Abstract

Specifying the objective function that an AI system should pursue can be challenging. Especially when the decisions to be made by the system have a moral component, input from multiple stakeholders is often required. We consider approaches that query them about their judgments in individual examples, and then aggregate these judgments into a general policy. We propose a formal learning-theoretic framework for this setting. We then give general results on how to translate classical results from PAC learning into results in our framework. Subsequently, we show that in some settings, better results can be obtained by working directly in our framework. Finally, we discuss how our model can be extended in a variety of ways for future research.

Introduction

As AI systems are being broadly deployed in the world, the problem of specifying the objective functions that they pursue is becoming ever more complex. Simple objective functions that are sensible for the purpose of evaluating techniques in the lab often cause unwanted outcomes in practice. For example, one might try to simply minimize error rate in a speech recognition system, only to realize that the resulting system performs extremely well on the majority dialect but poorly on the minority dialect. This may socially not be acceptable.

More generally, AI systems increasingly need to make difficult tradeoffs. Should a self-driving car take an action that increases the risk for a nearby pedestrian, but reduces it for the occupant of the car? Should an algorithm that matches patients and donors in a kidney exchange prioritize younger patients even if this reduces the total number of matches? Given that today’s AI systems do not have a broad understanding of the world, they cannot appropriately make these tradeoffs themselves; human input is required. But these problems are difficult for humans too, and they will not always agree.

One approach to doing so is the following (Conitzer et al. 2017; Noothigattu et al. 2018). Ask multiple human subjects what option they would choose in certain situations in the domain at hand; from this, learn a model for each of them, predicting what they would choose in other situations; and then, use techniques from social choice theory (Brandt et al. 2015) to aggregate this into a single decision policy for the AI system. For example, the “Moral Machine” website developed at MIT invites visitors to consider various scenarios in which the car will necessarily end up killing one group of people (and/or animals) or another, and ask them which they would choose. Indeed, these responses have been aggregated into policies via a voting-based approach (Noothigattu et al. 2018). In a similar project, MTurkers were asked such comparison queries in the context of kidney exchanges and their responses were aggregated into a policy (Freedman et al. 2018).

Human subject responses are not freely available. They either require compensation (e.g., MTurkers) or a gamified design that makes it enjoyable to participate but may come at other costs. This raises several related questions for the purpose of designing similar systems. How many responses should we aim to get? Do we need to recruit many distinct subjects, or does it suffice to have many responses from a few subjects? Do random queries suffice or should we actively design them? In this paper, we propose a formal learning-theoretic framework for this problem, building on the framework of Probably Approximately Correct (PAC) learning (Valiant 1984). In our model, there is a single correct concept c^* that we attempt to learn. Each human subject j has her own concept c_j, which is a noisy estimate of the correct concept. When we ask subject j query $x^{j,k}$, the subject will respond with $y^{j,k}$ according to her own concept c_j. From these responses, we aim to learn the correct concept c^*.

1This project has been much maligned for focusing on an unrealistic problem. But there is no doubt that self-driving cars will face some problems where they will have to make such tradeoffs, for example in deciding how aggressive to be in merging lanes (Sadigh et al. 2016).

2The Moral Machine team has been open about prioritizing the site going viral over other objectives.

3In the context of moral decision making, it is of course a matter of philosophical debate whether there is truly a correct concept, and we will not resolve this debate here. However, belief that such a correct concept exists is not necessary to use our methodology; one might also see it as merely a useful fiction to proceed with the analysis, as is sometimes done in voting theory as well (Elkind and Slinko 2015).
In the remainder of the paper, we first formally introduce the framework. We then give general results on how to translate classical results from PAC learning into results in our framework. Subsequently, we show that in some settings, better results can be obtained by working directly in our framework. Finally, we discuss how our model can be extended in a variety of ways for future research.

Related Work

There is a rich body of research on learning from multiple entities, among which most closely related to ours are collaborative learning (Blum et al. 2017; Qiao 2018), domain adaptation (Mansour, Mohri, and Rostamizadeh 2009a; 2009b), and learning from nearby sources (Crammer, Kearns, and Wortman 2006; 2008). Collaborative learning concerns a setting in which multiple agents try to learn the same concept with respect to their own distinct distributions of data points; in contrast, in our setting, agents draw data points from the same global distribution, but label based on their own noisy concepts. Domain adaptation concerns a problem in which, given concepts with small errors w.r.t. different distributions, the goal is to aggregate the given concepts into a new one, with small error w.r.t. any mixture of the distributions. The setting is intrinsically different from ours, in the sense that (1) in our setting, all data points are from the same distribution (but are labeled according to different noisy concepts), and (2) our goal is to recover the ground truth instead of combining existing slightly erroneous ones into another slightly erroneous one. Learning from nearby sources considers a problem in which, given labeled data sets w.r.t. different sources and the “similarity” between these sources, the goal is to select a subset of data that will result in the best model for each of the sources. This problem, while being similar to ours in terms of the existence of multiple sources, studies estimation of many potentially unrelated concepts, instead of one ground truth.

Another line of work is noise-tolerant learning (Kearns 1998; Blum, Kalai, and Wasserman 2003; Natarajan et al. 2013). This problem is similar to ours in the sense that the goal is also to learn a target concept with noisy data points. However, in noise-tolerant learning, noise models are usually less structured; normally, all data points are corrupted in a more or less homogeneous way, at random (e.g., flipping each label independently with a fixed probability) or adversarially. In our model, instead, it is known which data points are from which agent, and each agent labels according to a single concept; the aggregation algorithm can, and should, make use of this information.

The PAC Judgment Aggregation Model

Before formally introducing our model, first we discuss a concrete example.

Example 1. Suppose we want to learn a Boolean conjunction formula from the agents. Each of the 3 agents, Alice, Bob, and Charlie, has responded to 3 queries (see Table 1). Observe that every agent is consistent, in the sense that there is indeed a Boolean conjunction that conforms with her/his reports. In particular, Alice’s formula is x_1, Bob’s is $x_1 \land x_3$, and Charlie’s is either x_2 or $x_1 \land x_2$. But our goal is to find an aggregate conjunction.

One way to aggregate the responses of the 3 agents is to find the Boolean conjunction that conflicts with as few reports as possible. The resulting aggregate conjunction is x_1, which conflicts only with Bob’s first report and Charlie’s first report. One may check that any other conjunction conflicts with more data points.

An alternative way of aggregating is to first compute the majority label on every feature vector, and then find the formula that conflicts with as few of the majority labels as possible. Among the 9 data points, there are only 4 distinct feature vectors: $(1, 0, 0)$, $(1, 0, 1)$, $(1, 1, 0)$, and $(0, 0, 1)$, and the majority judgments on these feature combinations are 0, 1, 1, and 0, respectively. Given these majority labels, there are 4 formulas that conflict with only 1 label: x_1, x_2, $x_1 \land x_2$, and $x_1 \land x_3$. Depending on the tie-breaking rule, any one of these 4 might be the aggregate formula.

From the above example, we see that the aggregate result depends heavily on the method used. To decide which method is best, we consider the following statistical model of the problem. As described in the introduction, this model assumes that every agent responds to data points (feature vectors) according to her own noisy estimate of the correct concept. Formally:

Definition 1 (PAC Judgment Aggregation). Given a distribution of data points \mathcal{D}, a concept class \mathcal{C} where each $c \in \mathcal{C}$ maps each data point in the support of \mathcal{D} to a label in $\{-1, 1\}$, and a noisy mapping $\nu : \mathcal{C} \rightarrow \Delta(\mathcal{C})$ which maps each concept to a distribution over concepts, the PAC judgment aggregation problem is defined as follows:

1. A ground truth concept $c^* \in \mathcal{C}$ is chosen.
2. m agents’ concepts, denoted by $A = (c^1, \ldots, c^m)$ are generated by drawing i.i.d. samples from $\nu(c^*)$.
3. ℓ data points are generated for each agent j, by drawing i.i.d. samples $(x^{j,k})_{k \in [\ell]}$ and attaching to each sample $x^{j,k}$ the label $y^{j,k} = c^j(x^{j,k})$, together forming $((x^{j,k}, y^{j,k}))_{k \in [\ell]}$.
4. Based on the data points $(((x^{j,k}, y^{j,k}))_{k \in [\ell]})_{j \in [m]}$, a learning algorithm computes a hypothesis $h \in \mathcal{C}$. We are interested in algorithms that, with probability at least $1 - \delta$, compute a hypothesis h that satisfies:

$$\Pr_{x \sim \mathcal{D}} [c^*(x) \neq h(x)] \leq \epsilon.$$
Definition 1 can be viewed as a natural generalization of the PAC learning model in the presence of noise in agents’ judgments. In fact, if the noise vanishes, i.e., if the noisy mapping satisfies that for any \(c \in \mathcal{C} \), \(\Pr_{c_v \sim \nu(c)}[c = c_v] = 1 \), then with probability 1, every agent has the same concept—the ground truth. In this special case, it does not help to query more than 1 agent, so that PAC aggregation coincides with PAC learning.

In the rest of this paper, we consider finite concept classes, and focus on exact recovery of the ground truth. That is, we consider algorithms that with probability 1−\(\delta \) output the correct concept, \(h = c^* \). This is natural when \(\mathcal{C} \) is finite: fixing a distribution \(D \), for any \(\varepsilon \) smaller than the minimum probability that two concepts differ, the algorithm must output exactly the ground truth with high probability.\(^4\)

General Algorithms for PAC Aggregation

In this section, we present two paradigms to extend general sample complexity upper bounds from the traditional PAC learning setting to our PAC aggregation setting.

Before proceeding to the paradigms, we define the distance between two concepts, which helps simplify the notation. The intuition is straightforward: fixing the distribution \(D \) over data points, the probability that two concepts differ at a random data point induces a metric over the concept class. Formally, for two concepts \(c_1 \) and \(c_2 \), we define the distance between \(c_1 \) and \(c_2 \) to be

\[
d(c_1, c_2) = \Pr_{x \sim D}[c_1(x) \neq c_2(x)].
\]

One can show that \(d(\cdot, \cdot) \) is indeed a metric over \(\mathcal{C} \); in particular, it satisfies the triangle inequality.

With the above definition of distance between concepts, in Definition 1, one may equivalently require the output hypothesis \(h \) to satisfy: with probability at least 1−\(\delta \), \(d(c^*, h) \leq \varepsilon \). In the rest of the paper, we will use this simpler notation whenever possible.

Occam’s Razor

Recall the following basic result in PAC learning for when the concept class is finite:

Proposition 1 (Occam’s Razor for PAC learning (Folklore)). With \(O\left(\frac{\log(|\mathcal{C}|/\delta)}{\varepsilon}\right) \) data points, a concept \(c \) that minimizes empirical error, which by definition is consistent with \(c^* \) on all data points, satisfies \(d(c, c^*) \leq \varepsilon \) with probability at least 1−\(\delta \).

For exact recovery, when the minimum gap between any two concepts is \(\alpha \) (i.e., \(\min_{c_1 \neq c_2} d(c_1, c_2) = \alpha \)), setting \(\varepsilon = \alpha/2 \), Occam’s Razor guarantees that \(O\left(\frac{\log(|\mathcal{C}|/\delta)}{\alpha}\right) \) data points are sufficient to recover \(c^* \). Note that the number of required data points increases as the size of the concept class \(\mathcal{C} \) increases and the gap \(\alpha \) decreases. In the rest of this subsection, we prove an extension of Occam’s Razor\(^2\) to the PAC aggregation model, with an additional parameter characterizing the dependence on the strength of the noise (which is always 0 in PAC learning).

Theorem 1 (Occam’s Razor for PAC Aggregation). Suppose the noisy mapping \(\nu \) satisfies the following two conditions:

1. For any \(c, c' \neq c \),

\[
\mathbb{E}_{c_v \sim \nu(c)}[d(c, c_v)] \leq \mathbb{E}_{c_v \sim \nu(c')}[d(c', c_v)] - \alpha_{\text{OR}}.
\]

2. For any \(c, c' \) (where possibly \(c = c' \)), letting \(c_v \sim \nu(c) \), \(d(c', c_v) \) is sub-Gaussian with parameter \(\beta \), i.e., for any \(\lambda \in \mathbb{R} \),

\[
\mathbb{E}[\exp(\lambda(d(c', c_v) - \mathbb{E}[d(c', c_v)]))] \leq \exp(\beta^2 \lambda^2/2).
\]

Then, using \(m = O\left(\frac{\log(|\mathcal{C}|/\beta^2)}{\alpha_{\text{OR}}}\right) \) agents and \(\ell m = O\left(\frac{\log(|\mathcal{C}|/\delta)}{\alpha_{\text{OR}}}\right) \) data points in total, with probability at least 1−\(\delta \), a concept \(c \) that minimizes the empirical error, defined as

\[
\text{err}_{A, S}(c) = \frac{1}{\ell m} \sum_{j \in [m], k \in [\ell]} \mathbb{I}[c(x^{j,k}) \neq y^{j,k}],
\]

is the ground truth.

Before proving the theorem, we briefly discuss the implications of its components:

Dependence on \(|\mathcal{C}| \). The main message of the theorem is similar to that of the classical Occam’s Razor result for PAC learning: with sufficiently many data points, with high probability, an empirical error minimizer recovers the ground truth. Both \(m \) and \(\ell m \) are required to increase proportionally to \(\log(|\mathcal{C}|) \). In other words, if the concept class is small, then fewer agents and data points suffice to recover the ground truth. This is why the result is named after Occam’s Razor—simpler models tend to explain the world better.

Dependence on \(\alpha_{\text{OR}} \). Condition 1 of the theorem states that in expectation, the noisy version \(c_v \) of a concept \(c \) is closer to \(c \) than to any other concept. The gap \(\alpha_{\text{OR}} \) by which \(c_v \) is closer to \(c \) than to any other concept determines the number of agents and samples required to recover \(c \). The larger the gap is, the fewer agents and samples are required. In particular, when the noise vanishes, for \(c, c' \neq c \), and \(c_v \sim \nu(c) \), we have \(c = c_v \), and therefore \(d(c, c_v) = d(c, c) = 0 \), and \(d(c', c_v) = d(c', c) \). In such cases, \(\alpha_{\text{OR}} \) is the minimum distance between two distinct concepts.

Dependence on \(\beta \). Condition 2 of the theorem states that the distribution of noisy judgments is well concentrated, in the sense that the distance between \(c_v \) and any concept is a sub-Gaussian random variable with parameter \(\beta \). The smaller \(\beta \) is, the fewer agents are required. This condition may appear rather strong at first sight. Nevertheless, since \(d(c', c_v) \in [0, 1] \), it is always true that \(d(c', c_v) \) is sub-Gaussian with parameter 1/2 (i.e., \(\beta \leq 1/2 \)). In natural
noise models, the sub-Gaussian parameter β goes to 0 as the noise vanishes, in which case the number of agents required is significantly reduced. For example, if the noisy version c_v of c is never too far away from c—i.e., for any c, $c_v \sim \nu(c)$, we have $d(c, c_v) \leq \gamma$ with probability 1—then we have $\beta \leq \min\{\gamma, 1/2\}$. This is because for any c', by the triangle inequality $d(c', c_v) \in [d(c, c') - d(c, c_v), d(c, c') + d(c, c_v)] \subseteq [d(c, c') - \gamma, d(c, c') + \gamma]$, and any random variable with a support of length bounded by 2γ is sub-Gaussian with parameter γ. In particular, when there is no noise (i.e., $c_v = c$ with probability 1), we have $\beta = 0$, and $m = 1$ agents suffice—corresponding to the traditional PAC learning setting.

Tradeoff between m and ℓ. When $\beta = o(1)$, the required number of agents m is asymptotically smaller than the total number of data points ℓm. As a result, a tradeoff between m and ℓ emerges: while keeping the probability of failure δ the same, one may use more data points per agent in order to decrease the number of agents needed (and vice versa), as long as the number of agents meets the minimum requirement.

Learnability with $\ell = 1$ data point per agent. Setting $\beta = 1/2$ in the second condition of Theorem 1, we immediately obtain the following simpler version:

Corollary 1 (Occam’s Razor, Simplified). Suppose the noisy mapping ν satisfies: for any c and $c' \neq c$,

$$
\mathbb{E}_{c_v \sim \nu(c)}[d(c, c_v)] \leq \mathbb{E}_{c_v \sim \nu(c')}[d(c', c_v)] - \alpha_{\text{OR}},
$$

Then, using $m = O\left(\frac{\log(|\mathcal{C}|/\delta)}{\alpha_{\text{OR}}}\right)$ agents and $\ell = 1$ data point per agent, with probability $1 - \delta$, a concept that minimizes the empirical error is the ground truth.

In other words, with sufficiently many agents, one data point per agent suffices to recover the ground truth.

Computational efficiency. Like the classical Occam’s Razor result for PAC learning, Theorem 1 does not guarantee computational efficiency. This is because it is sometimes hard to compute a minimizer of the empirical error. Indeed, it is impossible to design general algorithms for PAC learning/aggregation that are “computationally efficient” without specifying the representation of the particular problem. In a later section, we present computationally efficient algorithms in several specific settings. We now turn back to prove Theorem 1.

Proof of Theorem 1. First we define some notation. Recall that $A = (c_1, \ldots, c_m)$ is the (ordered) set of agents. Let $S = ((x^{j,k})_j)_j$ be the (ordered) set of data points. Let

$$
\text{err}_A(c) = \mathbb{E}_{S \sim \mathcal{D}^m} \left[\text{err}_{A,S}(c) \right]
$$

and $\text{err}(c) = \mathbb{E}_{c_v \sim \nu(c)} \left[\text{err}_A(c) \right]$, denote the expected empirical error of a concept c, with the latter expression also taking the expectation over the agents’

1Here, we abuse notation to allow $1 = O(0)$.
Again, before proceeding to the proof, we discuss the implications of the various components of the theorem.

Dependence on \(|C|\). As in the Occam’s Razor result, the number of data points required by the majority-voting approach depends logarithmically on \(|C|\). However, unlike in Occam’s Razor, the number of agents required for majority voting does not explicitly depend on \(|C|\). This can be partially explained by the fact that since \(|D| < \infty\), there are at most \(2^{|D|}\) possible concepts in total.

Dependence on \(|D|\). Although, in contrast to Occam’s Razor, majority voting requires \(|D|\) to be finite, one may observe that the dependence on \(|D|\) is rather mild, i.e., logarithmic for \(m\) and doubly logarithmic for \(\ell\). This means majority voting remains relatively efficient even when \(|D|\) grows exponentially fast.

Dependence on \(\alpha_{MV}\). The parameter \(\alpha_{MV}\) here is similar to \(\alpha_{OR}\) in Occam’s Razor, in the sense that when the noise vanishes, i.e., \(\Pr_{c_i \sim \nu(c_i)}[c_i = c] = 1\), the two parameters are exactly the same. The key difference is that, for majority voting, \(\alpha_{MV}\) does not depend on the strength or form of the noise.

Dependence on \(\theta\). Majority voting requires that the noisy concepts are more likely to agree with the ground truth. The parameter \(\theta\) can be viewed as the distance between the expected judgment and a random guess, which in some sense characterizes the strength of the noise. The larger \(\theta\) is, the easier to distinguish the noisy judgments from random guesses and extract the ground truth, and therefore fewer agents and data points are required.

Now we prove Theorem 2.

Proof of Theorem 2. We first show that with probability \(1 - \frac{\delta}{2}\), the empirical error minimizers for the agents’ data points coincide exactly with the agents’ concepts. According to Proposition 1, with \(\ell = O\left(\frac{\log(|C|)m/\delta}{\alpha_{MV}}\right)\) data points, \(h^j = c^j\) with probability at least \(1 - \frac{\delta}{2}\). Taking the union bound over the \(m\) agents, we conclude that with probability at least \(1 - \frac{\delta}{2}\), it is the case that for every \(j\), \(h^j = c^j\).

Now, conditioning on the event that \(h^j = c^j\) for any \(j\), we show that majority voting recovers \(c^*\) exactly with probability at least \(1 - \frac{\delta}{2}\). Consider some \(x \in D\) where w.l.o.g. \(c^*(x) = 1\). Since \(\Pr_{c \sim \nu(c)}[c(x) = 1] \geq \frac{1}{2} + \theta\), the Chernoff bound gives

\[
\Pr\left[\frac{1}{m} \sum_{j \in [m]} h^j(x) \leq 0\right] \leq \exp(-\theta^2 m/2).
\]

With \(m = O\left(\frac{\log(|D|)\delta}{|\theta^2|}\right)\), the right hand side is at most \(\frac{\delta}{2|D|}\). Taking the union bound over the support of \(D\), we have: with probability \(1 - \frac{\delta}{2}\), for all \(x \in D\), \(h(x) = c^*(x)\).

Recall that the immediately preceding argument conditioned on \(h^j = c^j\) for all \(j\), which happens with probability at least \(1 - \frac{\delta}{2}\). Taking the union bound over the two parts, it follows that with probability at least \(1 - \delta\), the pointwise majority concept \(h\) is exactly the ground truth \(c^*\).

Finally, we note that the definition of the pointwise majority concept does not guarantee its membership in \(C\). This is not a problem, because when the algorithm succeeds, we do have \(h \in C\) since \(c^* \in C\). When it fails and \(h \notin C\), we can let the algorithm output an arbitrary hypothesis in \(C\).

\[
\hfill \square
\]

Occam’s Razor vs. Majority Voting

Occam’s Razor (Theorem 1) and majority voting (Theorem 2) rely on different parameters. As these parameters vary across settings, either approach may be preferred over the other. Two key differences are:

1. Theorem 2 requires both \(|D|\) and \(|C|\) to be finite, while Theorem 1 depends only on \(|C|\). This means majority voting may fail when the support of \(D\) is infinite.

2. The parameter \(\alpha_{MV}\) in Theorem 2 is always positive, but Theorem 1 puts a strong requirement on the gap \(\alpha_{OR}\) that in principle does not always hold. As an extreme (if unrealistic) example, suppose that the noisy mapping \(\nu\) is actually a deterministic permutation of the concept space \(C\). In this case, the noisy version of a concept is clearly closer in expectation to another concept, namely the concept to which it is deterministically mapped.

Tighter Bounds in Restricted Settings

In this section, we consider a linear model, where each concept \(c\) is an \(n\)-dimensional vector in \(\mathbb{R}^n\). For a data point \(x\) (also in \(\mathbb{R}^n\)), the label that \(c\) assigns to \(x\) is determined by the sign of \(c \cdot x\), denoted by \(\text{sgn}(c \cdot x)\).

One example of the linear model is pass/fail exams in which there are \(n\) true-or-false questions. If concept \(c^*\) is the ground truth solution, then the correct answer to question \(i\) is \(\text{sgn}(c^*_i)\) and that question is worth \(|c^*_i|\) points, i.e., the right answer to the \(i\)-th question increases the score by \(|c^*_i|\), and the wrong one decreases the score by \(|c^*_i|\). The support of \(D\) is \([-1, 1]^n\), where \(x \in D\) corresponds to a completed exam with a true or false (1 or -1) answer to every question. Hence, indeed, the correct score for completed exam \(x\) is \(c^* \cdot x\). A completed exam should get a grade of “Pass” if \(c^* \cdot x > 0\) and “Fail” otherwise. Unfortunately, there are only imperfect evaluators—the \(m\) judges—available to grade the exams, where judge \(j\)’s estimate of the ground truth is \(c^j\). Thus, when judge \(j\) evaluates an exam, \(j\) will output “Pass” if and only if \(c^* \cdot x > 0\). Each judge \(j\) makes \(P/F \) decisions about \(\ell\) samples for each agent and \(k\) labels. Given these samples and labels, our aim is to recover the ground truth \(c^*\). (In real applications, an “exam” can be any test with a vector of binary outcomes, and a “judge” any individual that makes judgments about what the overall result should be.)

\[\text{sgn}(c \cdot x) = 0\text{. Alternatively, we may say when }c \cdot x = 0\text{, the label is }0\text{. Our results are consistent with either convention.}\]
Recall that the bounds guarantees provided by Theorems 1 and 2. The full version of the paper. To demonstrate the power of Theorems 4, 5 and 6, are available in the appendix of the paper. We give efficient algorithms for two restricted settings in the linear model. First, we consider the following setting: the attributes of instances are i.i.d., agents only make binary (positive/negative) judgments about (i.e., place binary weights on) each attribute, and each agent’s judgment about an attribute c_i^j is obtained independently by flipping the corresponding judgment in the ground truth, c^j, with some fixed probability. We show that as long as the distribution of the attributes is not extremely heavy-tailed and the noisy mapping flips the sign of the judgment of the attribute independently with some fixed probability. In this setting, the setting-specific algorithm outperforms the general ones, and Occam’s Razor outperforms majority voting.

Efficient Learning Algorithms

We give efficient algorithms for two restricted settings in the linear model. First, we consider the following setting: the attributes of instances are i.i.d., agents only make binary (positive/negative) judgments about (i.e., place binary weights on) each attribute, and each agent’s judgment about an attribute c_i^j is obtained independently by flipping the corresponding judgment in the ground truth, c^j, with some fixed probability. We show that as long as the distribution of the attributes is not extremely heavy-tailed and the noisy mapping preserves some information about the ground truth, then we can efficiently recover the ground truth. Formally, we prove the following theorem:

Theorem 3 (Binary Judgments, I.I.D. Symmetric Distributions). Suppose that $\mathcal{C} = \{-1, 1\}^n$; for each $i \in [n]$, $D_i = D_0$ is a non-degenerate symmetric distribution with bounded absolute third moment; and the noisy mapping with noise rate η satisfies

$$\nu(c)_i = \begin{cases} c_i, & \text{w.p. } 1 - \eta \\ -1, & \text{w.p. } \eta/2 \\ 1, & \text{w.p. } \eta/2 \end{cases}$$

Then, Algorithm 1 with $m = O\left(\frac{\ln(n/\delta)}{(1-\eta)^2}\right)$ agents and $\ell m = O\left(\frac{n\ln(n/\delta)}{(1-\eta)^2}\right)$ data points in total outputs the correct concept $h = c^*$ with probability at least $1 - \delta$.

The proof of Theorem 3, as well as those of Proposition 2 and Theorems 4, 5 and 6, are available in the appendix of the full version of the paper. To demonstrate the power of setting-specific algorithms, we compare Theorem 3 with the guarantees provided by Theorems 1 and 2.

Performance of Occam’s Razor. Recall that the bounds of Theorem 1 rely on 3 parameters: $|\mathcal{C}|$, α_{OR} and β. When $\mathcal{C} = \{-1, 1\}^n$, $|\mathcal{C}| = 2^n$, and one may show:

Proposition 2. When \mathcal{C} and ν satisfy the conditions in Theorem 3, and D is the uniform distribution over $\{-1, 1\}^n$, we have $\alpha_{OR} = \Theta\left(\frac{1-\eta}{\sqrt{n}}\right)$.

So, applying Theorem 1 to the above setting, we obtain that with $\ell m = O\left(\frac{n^2 \log(1/\delta)}{(1-\eta)^2}\right)$ data points (and $m \leq \ell m$ agents8), the empirical error minimizer is the ground truth with probability $1 - \delta$. That is, even with the further restriction that the distribution D is uniform, this number is larger roughly by a factor of n than the corresponding requirement of Theorem 3.

Performance of majority voting. Now we consider Theorem 2. The parameters involved are $|\mathcal{C}| = 2^n$, $|\mathcal{D}| = 2^n$, α_{MV} and θ. One may show:

Proposition 3. When \mathcal{C} and ν satisfy the conditions in Theorem 3, and D is the uniform distribution over $\{-1, 1\}^n$, we have $\alpha_{MV} = \Theta(n^{-1/2})$ and $\theta = \Theta\left(\frac{1-\eta}{\sqrt{n}}\right)$.

So, applying Theorem 2, majority voting requires $m = O\left(\frac{n^2 \log(1/\delta)}{(1-\eta)^2}\right)$ agents and $\ell m = O\left(\frac{n^{3/2} \log(n/\delta)}{(1-\eta)^2}\right)$ data points in total. The number of agents required is at least the same as that of Occam’s Razor, and the number of data points is even larger than that of Occam’s Razor by a factor of $n^{3/2}$. To summarize, for the setting above, the setting-specific algorithm outperforms the general ones, and Occam’s Razor outperforms majority voting.

We now proceed to an efficient algorithm for another setting, where the distributions of the attributes are independent (but not necessarily identical) Gaussian distributions, agents have discrete (instead of binary) judgments about each attribute, and the noisy mapping flips the sign of the judgment of the attribute independently with some fixed probability. In words, at the cost of further restricting the shape of the distribution D, this setting allows more heterogeneity across the attributes, in the sense that the sizes of both the attributes’ values and the judgments can vary. Formally, we prove:

Theorem 4 (Discrete Judgments, Independent Gaussian Distributions). For constant d, suppose that $\mathcal{C} = (\mathbb{Z} \cap [-d, d])^n$; for each $i \in [n]$, $D_i = \mathcal{N}(0, \sigma_i^2)$ is a Gaussian distribution with mean 0 and standard deviation $\sigma_i \in [1, d]$; and the noisy mapping with noise rate η satisfies

$$\nu(c)_i = \begin{cases} c_i, & \text{w.p. } 1 - \eta \\ -|c_i|, & \text{w.p. } \eta/2 \\ |c_i|, & \text{w.p. } \eta/2 \end{cases}$$

Then, Algorithm 2 with $m = O\left(\frac{\ln(n/\delta)}{(1-\eta)^2}\right)$ agents and $\ell m = O\left(\frac{n\ln(n/\delta)}{(1-\eta)^2}\right)$ data points in total outputs a correct concept h, in the sense that there is some $\alpha \in \mathbb{R}^+$ such that $h = \alpha c^*$, with probability at least $1 - \delta$.

α_{OR} and α_{MV} are the error rates of Occam’s Razor and majority voting, respectively.

D is non-degenerate if for $X \sim D$, $\Pr[X = 0] \neq 1$.

8The parameter β appears hard to sharply estimate in this setting, which is why we do not compare the requirements on m — it would be less meaningful to compare based on a loose estimation of β.

ALGORITHM 1: Aggregation algorithm for binary judgments.

- **Input**: ℓ labeled samples each from m agents $\{(x_{i,j}^k, y_{i,j}^k)\}_{j,k}$
- **Output**: h which with high probability is equal to c^*

| for $i \in [n]$ do |
 | Let $h_i \leftarrow \text{sgn} \left(\sum_{j,k} \text{sgn} \left(x_{i,j}^k\right) y_{i,j}^k\right)$ |
| end |

Output h
points (or agents) when each agent reports only discrete judgments. Our objective in this paper has been to introduce a general framework for learning from multiple agents' judgments, and to illustrate the types of results that can be obtained in this framework. Much work remains to be done.

While we have provided some results that are quite general, we have also shown that sometimes stronger results can be obtained for more specific settings, with specific assumptions on the distribution of instances, concept class, and noise in the agents’ perceived concepts. This raises the question of whether similar results can be obtained under different assumptions that may fit particular applications better. It should be noted that in many cases, an efficient PAC aggregation algorithm also implies an efficient algorithm in the simpler traditional PAC learning model for the same concept class. However, PAC learning of some natural concept classes is known to be computationally hard. For example, efficient PAC learning algorithms for 3-term DNFs do not exist unless RP = NP (see (Kearns, Vazirani, and Vazirani 1994)); hence, the same is true for efficient PAC aggregation algorithms in this setting.

A natural variant would allow active learning, where instead of receiving the labels for random instances, the algorithm can choose which instances it would like to have labeled (and by which agents). Indeed, if we consider settings such as that of the MIT Moral Machine, this is potentially a sensible model, because those who designed the website control which instances are shown. It would thus be desirable to extend the theory of active learning to this setting. For example, the majority voting paradigm, which we use to translate passive learning algorithms to our setting, works for active learning too. One may show:

Theorem 7 (informal). Given a PAC active learning algorithm for concept class C, under distribution D of data points, where $|C|$ and $|D|$ are finite and the conditions in Theorem 2 are satisfied, with sufficiently many agents and data points, the algorithm that (1) runs the PAC active learning algorithm on each individual agent’s data points, and then (2) outputs the concept that is the the pointwise majority of the concepts learned in the first step, recovers the ground truth with high probability.

One downside of the active learning approach in this context is that the precise instances shown would depend on (for example) the concept class, so that one could not simply reuse the same data for a different concept class. If gathering data from human subjects is costly (in terms of both finances and effort), then using random instances would allow for better re-use (also by other researchers) of the data. Also, of course any upper bound in the passive model still applies in the active model.

One could imagine other modes of interaction yet. For example, we may show an instance to three agents and ask them to come to a consensus judgment (cf. (Goel and Lee 2016; Fain et al. 2017)). The space of possible designs is extremely broad, and there is much potential for both theoretical and empirical work.

ALGORITHM 2: Aggregation algorithm for discrete judgments.

Input : ℓ labeled samples each from m agents $\{(x_j, k), y_j(k)\}$.
Output: h which with high probability is equal to c^\ast.

\begin{algorithm}
\textbf{for} $i \in [n]$ \textbf{do}
\hspace{1em} Let $s_i^2 \leftarrow \frac{1}{m} \sum_j k(x_j, k)^2$
\hspace{1em} Let $a_i \leftarrow \frac{1}{2} \frac{1}{n} \sum_j \text{sgn} \left(x_j, k \right) y_j(k)$
\textbf{end}

Let $a_0 \leftarrow \min_i a_i$
\textbf{for} $i \in [n]$ \textbf{do}
\hspace{1em} Let $h_i \leftarrow p_i/q_i$ be the closest fraction to a_i/a_0, where $p_i, q_i \in \mathbb{Z} \cap [-d, d]$ and $p_i > 0$.
\textbf{end}

\textbf{Output} h
\end{algorithm}

Lower Bounds

Now that we have provided some efficient algorithms, we discuss the information-theoretic hardness of the linear model. We show that, even in highly restricted settings, the number of agents and data points required to recover the ground truth are roughly the same as the upper bounds obtained in Theorems 3 and 4.

In our first lower bound, we restrict attention to binary judgments. We show that even if the algorithm is given each agent’s exact concept c_j—which is the most it could hope to learn for any number ℓ of samples per agent—it still needs $\Omega \left(\frac{\log(n/\delta)}{(1-\eta)^2} \right)$ agents to recover the ground truth. Formally:

Theorem 5 (Lower Bound: Number of Agents). If $C = \{-1, 1\}^n$ and D_1 is the uniform distribution over $\{-1, 1\}$, then any algorithm that outputs the correct concept with probability $1 - \delta$ requires $m = \Omega \left(\frac{\log(n/\delta)}{(1-\eta)^2} \right)$ agents.

We note that this lower bound extends immediately to the discrete-judgments setting in Theorem 4. It follows that the requirement on the number of agents in Theorems 3 and 4 (i.e., $m = O \left(\frac{\log(n/\delta)}{(1-\eta)^2} \right)$) is tight up to a constant factor.

Next, we prove a lower bound on the total number of data points (or agents) when each agent reports only 1 data point.

Theorem 6 (Lower Bound: Total Number of Data Points). If $C = \{-1, 1\}^n$, D_2 is the uniform distribution over $\{-1, 1\}$ or the standard Gaussian distribution $\mathcal{N}(0, 1)$, the number of data points per agent is $\ell = 1$, and $1 - \eta = \Omega(n^{-1/2})$, then any algorithm that outputs the correct concept with constant probability requires $\ell m = \Omega \left(\frac{n}{(1-\eta)^2} \right)$ data points in total.

Given Theorem 6, the requirement in Theorems 3 and 4 (i.e., $\ell m = O \left(\frac{n \log(n/\delta)}{(1-\eta)^2} \right)$) is tight up to a factor of $\log(n/\delta)$, when $\ell = 1$. We suspect that the loss of the $\log(n/\delta)$ factor is due to an intrinsic limitation of the mutual information argument used to prove the theorem.

Discussion

Our objective in this paper has been to introduce a general framework for learning from multiple agents’ judgments, and to illustrate the types of results that can be obtained in this framework. Much work remains to be done.

There are, in fact, multiple variants; for example, one variant would require that every agent sees the same instances.
References

