

Troels

Mingyu
Guo

Liad
Lirong Xia Sorensen COMPUTATIONAL SOCIAL CHOICE A Journey from Basic Complexity Results to a Brave New World for Social Choice

Matt Rognlie
Melissa Dalis

Garrett Andersen

Vincent Conitzer, Duke University

Bo Waggoner

Markus Brill

Angelina Vidali

A brief history of computational social choice

Number of publications with the exact phrase "computational social choice" (cumulative, Google Scholar)

- Two 1989 papers by John Bartholdi, III, Craig Tovey, and Michael Trick
- Voting schemes for which it can be difficult to tell who won the election. Social Choice and Welfare, 6:157-165.
- The computational difficulty of manipulating an election. Social Choice and Welfare, 6:227-241.

me in ~1989
(thanks mom)

Voting

n voters...

... each produce a ... which a social ranking of m alternatives...
$b>a>c$
$a>c>b$
$a>b>c$ preference function maps to one or more aggregate rankings.
$a>b>c$

Kemeny

- The unique SPF satisfying neutrality, consistency, and the Condorcet property [Young \& Levenglick 1978]
- Natural interpretation as maximum likelihood estimate of the "correct" ranking [Young 1988, 1995]

Objectives of voting

- OBJ $_{1}$: Compromise
- OBJ_{2} : Reveal the "truth" among subjective preferences

Ranking Ph.D. applicants (briefly described in C. [2010])

- Input: Rankings of subsets of the (non-eliminated) applicants

- Output: (one) Kemeny ranking of the (non-eliminated) applicants

An MLE model [dating back to Condorcet 1785]

- Correct outcome is a ranking $R, p>1 / 2$

- MLE = Kemeny rule [Young 1988, 1995]
- Various other rules can be justified with different noise models [Drissi-Bakhkhat \& Truchon 2004, C. \& Sandholm 2005, Truchon 2008, C., Rognlie, Xia 2009, Procaccia, Reddi, Shah 2012]
- 15:30 today: MLE in voting on social networks

A variant for partial orders
 [Xia \& C. 2011]

- Still gives Kemeny as the MLE

Computing Kemeny rankings

- 2 times $a>b>d>c$
- 5 times $a>d>b>c$
- 7 times $b>d>c>a$
- 6 times $c>a>d>b$
- 4 times $c>b>d>a$

- Final ranking = acyclic tournament graph
- Edge (a, b) means a ranked above b
- Acyclic = no cycles, tournament $=$ edge between every pair
- Kemeny ranking seeks to minimize the total weight of the inverted edges
- (minimizing their number $=$ Slater)

A simple integer program for computing Kemeny rankings (see, e.g., C., Davenport, Kalagnanam [2006])

Variable $x_{(a, b)}$ is 1 if a is ranked above $b, 0$ otherwise
Parameter $w_{(a, b)}$ is the weight on edge (a, b)
maximize: $\Sigma_{e \in E} W_{e} x_{e}$
subject to:
for all $a, b \in A, x_{(a, b)}+x_{(b, a)}=1$
for all $a, b, c \in A, x_{(a, b)}+x_{(b, c)}+x_{(c, a)} \leq 2$

Computational complexity theory

Complexity of Kemeny (and Slater)

- Kemeny:

NP-hard [Bartholdi, Tovey, Trick 1989]
Even with only 4 voters [Dwork, Kumar, Naor, Sivakumar 2001]
Exact complexity of Kemeny winner determination: complete for $\Theta_{2}{ }^{\mathrm{p}}$ [Hemaspaandra, Spakowski, Vogel 2005]

- Slater:

NP-hard, even if there are no pairwise ties [Ailon, Charikar, Newman 2005, Alon 2006, C. 2006, Charbit, Thomassé, Yeo 2007]

Instant runoff voting / single transferable vote (STV)

$$
\boldsymbol{b} \succ a>c
$$

$$
a>b>c
$$

$a>b>b$

$$
a>b>c
$$

- The unique SPF satisfying: independence of bottom alternatives, consistency at the bottom, independence of clones (\& some minor conditions) [Freeman, Brill, C. 2014-11am today]
- NP-hard to manipulate [Bartholdi \& Orlin, 1991]

STV manipulation algorithm

[C., Sandholm, Lang 2007]

Runtime on random votes [Walsh 2011]

Fine - how about another rule?

- Heuristic algorithms and/or experimental (simulation) evaluation [C. \& Sandholm 2006, Procaccia \& Rosenschein 2007, Walsh 2011, Davies, Katsirelos, Narodytska, Walsh 2011]
- Quantitative versions of Gibbard-Satterthwaite showing that under certain conditions, for some voter, even a random manipulation on a random instance has significant probability of succeeding [Friedgut, Kalai, Nisan 2008; Xia \& C. 2008; Dobzinski \& Procaccia 2008; Isaksson, Kindler, Mossel 2010; Mossel \& Racz 2013
> "for a social choice function f on $k \geq 3$ alternatives and n voters, which is ϵ-far from the family of nonmanipulable functions, a uniformly chosen voter profile is manipulable with probability at least inverse polynomial in n, k, and ϵ^{-1}."

Ph.D. applicants may be

 substitutes or complements...

$$
2 \gg
$$

Sequential voting and strategic voting

S

- In the first stage, the voters vote simultaneously to determine \mathbf{S}; then, in the second stage, the voters vote simultaneously to determine \mathbf{T}
- If \mathbf{S} is built, then in the second step $t>\bar{t}, \bar{t}>t, \bar{t}>t$ so the winner is $s \bar{t}$
- If \mathbf{S} is not built, then in the 2 nd step $t>\bar{t}, t>\bar{t}, t>\bar{t}$ so the winner is $\bar{s} t$
- In the first step, the voters are effectively comparing $s \bar{t}$ and $\bar{s} t$, so the votes are $\bar{s}>s, s>\bar{s}, \bar{s}>s$, and the final winner is $\bar{s} t$
[Xia, C., Lang 2011; see also Farquharson 1969, McKelvey \& Niemi 1978, Moulin 1979, Gretlein 1983, Dutta \& Sen 1993]

Multiple-election paradoxes for strategic voting [Xia, C., Lang 2011]

- Theorem (informally). For any $p \geq 2$ and any $n \geq 2 p^{2}+1$, there exists a profile such that the strategic winner is
- ranked almost at the bottom (exponentially low positions) in every vote
- Pareto dominated by almost every other alternative
- an almost Condorcet loser
- Multiple-election paradoxes [Brams, Kilgour \& Zwicker 1998], [Scarsini 1998], [Lacy \& Niou 2000], [Saari \& Sieberg 2001], [Lang \& Xia 2009], [C. \& Xia 2012]

Time Magazine "Person of the Century"

poll - "results" (January 19, 2000)				
\#	Person	\%	Tally	
1	Elvis Presley	13.73	625045	
2	Yitzhak Rabin	13.17	599473	
3	Adolf Hitler	11.36	516926	
4	Billy Graham	10.35	471114	
5	Albert Einstein	9.78	445218	
6	Martin Luther King	8.40	382159	
7	Pope John Paul Il	8.18	372477	
8	Gordon B Hinckley	5.62	256077	
	Mohandas Gand	3.61	164281	
10	Ronald Reagan	1.78	81368	
11	John Lennon	1.41	64295	
12	American Gl	1.35	61836	
13	Henry Ford	1.22	55696	
14	Mother Teresa	1.11	50770	
15	Madonna	0.85	38696	
16	Winston Churchill	0.83	37930	
17	Linus Torvalds	0.53	24146	
18	Nelson Mandela	0.47	21640	
19	Princess Diana	0.36	16481	
20	Pope Paul VI	0.34	15812	

Time Magazine "Person of the Century"

 poll - partial results (November 20, 1999)| \# Person | | |
| :--- | :--- | :--- |
| \# | | Tally |
| 1 Jesus Christ | 48.36 | 610238 |
| 2 Adolf Hitler | 14.00 | 176332 |
| 3 Ric Flair | 8.33 | 105116 |
| 4 Prophet Mohammed4.22 | 53310 | |
| 5 John Flansburgh | 3.80 | 47983 |
| 6 Mohandas Gandhi | 3.30 | 41762 |
| 7 Mustafa K Ataturk | 2.07 | 26172 |
| 8 Billy Graham | 1.75 | 22109 |
| 9 Raven | 1.51 | 19178 |
| 10 Pope John Paul II | 1.15 | 14529 |
| 11 Ronald Reagan | 0.98 | 12448 |
| 12 Sarah McLachlan | 0.85 | 10774 |
| 13 Dr William L Pierce0.73 | 9337 | |
| 14 Ryan Aurori | 0.60 | 7670 |
| 15 Winston Churchill | 0.58 | 7341 |
| 16 Albert Einstein | 0.56 | 7103 |
| 17 Kurt Cobain | 0.32 | 4088 |
| 18 Bob Weaver | 0.29 | 3783 |
| 19 Bill Gates | 0.28 | 3629 |
| 20 Serdar Gokhan | 0.28 | 3627 |

13 Dr William L Pierce0.73 9337
14 Ryan Aurori $\quad 0.607670$
15 Winston Churchill 0.587341
16 Albert Einstein 0.567103
17 Kurt Cobain 0.324088
18 Bob Weaver
0.293783

20 Serdar Gokhan
$0.28 \quad 3627$

Anonymity-proof voting rules

- A voting rule is false-name-proof if no voter ever benefits from participating more than once
- Studied in combinatorial auctions by Yokoo, Sakurai, Matsubara [2004] (inefficiency ratio by Iwasaki, C., Omori, Sakurai, Todo, Guo, Yokoo [2010]); in matching by Todo \& C. [2013]
- A voting rule satisfies voluntary participation if it never hurts a voter to cast her vote
- A voting rule is anonymity-proof if it is false-name-proof \& satisfies voluntary participation
- Can we characterize (neutral, anonymous, randomized) anonymity-proof rules?

Anonymity-proof voting rules characterization

- Theorem [C. 2008] (cf. Gibbard [1977] for strategy-proof randomized rules) : Any anonymity-proof (neutral, anonymous) voting rule f can be described by a single number p_{f} in $[0,1]$ With probability p_{f}, the rule chooses an alternative uniformly at random
With probability 1- p_{f}, the rule draws two alternatives uniformly at random;
- if all votes rank the same alternative higher among the two, that alternative is chosen
- otherwise, a fair coin is flipped to decide between the two alternatives.
- Assuming single-peaked preferences does not help much [Todo, Iwasaki, Yokoo 2011]

How should we deal with these negative results?

- Assume creating additional identifiers comes at a cost [Wagman \& C. 2008]
- Verify some of the identities [C. 2007]
- Try to make voting multiple times difficult, analyze carefully using statistical techniques [Waggoner, Xia, C., 2012]
- Use social network structure [C., Immorlica, Letchford, Munagala, Wagman, 2010]

Facebook election

- In 2009, Facebook allowed its users to vote on its terms of use
- Note: result would only be binding if $>30 \%$ of its active users voted
- \#votes: ~600 000
- \#active users at the time: >200 000000
- Could Facebook use its knowledge of the social network structure to prevent false-name manipulation?

Related research

- Mostly in the systems community ("Sybil attacks") (e.g.: Yu, Gibbons, Kaminsky, Xiao [2010])
- Differences here:
- rigorous mechanism design approach - should not benefit at all from creating false names
- we allow things to be centralized

Social network graph

Creating new identities

Coalitional manipulation

Election organizer's view

Trusted nodes

- Trusted nodes are known to be real, but may manipulate

Center's view

- Suppose the center knows that at most k legitimate nodes can work together (say, k=2)
- Which nodes can the center conclude are legitimate? Which are suspect?

Vertex cuts

- Every node separated from the trusted nodes by a vertex cut of size at most $k(=2)$ is suspect

Using Menger's theorem

- A node v is not separated by a vertex cut of size at most k if and only if there are $k+1$ vertex-disjoint paths from the trusted nodes to v
- follows straightforwardly from Menger's theorem/duality

Is it enough to not let these suspect nodes vote? No...

- Majority election between A and B, $k=2$
- A wins by 4 votes to 3 (two nodes don't get to vote for B)

Is it enough to not let these suspect nodes vote? No...

- Majority election between A and B, $k=2$
- B now wins by 5 votes to 4 (!)

Solution: iteratively remove nodes separated by vertex cuts, until convergence

- Removes incentive for manipulation
- Call this suspicion policy Π^{*}

k-robustness

- Definition. A suspicion policy is k-robust if
- the actions of one coalition of size at most k do not affect which nodes of other (disjoint) coalitions are deemed legitimate;
- a coalition maximizes its number of identifiers that are deemed legitimate by not creating any false nodes.
- Theorem. A k-robust suspicion policy, combined with a standard mechanism that is both k-strategy-proof and satisfies k-voluntary participation, is false-name-proof for coalitions of size up to k.
- Theorem. Π^{*} is k-robust. Also, Π^{*} is guaranteed to label every illegitimate node as suspect. Finally, a coalition's false names do not affect which of its own legitimate nodes are deemed legitimate.
- Theorem. Any suspicion policy with these properties must label as suspect at least the nodes labeled as suspect by Π^{*}.

Number of nodes deemed legitimate with 16 random trusted nodes

Number of nodes with degree > x (16 sources)

Some shameless plugs:

- COMSOC workshop starts this Monday in Pittsburgh!
- Computational social choice...
- ... mailing list:
https://lists.duke.edu/sympa/subscribe/comsoc
- ... book: in preparation (editors: Brandt, C., Endriss, Lang, Procaccia)
- ... intro article: Brandt, C., Endriss [2013]
- New journal: ACM Transactions on Economics and Computation (ACM TEAC) (edited with Preston McAfee)

Thank you for your attention!

Bucklin

b 1 ＞回＞ －
a＇s median rank： 1 b＇s median rank： 2 c＇s median rank： 3
回〉-

$$
a>b>c
$$

An elicitation algorithm for the Bucklin voting rule based on binary search

[C. \& Sandholm 2005]

- Alternatives: A B C D E F G H
- Top 4?

- Top 2?
- Top 3? \quad A C D $\}$ \{B F G \} \{C E H \}

Total communication is $n m+n m / 2+n m / 4+\ldots \leq 2 n m$ bits (n number of voters, m number of candidates)

Communication complexity

- Can also prove lower bounds on communication required for voting rules [C. \& Sandholm 2005]

Rule	Lower bound	Upper bound
plurality	$\Omega(n \log m)$	$O(n \log m)$
plurality w/runoff	$\Omega(n \log m)$	$O(n \log m)$
STV	$\Omega(n \log m)$	$O\left(n(\log m)^{2}\right)$
Condorcet	$\Omega(n m)$	$O(n m)$
approval	$\Omega(n m)$	$O(n m)$
Bucklin	$\Omega(n m)$	$O(n m)$
cup	$\Omega(n m)$	$O(n m)$
maximin	$\Omega(n m)$	$O(n m)$
Borda	$\Omega(n m \log m)$	$O(n m \log m)$
Copeland	$\Omega(n m \log m)$	$O(n m \log m)$
ranked pairs	$\Omega(n m \log m)$	$O(n m \log m)$

- Restrictions such as single-peaked preferences can help [C. 2009, Farfel \& C. 2011]
- C. \& Sandholm [2002]: strategic aspects of elicitation
- Service \& Adams [2012]: communication complexity of approximating voting rules

Conditional preference networks (CP-nets)

 [Boutilier, Brafman, Domshlak, Hoos, and Poole 2004]

Variables: $x, y, z . \quad D_{x}=\{x, \bar{x}\}, D_{y}=\{y, \bar{y}\}, D_{z}=\{z, \bar{z}\}$.

Directed graph, CPTs:

This CP-net encodes the following partial ${ }^{x y z}$

$$
x \bar{y} \bar{z} \rightarrow \bar{x} \bar{y} \bar{z} \rightarrow \bar{x} \bar{y} z \rightarrow \bar{x} y z \rightarrow \bar{x} y \bar{z}
$$ order:

Sequential voting

see Lang \& Xia [2009]

- Issues: main dish, wine
- Order: main dish > wine
- Local rules are majority rules
- V_{1} :
- V_{2} :
- V_{3} :
- Step 1:
- Step 2: given
- Winner:

is the winner for wine
- Xia, C., Lang $[2008,2010,2011]$ study rules that do not require CP-nets to be acyclic

Verification

- Instead of starting with trusted nodes, suppose we can actively verify whether nodes are legitimate
- Nodes that pass the verification step become trusted
- Goal: minimize number of verifications needed so that everyone is deemed legitimate

Equivalent to source location problem

- Minimize number of source (=verified) vertices so that nothing is separated from the sources by a vertex cut of at most size k
- l.e. (Menger): there are at least $k+1$ vertex-disjoint paths from the sources to each node

Simple algorithm

- Initial plan: verify everything
- Go through the nodes one by one
- Check if not verifying that node would make it suspect
- If not, don't verify it

- Returns an optimal solution! (Follows from matroid property [Namagochi, Ishii, Ito 2001])

Sources needed for all nodes to be deemed legitimate (529)

Number of nodes with degree $\leq x$ (529)

