
thus a greater influence on the final recommendation. Such manip-
ulations are known as false-name manipulations or sybil attacks.

In a false-name manipulation, the malicious node in the network
can easily create any desired subset of edges among the identities
it controls: its own node, and the fake nodes it creates. Altering
edges with other real nodes (e.g., creating new edges or deleting
existing edges), on the other hand, is often more costly. Given that
(arguably) recommendations are not the primary objective in most
social networks, we assume that nodes do not alter their edges with
other real nodes as part of a false-name manipulation due to lack of
sufficient incentive. That said, alterations to edges with real nodes
are a powerful form of manipulation, and preventing such manipu-
lations is an interesting theoretical challenge (see Section 6).

Definition 2 (False-Name Manipulations). In an instance
(G,S, v∗), a voter v ∈ S can perform a false-name manipula-
tion by creating a set of false nodes M , and edges between a sub-
set of pairs of nodes in M ′ ×M ′, where M ′ = M ∪ {v}. Also,
v can choose a subset of nodes in M ′ to act as voters, and their
recommendations. The resulting instance is given by (G′, S′, v∗),
where V (G′) = V ∪ M , S′ ∩ (V \ {v}) = S \ {v}, and
E(G′) ∩ (V × V ) = E.

A node that has a personal opinion may choose to abstain from
voting as part of a manipulation. Such a node would be a voter
in the underlying true instance, but not in the manipulated instance
observed by the mechanism. We refer to it as an “opinionated node”
to avoid confusing it with “voters” in the observed instance. In this



paper, we only focus on false-name manipulations by individual
nodes; Section 6 briefly discusses group false-name manipulations.

Optimal Weight Vector: Preventing false-name manipulations
may prohibit us from always choosing the most desirable weight
vector for the setting at hand. For the purpose of this paper, we as-
sume a setting in which the ideal weight vector has equal weights
for all voters, i.e., in the ideal weight vector each voter in S has
weight 1/|S|. This is interesting due to multiple reasons:
• False-name-proof recommendation mechanisms can employ

the knowledge of the social network structure in two clearly
distinct ways: i) to weight nodes in a way that provides no in-
centive for false-name manipulations, and ii) to weight nodes
to reflect their level of homophily2 or trust with the target
node. Treating the uniform weight vector as the ideal focuses
exclusively on the former purpose. This is also the appro-
priate choice for networks where no prior information about
user opinions is available to conclude homophily.
• Our model also applies to the case where the goal is not to

find a recommendation for the target node; instead, the target
node conducts a vote on the network, and invites its peers to
vote. In this case, treating all voters equally is the de facto
fairness consideration in the voting literature, often termed
“one person, one vote.”
• Finally, if the opinions offered by the individuals are not

subjective preferences, but rather i.i.d. noisy estimates of an
objective ground truth, using equal weights for aggregation
provably yields the most accurate (e.g., the least squared er-
ror) estimation of the underlying ground truth.

That said, aggregating subjective opinions of nodes into a recom-
mendation by weighting the nodes according to their homophily
(closeness of opinion) with the target node is an interesting and
widely studied topic. As we discuss in Section 6, our results have
interesting implications about designing false-name-proof recom-
mendation mechanisms when a model of homophily is given; in
this sense, we also view our paper as a stepping stone for studying
this more general setting.

Finally, we impose a mild restriction—symmetry—on the
weight-selecting mechanism. Informally, this requires the mecha-
nism to assign equal weight at least to the nodes that are “symmet-
rically placed” in the network with respect to the target node.

Definition 3 (Symmetric Mechanisms). We call a weight-selecting
mechanism symmetric if, given an instance (G,S, v∗), it assigns
equal weights to voters v1 and v2 whenever there exists an auto-
morphism of G (i.e., an isomorphism from G to itself) that fixes v∗

and maps v1 to v2.

Unless stated otherwise, throughout the paper we will assume a
weight-selecting mechanism to be symmetric.

3. UNIFORM AGGREGATION
In the context of this paper, the ideal weight-selecting mecha-

nism returns the weight vector that has equal weight for all voters.
However, this mechanism suffers from a crucial problem. A node
that performs a false-name manipulation by creating an arbitrarily
large number of fake nodes and voting through them can accrue a
weight arbitrarily close to 1, thus becoming a dictator. Crucially,
this manipulation also hurts the other nodes in the network by re-
ducing their weights. To design a robust mechanism, we require
that this should not be possible.
2Homophily is a commonly observed phenomenon where nodes
closer in a network are more likely to agree on opinions.

Definition 4 (No Harm Axiom). We say that a weight-selecting
mechanism satisfies the no harm axiom if a false-name manipula-
tion by a node does not reduce the weight of any other node in
the network. We let MNH denote the family of symmetric weight-
selecting mechanisms satisfying the no harm axiom.

3.1 No Harm Versus False-Name-Proofness
The standard desideratum in the literature on false-name manip-

ulations is false-name-proofness, which requires that even with full
information an agent should not be able to find a beneficial false-
name manipulation. In our setting, this means a voter should not
be able to move the recommendation closer to its opinion through
a false-name manipulation even if the voter knows the network G,
the set of voters S, their opinions r, and the target node v∗.

The no harm axiom directly implies that a voter cannot gain
weight by performing a false-name manipulation. Could the voter,
however, increase the weights of other voters with similar opin-
ions, thereby achieving a more favorable recommendation? This
of course depends on how the recommendation mechanism uses
the weights to aggregate the opinions. We show that for the
weighted median aggregation, the no harm axiom implies false-
name-proofness.

Theorem 1. With real-valued opinions and aggregate recommen-
dation, computing the weighted median of the opinions using the
weights returned by a weight-selecting mechanism satisfying the
no harm axiom is false-name-proof.

Proof. Let (G,S, v∗) be the true instance for which the weight
vector is w and the recommendation is x. Suppose v ∈ S per-
forms a false-name manipulation, after which the weight vector be-
comes w′ and the recommendation becomes x′. If rv = x, then v
has nothing to gain. Without loss of generality, let rv > x. De-
fine T = {u ∈ S | ru ≤ x}. Let w(T ) =

∑
u∈T wu and

w′(T ) =
∑

u∈T w
′
u. Then, by the no harm axiom and the defi-

nition of weighted median, we have w′(T ) ≥ w(T ) ≥ 0.5, which
implies x′ ≤ x. Hence, the manipulation is not beneficial to v. �

Theorem 1 shows that the no harm axiom easily yields false-
name-proofness. But at first glance, it may seem too strong if the
ultimate goal is false-name-proofness. The following result shows
that in a simple setting with binary (0/1) opinions and reasonable
weighted aggregation functions (e.g., the weighted average), the no
harm axiom is equivalent to false-name-proofness.

Theorem 2. Let the opinions be binary (i.e., in {0, 1}), and the
recommendation be computed using a weighted aggregation func-
tion that is strictly monotonically increasing in the total weight of
all voters with opinion 1, where the weights are computed using a
weight-selecting mechanism M . Then, the recommendation system
is false-name-proof if and only if M satisfies the no harm axiom.

Proof. Suppose M satisfies the no harm axiom. Without loss of
generality, consider a voter with opinion 0. If the voter performs
a false-name manipulation, none of the real voters with opinion 1
lose weight due to the no harm axiom. Hence, the total weight of
all voters with opinion 1 does not decrease after the manipulation.
Hence, due to monotonicity of the weighted aggregation function,
the recommendation cannot decrease due to the manipulation. That
is, no false-name manipulation can be beneficial, implying that the
recommendation system is false-name-proof.

Now, suppose that M does not satisfy the no harm axiom.
Then, there exists an instance (G,S, v∗), a false-name manipula-
tion by v ∈ S that results in an instance (G′, S′, v∗), and a voter
u ∈ S \ {v} such that under M , voter u receives less weight in



(G′, S′, v∗) than in (G,S, v∗). Suppose in (G,S, v∗) all voters in
S\{u} vote for 1, and only u votes for 0. Since the weights sum to 1
and u loses weight after the manipulation, the total weight of voters
with opinion 1 increases after the manipulation. Strict monotonic-
ity of the weighted aggregation function implies that the manipula-
tion would bring the recommendation closer to v’s true opinion, 1.
Hence, the recommendation system is not false-name-proof in this
case. �

3.2 Search for a Robust Mechanism
Our starting point is a compelling mechanism proposed by An-

dersen et al. [2] for binary (0/1) recommendations. Imagine doing
a random walk on the social network graph starting from the node
v∗,3 and terminating the walk as soon as a voter is encountered.
Then, their mechanism recommends an opinion such that the walk
is more likely to terminate on a node having that opinion than ter-
minating on a node having the alternative opinion. We observe that
this mechanism, which we denote RANDOMWALK, can be viewed
as a weight-selecting mechanism.

Definition 5 (RANDOMWALK). Given an instance (G,S, v∗), the
weight-selecting mechanism RANDOMWALK outputs the weight
vector w such that for v ∈ S, wv is the probability that a ran-
dom walk starting from v∗ encounters v before any other voter.

Our assumption of G being connected and having at least one
voter implies that the weights assigned by RANDOMWALK sum
to 1. Also, we assume that the edges of the undirected graph G are
essentially bidirectional, that is, a walk can traverse an edge in ei-
ther direction. Crucially, observe that RANDOMWALK satisfies the
no harm axiom: Fix a voter v and a walk that leads the random
walk to v. When a voter v′ 6= v performs a false-name manipula-
tion, the neighborhoods of nodes on the walk do not change. Hence,
the walk still leads the random walk to v with the same probability
post-manipulation. As this argument applies to every walk leading
the random walk to v in the original graph, the total probability of
the random walk terminating on v does not reduce after the manip-
ulation. It is also clear that RANDOMWALK is symmetric.

Theorem 3. RANDOMWALK is a symmetric weight-selecting
mechanism satisfying the no harm axiom.

Example 1. Let G be the network shown on the right. Here, filled
nodes represent voters. It is evident that
neither v1 nor v2 is fake (i.e., they can-
not be artificial nodes created by a sin-
gle node in the network through a false-
name manipulation). v∗

v1

v2

Hence, for uniform aggregation we should weight them equally,
if possible. Under RANDOMWALK, voters v1 and v2 receive
(unequal) weights 2/5 and 3/5, respectively. This can be shown
by solving systems of linear equations (see Section 4). Note that
these probabilities are not 1/4 and 3/4, respectively, due to walks
that go from v∗ to one of its three non-voter neighbors and return
to v∗ a number of times, before finally going to v1.

Admittedly, Andersen et al. [2] study a slightly different setting
than ours. Their ultimate goal, unlike ours, is not to uniformly
aggregate the opinions; they want the opinion of a voter to be
weighted by the level of “trust” v∗ can plausibly have for the voter.
Hence, in their setting it makes sense to weight the two voters un-
equally. In other words, our goal is not to evaluate RANDOMWALK
in our setting, because RANDOMWALK is not designed to give
3That is, in each step, move from the current vertex to one of its
neighbors chosen uniformly at random.

equal weight to voters in the first place. We use Example 1 simply
to demonstrate the need to investigate whether there exists a mech-
anism satisfying the no harm axiom that can provide more uniform
weights.

3.3 An Impossibility Result
As the no harm axiom prohibits always selecting the uniform

weight vector (with equal weight for all voters), our goal is to find a
weight vector that is as uniform as possible. To formalize the notion
of “uniformity”, we use the classic leximin criterion that compares
two weight vectors by their minimum weights (and prefers the one
with greater minimum weight), and then breaks ties by comparing
their second minimum weights, and so on. For example, accord-
ing to the leximin criterion, weight vector (0.3, 0.5, 0.2) is better
(i.e., more uniform) than weight vector (0.4, 0.5, 0.1), but is no
different than weight vector (0.5, 0.3, 0.2). The leximin criterion
has been studied extensively in the literature [28, 22, 23], and has
been applied successfully in a broad spectrum of domains includ-
ing constraint programming [7], wireless networks [16], resource
allocation [12, 19], cake-cutting [8], and kidney exchange [27].

Definition 6 (Leximin Comparison). On an instance (G,S, v∗), let
weight-selecting mechanisms M and M ′ return weight vectors w
and w′, consisting of weights (w1, . . . , w|S|) and (w′1, . . . , w

′
|S|),

respectively, sorted in the non-decreasing order. Then, M is
leximin-better than M ′ on (G,S, v∗) if there exists t ∈
{1, . . . , |S|} such that wi = w′i for all i ∈ {1, . . . , t − 1} and
wt > w′t.

Comparing mechanisms across instances, we say that M is
leximin-better than M ′ if M ′ is not leximin-better than M on any
instance, andM is leximin-better thanM ′ on at least one instance.

Definition 7 (Leximin-Optimality). In a family of weight-selecting
mechanisms C, mechanism M ∈ C is called leximin-optimal for C
if M is leximin-better than every other mechanism in C.

We can now cast our search for a good mechanism as a formal
question. Does there exist a mechanism that is leximin-optimal for
the family MNH of symmetric weight-selecting mechanisms satis-
fying the no harm axiom? Note that at most one mechanism could
satisfy this desideratum. Unfortunately, the next result shows that
in our case none meets the bar.

Theorem 4. No mechanism is leximin-optimal forMNH.

Proof. Let G1 and G2 be the networks shown below.

v∗

v2

v1

(a) Graph G1

v∗

v1 v2 v3

(b) Graph G2

Suppose for contradiction that there exists a weight-selecting
mechanism M ∈ MNH that is leximin-optimal for MNH. It can
be shown that there exists a mechanism inMNH that weights both
voters in G1 equally. While RANDOMWALK does not satisfy this,
the reader may check that the mechanism LEGIT+ that we later
propose in Section 3.4 does. Leximin-optimality ofM now implies
that M must assign weight 1/2 to both voters in G1.

Next, note that G2 is created when voter v2 in G1 performs a
false-name manipulation. Thus, the no harm axiom implies that M
must still assign a weight of at least 1/2 to v1 inG2. As the remain-
ing weight is divided equally among the remaining two voters by
symmetry, it follows that the minimum weight in G2 under M is



at most 1/4. However, it can be checked that the minimum weight
in G2 under RANDOMWALK is 2/7, which is greater than 1/4.
Hence, RANDOMWALK ∈ MNH is leximin-better than M on G2,
which contradicts leximin-optimality of M forMNH. �

3.4 A Possibility Result
Theorem 4 implies that subject to the no harm axiom, a mech-

anism cannot be the best on every instance. It faces an inevitable
trade-off whereby choosing to be better on one instance requires
it to be worse on another. Which instances should get more em-
phasis? In social networks, often very few users make the effort
to vote, and this scarcity of information is further exacerbated in
smaller networks. Thus, arguably, achieving a uniform weight vec-
tor is more important in smaller networks so that every opinion
counts. In larger networks, it is often excusable to discard a few
opinions in order to achieve robustness. We translate this informal
goal of giving more importance to smaller networks into a formal
desideratum, “optimized for small networks”, which we view as a
novel conceptual contribution of the paper as its formulation may
be useful in other settings as well.

Definition 8 (Domination). For weight-selecting mechanisms M
and M ′ , we say that M dominates M ′ on network G for target
node v∗ if M ′ is not leximin-better than M on (G,S, v∗) for any
S ⊆ V (G) \ {v∗}, and M is leximin-better than M ′ on (G,S, v∗)
for some S ⊆ V (G) \ {v∗}.

Definition 9 (Optimized for Small Networks). For a family of
weight-selecting mechanisms C andM ∈ C, we say thatM is opti-
mized for small networks within C if the following holds: IfM ′ ∈ C
is leximin-better than M on an instance (G,S, v∗), there exists a
strict subgraph H of G with v∗ ∈ V (H) such that M dominates
M ′ on H for target node v∗.

While being optimized for small networks is weaker than (is im-
plied by) leximin-optimality, the bar is still high, as the next ob-
servation shows. Its simple proof appears in the full version of the
paper.4

Proposition 1. In a family of weight-selecting mechanisms, at most
one mechanism is optimized for small networks.

We now design an intuitive weight-selecting mechanism, and
show that it is optimized for small networks within the family
MNH. A key idea behind the mechanism is due to Conitzer et
al. [10], who propose a method of identifying certifiably legitimate
nodes in a network in the presence of false-name manipulations. In
their more general setting, this is a tricky problem, but in our set-
ting it boils down to a simple observation: v could possibly be a
fake node created by u if and only if removing u disconnects v from
v∗.

Let F (u), called the lobe of u, be the set of all nodes that become
disconnected from v∗ by removing u. As a convention, u /∈ F (u),
and F (v∗) is undefined. Now, node v is certifiably legitimate if
v /∈ F (u) for any u ∈ V \ {v∗}. In other words, v should remain
connected to v∗ after removing any single node. Equivalently, it
should either be a direct neighbor of v∗, or be 2-vertex-connected to
v∗.5 Suppose we can weight all certifiably legitimate voters equally.
The following lemma helps us deal with the remaining voters.

Lemma 1. A symmetric weight-selecting mechanism satisfying the
no harm axiom cannot assign a positive weight to any node in the
lobe of a voter.
4Available at http://www.cs.duke.edu/~conitzer/.
5Using Menger’s theorem [20], being 2-vertex-connected to v∗ is
equivalent to having two vertex-disjoint paths to v∗.

Proof. Suppose for contradiction that node v ∈ F (u) receives
weight δ > 0, where u is a voter. Suppose all nodes in the graph
(including those in F (u)) are real. As the nodes in F (u) are only
connected to the remaining network through u, under a false-name
manipulation u can create N copies of F (u) that are attached to
u in a way identical to how F (u) is attached. The no harm ax-
iom implies that v still receives weight at least δ, and by symmetry,
now so does each of its N copies. However, this is infeasible when
N > 1/δ as the weights must sum to 1. �

ALGORITHM 1: Mechanism LEGIT+

Data: Social network G, set of voters S, central node v∗

Result: Weight vector w = (wv)v∈S
∀u ∈ V \ {v∗}, F (u)←

{
t ∈ V \ {u}

∣∣ t is not
connected to v∗ in GV \{u}

}
;

L←
{
v ∈ V \ {v∗}

∣∣ ( 6 ∃u ∈ V \ {v∗} : v ∈ F (u)) ∧
(F (v) ∪ {v}) ∩ S 6= ∅

}
;

∀v ∈ S,wv ← 0;
for v ∈ L do

if v ∈ S then
wv ← 1/|L|;

else
T ← F (v) ∪ {v};
wrec ← LEGIT+(GT , S ∩ T, v);
for u ∈ F (v) ∩ S do wu ← wrec

u · 1/|L| ;
end

end
return w = (wv)v∈S ;

While Lemma 1 requires us to discard all nodes in the lobe of
a voter, it does not prevent us from distributing the weight that a
certifiably legitimate non-voter would have received (had it been a
voter) to the nodes in its lobe. In fact, such distribution is necessary
for the weights to sum to 1 when all voters reside in lobes of other
nodes. A natural way is to apply this procedure recursively in each
such lobe. This leads to our mechanism, which we call LEGIT+

because it recursively passes legitimacy to nodes. It is presented as
Algorithm 1. Crucially, we only recursively apply the mechanism
to a lobe if it has a voter. Note that our mechanism assigns a positive
weight to the maximal set of nodes subject to Lemma 1. This leads
us to the next result.

Lemma 2. If a node receives zero weight under LEGIT+, it re-
ceives zero weight under all mechanisms inMNH.

We are now ready for the main result of this paper.

Theorem 5. LEGIT+ is optimized for small networks within the
familyMNH.

Proof. We first show that LEGIT+ ∈ MNH. When an opinionated
node v (a voter in the true instance) performs a false-name ma-
nipulation, LEGIT+ either keeps the weights of all original voters
invariant (if v remains a voter after the manipulation), or distributes
the weight of v among the voters in its lobe (if v does not vote after
the manipulation). As the real nodes in the lobe of v previously had
zero weight, in both cases no real voter other than v loses weight
due to the manipulation. Also, LEGIT+ is symmetric by definition.

Before proving that LEGIT+ is optimized for small networks
withinMNH, we need to prove a special structure of the lobes.



Lemma 3. For two distinct nodes v1 and v2, we have i) v1 ∈
F (v2) implies F (v1) ⊆ F (v2), ii) ∅ 6= F (v1) ⊆ F (v2) implies
v1 ∈ F (v2), and iii) F (v1) ∩ F (v2) ∈ {∅, F (v1), F (v2)}.

Proof. For part i), v1 ∈ F (v2) implies that all paths from v∗ to v1
pass through v2. For any t ∈ F (v1), all paths from v∗ to t must
pass through v1. But since the path segment from v∗ to v1 must
involve v2, it follows that all paths from v∗ to t involve v2 as well.
Hence, t ∈ F (v2) for all t ∈ F (v1), i.e., F (v1) ⊆ F (v2).

For part ii), since F (v1) 6= ∅, there exists a direct neighbor of
v1 in F (v1).6 Call it t. Then, we have t ∈ F (v2). However, af-
ter removal of v2, t and v1 should belong to the same connected
component, and t and v∗ belong to different connected compo-
nents. Hence, removal of v2 also disconnects v1 from v∗. Thus,
v1 ∈ F (v2), as required.

For part iii), if F (v1) ∩ F (v2) = ∅, we are done. Else, let v ∈
F (v1)∩F (v2). Then, every path from v∗ to v must include both v1
and v2. Choose an arbitrary path, and without loss of generality, let
it be composed of path P1 from v∗ to v1, path P2 from v1 to v2, and
path P3 from v2 to v. If there exists a path from v∗ to v2 that does
not include v1, then combining that with P3 would give us a path
from v∗ to v that does not include v1, which is a contradiction.
Hence, there exists no path from v∗ to v2 that does not include
v1, i.e., v2 ∈ F (v1). By part i), it implies F (v2) ⊆ F (v1), i.e.,
F (v1) ∩ F (v2) = F (v2), as required. � (Proof of Lemma 3)

We now prove a seemingly weaker guarantee, but later show that
it is sufficient for our purpose.

Lemma 4. For a mechanism M ∈ MNH, if M is leximin-better
than LEGIT+ on an instance (G,S, v∗), then LEGIT+ is leximin-
better than M on an instance (H,T, v∗), where H is a strict sub-
graph of G, and T ⊆ V (H) \ {v∗}.

Proof. Consider the instance (G,S, v∗). Since M returns a dif-
ferent weight vector than LEGIT+ on this instance, there must
exist a vertex u1 such that its weight under M (denoted wM

u1
)

is less than its weight under LEGIT+ (denoted wL
u1

). Consider
the maximal chain u1, u2, . . . , uk such that ui ∈ F (ui+1) for
i ∈ {1, . . . , k−1}. From part (i) of Lemma 3, we immediately have
F (ui) ⊆ F (ui+1) for i ∈ {1, . . . , k−1}. Let U = {u1, . . . , uk}.
Next, we show a technical condition.

For v /∈ U, u1 /∈ F (v). (*)

This is intuitively clear: Because lobes are either contained in one
another or completely disjoint (by Lemma 3), if u1 ∈ F (v), then
either F (v) contains even the outermost lobe F (uk), or there exists
an i ∈ {2, . . . , k} such that F (ui−1) ⊂ F (v) ⊂ F (ui). In that
case, we should be able to extend the maximal chain, which is a
contradiction. Proving this formally is a bit tricky.

In order to prove (*), suppose for contradiction that u1 ∈ F (v).
First, since v alone could create a chain of length 2, we have k ≥
2. Hence, u1 ∈ F (uk) 6= ∅. Now, due to part (i) of Lemma 3,
u1 ∈ F (v) implies F (u1) ⊆ F (v). Choose i to be the largest
integer such that F (ui) ⊆ F (v). If i = k, then F (uk) 6= ∅ and
F (uk) ⊆ F (v) implies uk ∈ F (v) by part (ii) of Lemma 3. This
means we could have extended the chain by adding uk+1 = v,
which is a contradiction. Hence, i < k. We first show that ui ∈
F (v). If i = 1, this is assumed, and if i ≥ 2, it follows from
F (ui) ⊆ F (v), F (ui) 6= ∅, and part (ii) of Lemma 3. Next, we
show that v ∈ F (ui+1). Note that u1 ∈ F (v) ∩ F (ui+1). Hence,
the intersection is not empty. Further, F (ui+1) * F (v). Hence, by
6This is because we assume the original graph to be connected.

part (iii) of Lemma 3, we have F (v) ⊆ F (ui+1). Further, u1 ∈
F (v). Hence, F (v) 6= ∅. Thus, by part (ii) of Lemma 3, we have
v ∈ F (ui+1). Thus, we have proved that ui ∈ F (v) and v ∈
F (ui+1), which is a contradiction because it means we could have
extended the chain by inserting v between ui and ui+1. Thus, for
v /∈ U , u1 /∈ F (v).This completes the proof of (*).

Next, we perform a sequence of operations to transform the in-
stance. In each step, we find an arbitrary node v /∈ U such that
F (v) 6= ∅. By (*), u1 /∈ F (v). We remove the vertices in the lobe
F (v), and make v a voter (if that was not already the case). Note
that this operation is the reverse of a false-name manipulation by
v. Hence, by the no harm axiom, the weight of u1 under M should
not increase during this operation. On the other hand, it is easy to
check that the weight of u1 stays invariant under LEGIT+ during
this operation. Hence, even in the resulting instance, the weight of
u1 under M is less than its weight under LEGIT+.

We continue these operations until we cannot find a node v /∈ U
such that F (v) 6= ∅. Let the final instance be denoted (H,T, v∗).
In the instance (H,T, v∗), suppose LEGIT+ assigns zero weight to
l voters. Then, by Lemma 2, M must also assign zero weight to at
least l voters. Also, under LEGIT+ the (l + 1)st smallest weight is
the weight of u1, which is wL

u1
, since u1 is contained in every non-

empty lobe that remains in H . In contrast, under M the (l + 1)st

smallest weight is at most the weight of u1, which is at mostwM
u1
<

wL
u1

. Hence, LEGIT+ is leximin-better than M on (H,T, v∗). By
our construction, H is already a subgraph of G. To see why it is a
strict subgraph ofG, recall thatM was leximin-better than LEGIT+

on the original instance (G,S, v∗). Hence, we must have made at
least one “reverse false-name manipulation” operation, which must
have resulted in a strictly smaller subgraph. � (Proof of Lemma 4)

Finally, to prove that LEGIT+ is optimized for small networks
in MNH, consider a different mechanism M ∈ MNH, and sup-
pose M is leximin-better than LEGIT+ on an instance (G,S, v∗).
Then, by Lemma 4 there exists an instance (H,T, v∗) on which
LEGIT+ is leximin-better than M and where H is a strict sub-
graph of G. Among all such instances, choose one with the small-
est number of nodes in H . We show that LEGIT+ dominates M
on network H for target node v∗. To see this, take a subset of
voters Q ⊆ V (H) \ {v∗}. If M is leximin-better than LEGIT+

on (H,Q, v∗), then by Lemma 4 there exists another instance
(H ′, Q′, v∗) on which LEGIT+ is leximin-better thanM and where
H ′ is a strict subgraph of H (and therefore, of G). However, this
violates the minimality of the number of nodes in H in our choice
of the instance (H,T, v∗). Hence, M must not be leximin-better
than LEGIT+ on (H,Q, v∗), as required. � (Proof of Theorem 5)

4. COMPUTATIONAL COMPLEXITY
Let us begin with RANDOMWALK. Andersen et al. [2] show

that aggregating binary recommendations under RANDOMWALK
amounts to solving a single system of linear equations Ax = b,
where the LHS matrix A is n × n (n = |V | is the number
of nodes) and the RHS vector b is n × 1. Solving this system
can take, even with recent exact solvers, O(|V |1.5 · (|V | + |E|))
time [11]. Implementing RANDOMWALK as a weight-selecting
mechanism is computationally even more difficult. We need to
solve one system of linear equations for each voter, which can take
O(|V |2.5 · (|V |+ |E|)) time [11].

Let us now consider LEGIT+. Arguably, it is harder to describe
than RANDOMWALK, and Algorithm 1 is more intricate than sim-
ply solving a collection of linear systems. More specifically, in the
first step of Algorithm 1 simply computing F (u) for every node u



would naïvely takeO(|V |·(|V |+|E|)) time. Surprisingly, we show
that there exists a more efficient implementation that computes the
weights under LEGIT+ in merely O(|V |+ |E|) (linear) time. This
implementation uses as a subroutine the remarkable linear time al-
gorithm by Hopcroft and Tarjan [15] for finding biconnected com-
ponents in a graph. A biconnected component (or a block) is a max-
imal 2-vertex-connected subgraph. Nodes that belong to multiple
blocks (i.e., whose removal disconnects the graph) are called cut
vertices or articulation points. A connected graph G decomposes
into a block-cut tree T whose vertices are the blocks and the artic-
ulation points of G, and a block B and an articulation point u are
connected if u ∈ B.

Let A denote the set of articulation points of G, and Bu denote
the set of blocks of G containing u. First, u has a non-empty lobe
F (u) if and only if u ∈ A. Next, if u ∈ A, the lobe F (u) can
be computed as follows. Remove the vertex of T representing u,
which disconnects T into connected components, one of which
contains all blocks containing v∗. The set of nodes in the blocks
contained in every other connected component of the tree (except
u itself) constitute F (u). This key observation leads us to the lin-
ear time implementation of LEGIT+ presented as Algorithm 2. The
proof of its correctness and running time analysis appear in the full
version of the paper.

Theorem 6. Weights under mechanism LEGIT+ can be computed
in O(|V |+ |E|) time.

5. EXPERIMENTS
We compare LEGIT+ with two baseline mechanisms: LEGIT and

RANDOMWALK. We define weight-selecting mechanism LEGIT as
the simpler version of LEGIT+ that assigns equal weight to all cer-
tifiably legitimate voters, but does not apply the procedure recur-
sively within the lobes of certifiably legitimate non-voters. Thus,
comparison with LEGIT indicates the gain from recursively apply-
ing LEGIT+ within the lobes of certifiably legitimate non-voters.
We note that LEGIT+ is expected to (though theoretically not guar-
anteed to) outperform RANDOMWALK, because RANDOMWALK
is not designed to assign uniform weights.

We perform experiments using 16 real-world social networks
from the KONECT project [18]. The number of nodes and edges
in these networks vary from 23 to 26,475, and from 78 to 146,385,
respectively.7 For each network G, we sample the target node v∗

uniformly at random. For each pair (G, v∗), we determine the set
of voters by making each node in the network a voter independently
with probability pvote. We use both low values (from 0.01 to 0.09 in
increments of 0.02) and high values (from 0.1 to 0.9 in increments
of 0.2) of pvote, representative of varying levels of voter engage-
ment. For each network and each of 10 values of pvote, we choose
100 random target nodes, and for each target node, choose 100 ran-
dom subsets of voters. In the results presented below, we compare
LEGIT+ with LEGIT and RANDOMWALK across the simulations
for each network. To solve the linear system in RANDOMWALK,
we use Matlab’s mldivide operator, and to find the biconnected
components in LEGIT+, we use the MatlabBGL library 8.

Figure 1(c) shows a log-log plot of the running time of all three
mechanisms (LEGIT+ as magenta diamonds, LEGIT as red circles,
and RANDOMWALK as blue stars) as a function of the number of
nodes in the network. The experiments were performed on a dual-
core machine with 3.10 GHz processors and 8 GB RAM. While
7Running experiments on the larger datasets was infeasible due to
the prohibitive running time of RANDOMWALK.
8https://www.cs.purdue.edu/homes/dgleich/
packages/matlab_bgl/

ALGORITHM 2: LEGIT+ in linear time
Data: Social network G, set of voters S ⊆ V (G) \ {v∗},

central node v∗ ∈ V (G)
Result: Weight vector w = (wv)v∈S

B ← set of biconnected components of G;
A← set of articulation points of G;
∀u ∈ V,Bu ← {B ∈ B | u ∈ B};
/* B, A, and {Bu}u∈V are computed using

the linear time algorithm from [15] */
∀u ∈ A \ S,VLu ← false;
∀u ∈ S,wu ← 0;
voting_lobes(v∗, ∅);
weight_helper(v∗, 1, ∅);
return w = (wu)u∈S ;

Procedure voting_lobes(v,B∗)
b← false;
for B ∈ Bv \B∗ do

for u ∈ B \ {v} do
if u ∈ S then

b← true;
else if u ∈ A then

VLu ← voting_lobes(u, {B});
if VLu then b← true;

end
end

end
return b;

Procedure weight_helper(v, T,B∗)
L← {u ∈ V | (u ∈ B ∈ Bv \B∗) ∧

(u ∈ S ∨ (u ∈ A ∧VLu))};
N ← |L|;
for u ∈ L do

if u ∈ S then
wu = T/N ;

else if u ∈ A then
weight_helper(u, T/N, {B});

end
end

LEGIT is trivially faster than LEGIT+ (as it requires a strictly less
number of operations), the difference is not significant. On the
other hand, while RANDOMWALK is slightly faster than LEGIT+

on smaller networks, LEGIT+ is significantly faster on networks
with more than 200 nodes. This is consistent with our result from
Section 4 that the worst-case complexity is significantly lower for
LEGIT+ than for RANDOMWALK (linear versus super-quadratic).
Across the entire experiment, LEGIT+ ran about 13 times faster
than RANDOMWALK, and only about 3 times slower than LEGIT.

In the remaining figures, we only plot two lines: one that com-
pares LEGIT+ with LEGIT (with red circles), and one that compares
LEGIT+ with RANDOMWALK (with blue stars).

Our next goal is to determine which mechanism outputs a more
uniform weight vector. Lacking an objective definition of unifor-
mity, we use three metrics: i) leximin comparison as used in our
theoretical results in Section 3, ii) the percentage of voters dis-
carded, i.e., assigned zero weight to (the lower, the better), iii) the
(L2-)distance from the uniform weight vector, which is equal to the
variance of the weight vector (the lower, the better).

Figure 1(d) shows that LEGIT+ is leximin-better than both
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Figure 1: Comparison of LEGIT+ with RANDOMWALK on real-world social networks

LEGIT and RANDOMWALK in more than 50% simulations in
each network. In fact, it is leximin-better than LEGIT (resp.
RANDOMWALK) in more than 75% (resp. 85%) simulations in
all but one (resp. two) networks. Superior empirical performance
in such large networks nicely complements our theoretical result
(Theorem 5), which indicates that LEGIT+ should be superior in
small networks in general.

Next, while Lemma 2 ensures that LEGIT+ discards the smallest
subset of voters subject to the no harm axiom, Figure 1(e) shows
that LEGIT and RANDOMWALK can discard up to 60% and 20%
more voters, respectively, than LEGIT+ (about 30% and 10%, re-
spectively, on average across networks).

Finally, comparing variance of the returned weight vector, Fig-
ure 1(f) shows that LEGIT+ performs better than both LEGIT and
RANDOMWALK in more than 50% simulations in each network.
Further, it outperforms LEGIT in at least 69% simulations in all but
one network, and RANDOMWALK in at least 89% simulations in
all but one network.
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Figure 2: Accuracy

So far we have focused on
the setting where the opinions
of voters are subjective, and the
goal is to find a weight vector
as close to uniform as possible.
We now present empirical re-
sults for a slightly different set-
ting in which there exists a bi-
nary (0/1) ground truth, and the
goal is to pinpoint it by aggre-
gating binary opinions of voters,
each of which is “correct” with
probability pacc > 0.5. The accuracy of a weight-selecting mech-
anism on an instance (G,S, v∗) is the probability that the mecha-
nism assigns higher total weight to voters with the correct opinion
than to voters with the incorrect opinion. While we do not have
theoretical results for this setting, we can evaluate the mechanisms
empirically. For pacc, we use both low values (0.51 to 0.59 in incre-
ments of 0.02) and high values (0.6 to 0.9 in increments of 0.1).

Figure 2 shows that LEGIT+ achieves better accuracy than both
LEGIT and RANDOMWALK in more than 50% simulations in each
network. Also, note that LEGIT+ achieves better accuracy than
RANDOMWALK in at least 70% simulations in all but one network.

6. DISCUSSION
Recall the median-of-medians rule from the introduction: the

recommendation is the median of the opinions of the target agent’s
friends, and for a friend who does not provide an opinion, we con-
struct one by taking the median of his friends’ opinions, and so
on. In conjunction with the weighted median aggregation rule (as
in Theorem 1), LEGIT+ can be seen as a similar rule, “median-
of-medians for legitimate nodes”: instead of taking the median of

friends’ opinions, take the median of the opinions of (certifiably)
legitimate nodes, and for such nodes that do not provide an opin-
ion, construct one recursively from opinions in their lobes.

We uniquely characterize LEGIT+ within the family of symmet-
ric weight-selecting mechanisms satisfying the no harm axiom. We
show this axiom to be closely related, but in the general setting in-
comparable, to false-name-proofness. The no harm axiom is only
defined for weight-selecting mechanisms. It remains to be seen
whether we can pinpoint an overall recommendation mechanism
that uses LEGIT+ (e.g., median-of-median for legitimate nodes)
within the more general family of false-name-proof mechanisms.

Importantly, in this paper we consider the uniform weight vector
as idealistic. In the context of aggregating subjective opinions into
a personal recommendation for the target node, this only makes
sense in the absence of knowledge of correlation among user pref-
erences (e.g., homophily of opinions). However, note that Lemma 1
provides a necessary condition for satisfying the no harm axiom —
in the form of having to assign zero weight to specific nodes —
even in the presence of homophily. Given a model of homophily,
we must start by assigning zero weight to such nodes. Weighting
the remaining nodes to maximally align the recommendation with
the target node’s preference is still a difficult problem. Fortunately,
it can be shown that choosing the remaining weights as a function
of the vertex-connectivity of a node to the target node is sufficient
to guarantee the no harm axiom. However, this approach is likely
to be suboptimal. An immediate next step is to design better ways
of incorporating homophily subject to the no harm axiom.

An interesting direction for future research is to study stronger
manipulations. For example, LEGIT+ does not prevent group false-
name manipulations or manipulations where nodes may delete their
existing edges with other real nodes. Can we effectively prevent
them? While RANDOMWALK is group false-name-proof, it can be
shown that it is not optimized for small networks among symmet-
ric group false-name-proof mechanisms. Does there exist such a
mechanism (recall that there can be at most one)?

False-name manipulations are an increasingly serious concern
in social networks, especially with the effortless accessibility and
increasing popularity of automated tools for creating fake ac-
counts [24]. Given the difficulty of distinguishing fake accounts
from real ones, we believe that the study of false-name-proofness
is the key to building the next generation of reliable recommenda-
tion systems.
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