
Complexity of Mechanism Design∗

Vincent Conitzer and Tuomas Sandholm
{conitzer, sandholm}@cs.cmu.edu
Computer Science Department
Carnegie Mellon University

Pittsburgh PA 15211

Abstract

The aggregation of conflicting preferences is a
central problem in multiagent systems. The
key difficulty is that the agents may report
their preferences insincerely. Mechanism de-
sign is the art of designing the rules of the
game so that the agents are motivated to re-
port their preferences truthfully and a (so-
cially) desirable outcome is chosen. We pro-
pose an approach where a mechanism is au-
tomatically created for the preference ag-
gregation setting at hand. This has sev-
eral advantages, but the downside is that
the mechanism design optimization problem
needs to be solved anew each time. Focus-
ing on settings where side payments are not
possible, we show that the mechanism design
problem is NP -complete for deterministic
mechanisms. This holds both for dominant-
strategy implementation and for Bayes-Nash
implementation. We then show that if we al-
low randomized mechanisms, the mechanism
design problem becomes tractable. In other
words, the coordinator can tackle the compu-
tational complexity introduced by its uncer-
tainty about the agents’ preferences by mak-
ing the agents face additional uncertainty.
This comes at no loss, and in some cases at
a gain, in the (social) objective.

1 Introduction

In multiagent settings, agents generally have different
preferences, and it is of central importance to be able
to aggregate these, i.e., to pick a socially desirable out-
come from a set of outcomes. Such outcomes could be
potential presidents, joint plans, allocations of goods
or resources, etc. For example, voting mechanisms
constitute an important class of preference aggrega-
tion methods.

∗ This material is based upon work supported by NSF
under CAREER Award IRI-9703122, Grant IIS-9800994,
ITR IIS-0081246, and ITR IIS-0121678.

The key problem is the following uncertainty. The co-
ordinator of the preference aggregation generally does
not know the agents’ preferences a priori. Rather, the
agents report their preferences to the coordinator. Un-
fortunately, in this setting, most naive preference ag-
gregation mechanisms suffer from manipulability. An
agent may have an incentive to misreport its prefer-
ences in order to mislead the mechanism into selecting
an outcome that is more desirable to the agent than
the outcome that would be selected if the agent re-
vealed its preferences truthfully. Manipulation is an
undesirable phenomenon because preference aggrega-
tion mechanisms are tailored to aggregate preferences
in a socially desirable way, and if the agents reveal
their preferences insincerely, a socially undesirable out-
come may be chosen.

Manipulability is a pervasive problem across pref-
erence aggregation mechanisms. A seminal nega-
tive result, the Gibbard-Satterthwaite theorem, shows
that under any nondictatorial preference aggregation
scheme, if there are at least 3 possible outcomes, there
are preferences under which an agent is better off re-
porting untruthfully [9, 19]. (A preference aggregation
scheme is called dictatorial if one of the agents dictates
the outcome no matter how the others vote.)

With software agents, the algorithms they use for de-
ciding how to report their preferences must be coded
explicitly. Given that the reporting algorithm needs
to be designed only once (by an expert), and can be
copied to large numbers of agents (even ones represent-
ing unsophisticated humans), it is likely that manipu-
lative preference reporting will increasingly become an
issue, unmuddied by irrationality, emotions, etc.

What the coordinator would like to do is to design a
preference aggregation mechanism so that 1) the self-
interested agents are motivated to report their prefer-
ences truthfully, and 2) the mechanism chooses an out-
come that is desirable from the perspective of some so-
cial objective. This is the classic setting of mechanism
design in game theory. In mechanism design, there
are two different types of uncertainty: the coordina-
tor’s uncertainty about the agents’ preferences, and

the agents’ uncertainty about each others’ preferences
(which can affect how each agent tries to manipulate
the mechanism).

Mechanism design provides us with a variety of care-
fully crafted definitions of what it means for a mecha-
nism to be nonmanipulable, and goals to pursue under
this constraint (e.g., social welfare maximization). It
also provides us with some general mechanisms which,
under certain assumptions, are nonmanipulable and
socially desirable (among other properties). The up-
side of these mechanisms is that they do not rely
on (even probabilistic) information about the agents’
preferences (e.g., the Vickrey-Groves-Clarke mecha-
nism [5, 10, 20]), or they can be easily applied to any
probability distribution over the preferences (e.g., the
dAGVA mechanism [1, 7]). The downside is that these
mechanisms only work under very restrictive assump-
tions, the most common of which is to assume that
the agents can make side payments and have quasilin-
ear utility functions. The quasilinearity assumption is
quite unrealistic. It means that each agent is risk neu-
tral, does not care about what happens to its friends or
enemies, and values money independently of all other
attributes of the outcome. Also, in many voting set-
tings, the use of side payments would not be politi-
cally feasible. Furthermore, among software agents, it
might be more desirable to construct mechanisms that
do not rely on the ability to make payments.

In this paper, we propose that the mechanism be de-
signed automatically for the specific preference aggre-
gation problem at hand. We formulate the mecha-
nism design problem as an optimization problem. The
input is characterized by the number of agents, the
agents’ possible types (preferences), and the coordi-
nator’s prior probability distributions over the agents’
types. The output is a nonmanipulable mechanism
that is optimal with respect to some (social) objective.

This approach has three advantages over the classic
approach of designing general mechanisms. First, it
can be used even in settings that do not satisfy the as-
sumptions of the classical mechanisms. Second, it may
yield better mechanisms (in terms of stronger non-
manipulability guarantees and/or better social out-
comes) than the classical mechanisms. Third, it may
allow one to circumvent impossibility results (such as
the Gibbard-Satterthwaite theorem) which state that
there is no mechanism that is desirable across all pref-
erences. When the mechanism is designed to the set-
ting at hand, it does not matter that it would not work
on preferences beyond those in that setting.

However, this approach requires the mechanism de-
sign optimization problem to be solved anew for each
preference aggregation setting. In this paper we study

how hard this computational problem is under the two
most common nonmanipulability requirements: domi-
nant strategies, and Bayes-Nash equilibrium [16]. We
will study preference aggregation settings where side
payments are not an option.

The rest of the paper is organized as follows. In Sec-
tion 3 we define the deterministic mechanism design
problem, where the mechanism coordinator is con-
strained to deterministically choose an outcome on the
basis of the preferences reported by the agents. We
then show that this problem is NP-complete for the
two most common concepts of nonmanipulability. In
Section 4 we generalize this to the randomized mech-
anism design problem, where the mechanism coordi-
nator may stochastically choose an outcome on the
basis of the preferences reported by the agents. (On
the side, we demonstrate that randomized mechanisms
may be strictly more efficient than deterministic ones.)
We then show that this problem is solvable by linear
programming for both concepts of nonmanipulability.

2 The setting

Before we define the computational problem of mecha-
nism design, we should justify our focus on nonmanip-
ulable mechanisms. After all, it is not immediately ob-
vious that there are no manipulable mechanisms that,
even when agents report their types strategically and
hence sometimes untruthfully, still reach better out-
comes (according to whichever objective we use) than
any nonmanipulable mechanism. Additionally, given
our computational focus, we should also be concerned
that manipulable mechanisms that do as well as non-
manipulable ones may be easier to find. It turns out
that we need not worry about either of these points:
given any mechanism, we can quickly construct a non-
manipulable mechanism whose performance is exactly
identical. For given such a mechanism, we can build an
interface layer between the agent and this mechanism.
The agents input (some report of) their preferences (or
types) into the interface layer; subsequently, the inter-
face layer inputs the types that the agents would have
strategically reported if their types were as declared
into the original mechanism, and the resulting out-
come is the outcome of the new mechanism. Since the
interface layer acts “strategically on each agent’s best
behalf”, there is never an incentive to report falsely to
the interface layer; and hence, the types reported by
the interface layer are the strategic types that would
have been reported without the interface layer, so the
results are exactly as they would have been with the
original mechanism. This argument (or at least the
existential part of it, if not the constructive) is known
in the mechanism design literature as the revelation
principle [16]. Given this, we can focus on truthful
mechanisms in the rest of the paper.

We first define a preference aggregation setting.

Definition 1 A preference aggregation setting con-
sists of a set of outcomes O, a set of agents A with
|A| = N , and for each agent:
• A set of types Θi;

• A probability distribution pi over Θi; 1

• A utility function ui : Θi ×O → R; 2

These are all common knowledge. However, each
agent’s type θi ∈ Θi is private information.

Though this follows standard game theory nota-
tion [16], the fact that agents have both utility func-
tions and types is perhaps confusing. The types en-
code the various possible preferences that agents may
turn out to have, and the agents’ types are not known
by the coordinator. The utility functions are common
knowledge, but the agent’s type is a parameter in the
agent’s utility function. So, the utility of agent i is
ui(θi, o), where o ∈ O is the outcome and θi is the
agent’s type.

3 Deterministic mechanisms
We now formally define a deterministic mechanism.

Definition 2 Given a preference aggregation setting,
a deterministic mechanism is a function that, given
any vector of reported types, produces a single outcome.
That is, it is a function o : Θ1 ×Θ2 × . . .×ΘN → O.

A solution concept is some definition of what it means
for a mechanism to be nonmanipulable. We now
present the two most common solution concepts. They
are the ones analyzed in this paper.

Definition 3 Given a preference aggregation setting,
a mechanism is said to implement its outcome func-
tion in dominant strategies if truthtelling is always op-
timal, no matter what types the other agents report.
For a deterministic mechanism, this means that for
any i ∈ A, for any type vector (θ1, θ2, . . . , θi, . . . , θN) ∈
Θ1 × Θ2 × . . . × Θi × . . . × ΘN , and for any
θ̂i ∈ Θi, we have ui(θi, o(θ1, θ2, . . . , θi, . . . , θN)) ≥
ui(θi, o(θ1, θ2, . . . , θ̂i, . . . , θN)).

1This assumes that the agents’ types are drawn inde-
pendently. If this were not the case, the input to the
mechanism design algorithm would include a joint prob-
ability distribution over the agents’ types instead. All of
the results of this paper apply to that setting as well.

2Throughout the paper we allow the utility functions,
objective functions, and goals in the input to be real-
valued. This makes the usual assumption of a computing
framework that can handle real numbers. If that is not
available, our results hold if the inputs are rational num-
bers.

Dominant strategy implementation is very robust. It
does not rely on the prior probability distributions be-
ing (commonly) known, or the types being private in-
formation. Furthermore, each agent is motivated to
report truthfully even if the other agents report un-
truthfully, for example due to irrationality.

The second most prevalent solution concept in mech-
anism design, Bayes-Nash equilibrium, does not have
any of these robustness benefits. Often there is a trade-
off between the robustness of the solution concept and
the social welfare (or some other goal) that we expect
to attain, so both concepts are worth investigating.

Definition 4 Given a preference aggregation setting,
a mechanism is said to implement its outcome func-
tion in Bayes-Nash equilibrium if truthtelling is al-
ways optimal as long as the other agents report
truthfully. For a deterministic mechanism, this
means that for any i ∈ A, and for any θi, θ̂i ∈
Θi, we have Eθ−i(ui(θi, o(θ1, θ2, . . . , θi, . . . , θN))) ≥
Eθ−i(ui(θi, o(θ1, θ2, . . . , θ̂i, . . . , θN))). (Here Eθ−i

means the expectation taken over the types of all agents
except i, according to their true type distributions pj.)

We are now ready to define the computational problem
that we study.

Definition 5 (DETERMINISTIC-
MECHANISM-DESIGN) We are given a
preference aggregation setting, a solution concept, and
an objective function g : Θ1×Θ2× . . .×Θn×O → R

with a goal G. We are asked whether there exists a de-
terministic mechanism for the preference aggregation
setting which

• satisfies the given solution concept, and

• attains the goal, i.e.,
E(g(θ1, θ2, . . . , θN , o(θ1, θ2, . . . , θN))) ≥ G.
(Here the expectation is taken over the types of
all the agents, according to the distributions pj.)

One common objective function is the social welfare
function g(θ1, θ2, . . . , θN , o) =

∑

i∈A

ui(θi, o).

If the number N of agents is unbounded, specifying
an outcome function o will require exponential space,
and in this case it is perhaps not surprising that com-
putational complexity becomes an issue even for the
decision variant of the problem given here. However,
we will demonstrateNP-completeness even in the case
where the number of agents is fixed at 2, and g is
restricted to be the social welfare function, for both
solution concepts. We begin with dominant strategy
implementation: for this, we will reduce from the NP-
complete INDEPENDENT-SET problem [8].

Definition 6 (INDEPENDENT-SET) We are
given a graph (V,E) and a goal K. We are asked
whether there exists a subset S ⊆ V , |S| = K such
that for any i, j ∈ S, (i, j) /∈ E.

Theorem 1 2-agent DETERMINISTIC-
MECHANISM-DESIGN with dominant strategies
implementation (DMDDS) is NP-complete, even with
the social welfare function as the objective function.

Proof: To show that the problem is in NP , we ob-
serve that specifiying an outcome function here re-
quires only the specification of |Θ1| × |Θ2| outcomes,
and given such an outcome function we can ver-
ify whether it meets our requirements in polynomial
time. To show NP -hardness, we reduce an arbi-
trary INDEPENDENT-SET instance to the follow-
ing DMDDS instance. There are 2 agents, whose
type sets are as follows: Θ1 = {θ11, θ12, . . . , θ1n} and
Θ2 = {θ21, θ22, . . . , θ2n}, each with a uniform distribu-
tion. For every pair i, j (1 ≤ i ≤ n and 1 ≤ j ≤ n),
there are the following outcomes: if i = j, we have oHii
and oLii; if i �= j, and (i, j) is not an edge in the graph,
we have oij ; if it is an edge in the graph, we have o1ij
and o2ij . The utility functions are as follows:

• u1(θ1i , oHii) = u2(θ2j , oHjj) = 2;

• u1(θ1i , oHkk) = u2(θ
2
j , o

H
ll) = 2 for i �= k and j �= l;

• u1(θ1i , oLii) = u2(θ2j , oLjj) = 1;

• u1(θ1i , oLkk) = u2(θ2j , o
L
ll) = −5n2 for i �= k and

j �= l;

• u1(θ1i , oij) = u2(θ2j , oij) = 2 for i �= j, (i, j) /∈ E;

• u1(θ1i , okl) = u2(θ2j , okl) = −5n2 for k �= l, (k, l) /∈
E, i �= k and j �= l;

• u1(θ1i , o1ij) = u2(θ2j , o
2
ij) = 5n2 for i �= j, (i, j) ∈

E;

• u1(θ1i , o2ij) = u2(θ2j , o1ij) = 1 for i �= j, (i, j) ∈ E;

• u1(θ1i , o1kl) = u2(θ2j , o
1
kl) = u1(θ1i , o

2
kl) =

u2(θ2j , o
2
kl) = −5n2 for k �= l, (k, l) ∈ E, i �= k

and j �= l.

Finally, we set G =
2m(5n2+1)+2(n−K)+4K+4(n2−2m−n)

n2 . We now pro-
ceed to show that the two problem instances are
equivalent.

First suppose there is a solution to the
INDEPENDENT-SET instance, that is, a subset
S of V of size K such that for any i, j ∈ S, (i, j) /∈ E.
Let the outcome function be as follows:

• o(θ1i , θ2i) = oHii if i ∈ S;

• o(θ1i , θ2i) = oLii if i /∈ S;

• o(θ1i , θ2j) = oij if i �= j, (i, j) /∈ E;

• o(θ1i , θ2j) = o1ij if i �= j, (i, j) ∈ E, and j ∈ S;

• o(θ1i , θ2j) = o2ij otherwise.

First we show that this mechanism is incentive com-
patible. We first demonstrate that agent 1 never has
an incentive to misreport. Suppose agent 1’s true type
is θ1i and agent 2 is reporting θ2j . Then agent 1 never
has an incentive to instead report θ1k with k �= i, k �= j,
since this will lead to the selection of okj , o1kj , or o

2
kj ,

all of which give agent 1 utility −5n2. What about
reporting θ1j instead (when i �= j)? If j /∈ S, this will
lead to utility −5n2 for agent 1, so in this case there is
no incentive to do so. If j ∈ S, this will lead to utility
2 for agent 1. However, if (i, j) /∈ E, reporting truth-
fully will also give agent 1 utility 2; and if (i, j) ∈ E,
then since j ∈ S, reporting truthfully will in fact give
agent 1 utility 5n2. It follows that again, there is no
incentive to misreport. To show that agent 2 has no
incentive to misreport, we apply the exact same argu-
ment as for agent 1: the only claim we need to prove
in order to make this work is that if i �= j, (i, j) ∈ E,
and i ∈ S, then o(θ1i , θ2j) = o2ij . All that is necessary
to show is that in this case, j /∈ S. But this follows
immediately from the fact that there are no edges be-
tween elements in S, since i ∈ S and (i, j) ∈ E. Hence,
we have established incentive compatibility. All that
is left to show is that we reach the goal. Suppose
the agents’ types are θ1i and θ2j . If (i, j) is an edge,
which happens with probability 2m

n2 , we get a social
welfare of 5n2 + 1. If i = j and i /∈ S, which hap-
pens with probability n−K

n2 , we get a social welfare of
2. If i = j and i ∈ S, which happens with probability
K
n2 , we get a social welfare of 4. Finally, if i �= j and
(i, j) is not an edge, which happens with probability
n2−2m−n

n2 , we get a social welfare of 4. Adding up all
the terms we find that the goal is exactly satisfied.
So there is a solution to the DMDDS instance. Now
suppose the DMDDS instance has a solution, that is,
a function o satisfying the desired properties. Sup-
pose there are r1 distinct vectors (p, θ1i1 , θ

2
i2
) such that

up(θ
p
ip
, o(θ1i1 , θ

2
i2
)) = 5n2 (that is, r1 cases where some-

one gets the very large payoff) and r2 distinct vectors
(p, θ1i1 , θ

2
i2
) such that up(θ

p
ip
, o(θ1i1 , θ

2
i2
)) = −5n2. Let

r = r1 − r2. Then, since the highest other payoff that
can be reached is 2, the expected social welfare can
be at most r(5n2)+4n2

n2 . But the goal is greater than
2m(5n2)

n2 , and since by assumption o reaches this goal,
we have r ≥ 2m. Of course, we can only achieve a
payoff of 5n2 with outcomes o1ij or o2ij . However, if it
is the case that o(θ1i , θ

2
j) ∈ {o1kl, o

2
kl} for k �= i or l �= j,

one of the agents in fact receives a utility of −5n2,

and the contribution of this outcome to r can be at
most 0. It follows that there must be at least 2m pairs
(θ1i , θ

2
j) whose outcome is o1ij or o2ij . But this is possi-

ble only if (i, j) is an edge, and there are only 2m such
pairs. It follows that whenever (i, j) is an edge, o1ij or
o2ij is chosen. Now, we set S = {i : o(θ1i , θ2i) = oHii }.
First we show that S is an independent set. Suppose
not: i.e., i, j ∈ S and (i, j) ∈ E. Consider o(θ1i , θ

2
j).

If it is o1ij , then agent 2 receives 1 in this scenario
and has an incentive to misreport its type as θ2i , since
o(θ1i , θ

2
i) = oHii , which gives it utility 2. On the other

hand, if it is o2ij , then agent 1 receives 1 in this sce-
nario and has an incentive to misreport its type as θ1j ,
since o(θ1j , θ

2
j) = o

H
jj , which gives it utility 2. But this

contradicts incentive compatibility. Finally, we show
that S has at least K elements. Suppose the agents’
types are θ1i and θ2j . If (i, j) is an edge, which happens
with probability 2m

n2 , we get a social welfare of 5n2+1.
If i = j and i /∈ S, which happens with probability
n−|S|

n2 , we get a social welfare of at most 2. If i = j

and i ∈ S, which happens with probability |S|n2 , we get
a social welfare of 4. Finally, if i �= j and (i, j) is not
an edge, which happens with probability n2−2m−n

n2 , we
get a social welfare of at most 4. Adding up all the
terms we find that we get a social welfare of at most
2m(5n2+1)+2(n−|S|)+4|S|+4(n2−2m−n)

n2 . But this must be

at least G = 2m(5n2+1)+2(n−K)+4K+4(n2−2m−n)
n2 . It

follows that |S| ≥ K. So there is a solution to the
INDEPENDENT-SET instance.

We now move on to Bayes-Nash implementation. For
this, we will reduce from the NP-complete KNAP-
SACK problem [8].

Definition 7 (KNAPSACK) We are given a set I
of m pairs of (nonnegative) integers (wi, vi), a con-
straint C > 0 and a goal D > 0. We are asked whether
there exists a subset S ⊆ I such that

∑

j∈S

wj ≤ C and
∑

j∈S

vj ≥ D.

Theorem 2 2-agent DETERMINISTIC-
MECHANISM-DESIGN with Bayes-Nash imple-
mentation (DMDBN) is NP-complete, even with the
social welfare function as the objective function.

Proof: To show that the problem is in NP , we ob-
serve that specifiying an outcome function here re-
quires only the specification of |Θ1| × |Θ2| outcomes,
and given such an outcome function we can verify
whether it meets our requirements in polynomial time.
To show that it is NP -hard, we reduce an arbitrary
KNAPSACK instance to the following DMDBN in-
stance. Let W =

∑

j∈I

wj and V =
∑

j∈I

vj . There are

m + 2 outcomes: o1, o2, . . . , om, om+1, om+2. We have
Θ1 = {θ11, θ12, . . . , θ1m}, where θj occurs with proba-
bility wj

W ; and Θ2 = {θ21, θ22}, where each of these
types occurs with probability 1

2 . The utility func-
tions are as follows: for all j, u1(θ1j , oj) = (vj

wj
+ 1)W ;

u1(θ1j , om+2) = −W ; and u1 is 0 everywhere else. Fur-
thermore, u2(θ21, om+1) = W ; u2(θ21, om+2) = W − C;
u2(θ22, om+2) = W (2V + 1); and u2 is 0 everywhere
else. We set G = WV + W+D

2 . We now proceed to
show that the two problem instances are equivalent.

First suppose there is a solution to the KNAPSACK
instance, that is, a subset S of I such that

∑

j∈S

wj ≤ C

and
∑

j∈S

vj ≥ D. Then let the outcome function be as

follows: o(θ1j , θ
2
1) = oj if j ∈ S, o(θ1j , θ21) = om+1 oth-

erwise; and for all j, o(θ1j , θ
2
2) = om+2. First we show

that truthtelling is a BNE. Clearly, agent 1 never has
an incentive to misrepresent its type, since if agent 2
has type θ22, the type that 1 reports makes no differ-
ence; and if agent 2 has type θ21, misrepresenting its
type will lead to utility at most 0 for agent 1, whereas
truthful reporting will give it utility at least 0. It is
also clear that agent 2 has no incentive to misrepre-
sent its type when its type is θ22. What if agent 2
has type θ21? Reporting truthfully will give it utility∑

j∈I−S

wj

W W =
∑

j∈I−S

wj ≥ W − C, whereas reporting

θ22 instead will give it utility W −C. So there is no in-
centive for agent 2 to misrepresent its type in this case,
either. Now, we show that the expected social welfare
attains the goal. With probability 1

2 agent 2 has type
θ22 and the social welfare isW (2V+1)−W = 2WV . On
the other hand, if agent 2 has type θ21, the expected
social welfare is

∑

j∈I−S

wj

W W +
∑

j∈S

wj

W ((vj

wj
+ 1)W) =

W +
∑

j∈S

vj ≥ W + D. So, the total expected social

welfare is greater or equal to 2WV +W+D
2 = G. Hence,

the DMDBN instance has a solution.

Now suppose the DMDBN instance has a solution,
that is, a function o satisfying the desired proper-
ties. First suppose that there exists a θ1j such that
o(θ1j , θ

2
2) �= om+2. The social welfare in this case can

be at most (vj

wj
+ 1)W < WV (since wj is a non-

negative integer). Now, the event (θ1j , θ
2
2) occurs with

probability at least 1
2W (again, since wj is a nonneg-

ative integer), and it follows that the probability of
an event with social welfare 2WV occuring is at most
W−1
2W . (For this can happen only when agent 2 has type
θ22.) It follows that the maximal contribution to the ex-
pected social welfare that we can expect from the cases
where agent 2 has type θ22 is 1

2WWV + W−1
2W 2WV =

(W − 1
2)V . Additionally, it is easy to see that the

maximal contribution to the expected social welfare

that we can expect from the cases where agent 2 has
type θ21 is 1

2

∑ wj

W (vj

wj
+ 1)W = 1

2 (W + V). It follows
that the total expected social welfare can be no more
than (W − 1

2)V + 1
2 (W + V) =WV + W

2 . But this is
smaller than G, contradicting our assumptions about
o. It follows that for all θ1j , we have o(θ1j , θ

2
2) = om+2.

Now, let S = {j|o(θ1j , θ21) = oj}. We claim S is a solu-
tion to the KNAPSACK instance. First, observe that
the expected utility that agent 2 gets from misrepre-
senting its type as θ22 when it is really θ21 is W − C.
Thus, in order for agent 2 not to have an incentive to
do this, we must have

∑

j|o(θ1
j
,θ2

1)=om+1

wj

W W ≥ W − C.

But the left-hand side of the inequality is smaller or
equal to

∑

j∈I−S

wj . It follows that
∑

j∈I−S

wj ≥ W − C,

or
∑

j∈S

wj ≤ C. Second, the expected social welfare is

at most 2WV
2 + 1

2

∑

j∈I−S

wj

W W + 1
2

∑

j∈S

wj

W (vj

wj
+ 1)W =

WV + W
2 + 1

2

∑

j∈S

vj . But by our assumptions on

the outcome function, we know that this must be
greater or equal to G = WV + W+D

2 . It follows that∑

j∈S

vj ≥ D. So we have found a solution to the KNAP-

SACK instance.

4 Randomized mechanisms

Randomized mechanisms are a generalization of de-
terministic mechanisms, and as such potentially allow
one to increase the expectation of the (social) objec-
tive function. In this section we show that randomized
mechanisms also allow one to circumvent the complex-
ity problems of deterministic mechanism design.

Definition 8 Given a preference aggregation setting,
a randomized mechanism is a function that, given any
vector of reported types, produces a probability distri-
bution over the outcome set. That is, it is a function
p : Θ1 ×Θ2 × . . .×ΘN → PROBDIST S(O).

We need to make only minor modifications to our def-
initions of solution concepts and the computational
problem of mechanism design to accommodate for this
generalization. In these definitions, Eo←p means that
the expectation is taken when o is randomly chosen
according to the distribution p.

Definition 9 Given a preference aggregation set-
ting, a mechanism is said to implement its out-
come function in dominant strategies if truthtelling
is always optimal even when the types reported by
the other agents are already known. For a ran-
domized mechanism, this means that for any i ∈
A, for any type vector (θ1, θ2, . . . , θi, . . . , θN) ∈

Θ1 × Θ2 × . . . × Θi × . . . × θN , and for any
θ̂i ∈ Θi, we have Eo←p(θ1,θ2,...,θi,...,θN)(ui(θi, o)) ≥
Eo←p(θ1,θ2,...,θ̂i,...,θN)(ui(θi, o))

Definition 10 Given a preference aggregation set-
ting, a mechanism is said to implement its outcome
function in Bayes-Nash equilibrium if truthtelling is
always optimal as long as the other agents’ types
are unknown, and the other agents report truth-
fully. For a randomized mechanism, this means
that for any i ∈ A, and for any θi, θ̂i ∈ Θi, we
have Eθ−i(Eo← p(θ1, θ2, . . . , θi, . . . , θN)(ui(θi, o))) ≥
Eθ−i(Eo← p(θ1, θ2, . . . , θ̂i, . . . , θN)(ui(θi, o))).

Definition 11 (RANDOMIZED-
MECHANISM-DESIGN) We are given a
preference aggregation setting, a solution concept, and
an objective function g : Θ1×Θ2× . . .×Θn×O → R

with a goal G. We are asked whether there exists a
randomized mechanism for the preference aggregation
setting which

• satisfies the given solution concept, and

• attains the goal, i.e.,
Eθ1,θ2,...,θN (Eo←p(θ1,θ2,...,θN)(g(θ1, θ2, . . . , θN , o)))
≥ G.

We now demonstrate how randomization in the mech-
anism allows us to compute optimal mechanisms
much easier: we merely need to formulate the
RANDOMIZED-MECHANISM-DESIGN instance as
a linear program. For ease of exposition, we demon-
strate how to do this only in the two-agent case. How-
ever, the method readily generalizes to larger num-
bers of agents: the theorems below hold for any con-
stant number of agents. (As we indicated before, the
description length of o is exponential in the number
of agents, so this approach is tractable only for small
numbers of agents.)

Theorem 3 2-agent RANDOMIZED-
MECHANISM-DESIGN with dominant strategies
implementation as the solution concept is solvable
in polynomial time by linear programming, for any
(polynomially computable) objective function.

Proof: Let pk
ij denote the probability of choosing

ok when the reported types are θ1i and θ2j . That is,
pk

ij = (p(θ1i , θ
2
j))(ok). These will be the variables that

the linear program is to determine. Note there are
polynomially many of them (|Θ1||Θ2||O|). We intro-
duce the following constraints in the linear program
(corresponding to the requirements of implementation
in dominant strategies):

• For every θ2j ∈ Θ2, for every θ1i , θ
1
l ∈ Θ1, we have

∑

k:ok∈O

pk
iju1(θ

1
i , ok) ≥

∑

k:ok∈O

pk
lju1(θ

1
i , ok);

• For every θ1i ∈ Θ1, for every θ2j , θ
2
l ∈ Θ2, we have

∑

k:ok∈O

pk
iju2(θ

2
j , ok) ≥

∑

k:ok∈O

pk
ilu2(θ

2
j , ok).

Finally, we seek to maximize the following expression
(which is the expectation of the objective function):

•
∑

i:θ1
i
∈Θ1

∑

j:θ2
j
∈Θ2

∑

k:ok∈O

p1(θ1i)p2(θ
2
j)p

k
ijg(θ

1
i , θ

2
j , ok).

Note that all the expressions are indeed linear in the
pk

ij , and there is a polynomial number of inequalities
(|Θ1|2|Θ2|+ |Θ1||Θ2|2).

Theorem 4 2-agent RANDOMIZED-
MECHANISM-DESIGN with Bayes-Nash imple-
mentation as the solution concept is solvable in
polynomial time by linear programming, for any
(polynomially computable) objective function.

Proof: The pk
ij are as before. We introduce the follow-

ing constraints in the linear program (corresponding
to the requirements of implementation in Bayes-Nash
equilibirum):

• For every θ1i , θ
1
l ∈ Θ1, we have∑

j:θ2
j
∈Θ2

∑

k:ok∈O

p2(θ2j)p
k
iju1(θ

1
i , ok) ≥

∑

j:θ2
j
∈Θ2

∑

k:ok∈O

p2(θ2j)p
k
lju1(θ

1
i , ok);

• For every θ2j , θ
2
l ∈ Θ2, we have

∑

i:θ1
i
∈Θ1

∑

k:ok∈O

p1(θ1i)p
k
iju2(θ

2
j , ok) ≥

∑

i:θ1
i
∈Θ1

∑

k:ok∈O

p1(θ1i)p
k
ilu2(θ

2
j , ok).

Again, we seek to maximize the following expression:

•
∑

i:θ1
i
∈Θ1

∑

j:θ2
j
∈Θ2

∑

k:ok∈O

p1(θ1i)p2(θ
2
j)p

k
ijg(θ

1
i , θ

2
j , ok).

Note that all the expressions are indeed linear in the
pk

ij , and there is a polynomial number of inequalities
(|Θ1|2 + |Θ2|2).

5 Increasing economic efficiency
through randomization—a
connection to computational
complexity

It is known in game theory that allowing for ran-
domization in the mechanism can increase expected
social welfare (or other objective functions). Inter-
estingly, our results from above would prove this
fact through connections to computational complex-
ity, if P �= NP. For suppose it were never pos-
sible to increase social welfare via randomization.

Then, since randomized mechanisms are a general-
ization of deterministic mechanisms, it would follow
that the expected social welfare from the best random-
ized mechanism would equal the expected social wel-
fare from the best deterministic mechanism. There-
fore, to solve a DETERMINISTIC-MECHANISM-
DESIGN instance, we could simply solve the cor-
responding RANDOMIZED-MECHANISM-DESIGN
instance. But we have shown that for some so-
lution concepts, DETERMINISTIC-MECHANISM-
DESIGN is NP -complete while RANDOMIZED-
MECHANISM-DESIGN is in P. So, we could con-
clude that P = NP.3

The fact that randomization in the mechanism can
increase expected social welfare is also easy to prove
directly, as the following example shows. Let there
be 3 outcomes: o1, o2, and o3. Agent 1 has 2 types
(both equally likely), θ11 and θ12. Agent 2 only has
1 type, θ21. The utility functions are as follows: for
agent 1, u1(θ11, o1) = 1; u1(θ11, o2) = 2; u1(θ11, o3) = 0;
u1(θ12, o1) = 8; u1(θ12, o2) = 2; and u1(θ12, o3) = 0.
For agent 2, u2(θ21, o1) = 0; u2(θ21, o2) = 0; and
u2(θ21, o3) = 4. Because there is only one agent who
has more than one type, implementation in dominant
strategies and in Bayes-Nash equilibrium (and indeed
all reasonable solution concepts) coincide. It is easy
to show that the deterministic mechanism that max-
imizes social welfare among the nonmanipulable ones
is given by o(θ11, θ

2
1) = o2; o(θ21, θ21) = o1, for an ex-

pected social welfare of 5. (Every mechanism that does
not choose o1 when agent 1 has type θ12 will have ex-
pected social welfare no greater than 4. If the mecha-
nism does choose o1 in this case, we cannot choose o3
in the case where agent 1 has type θ11, because agent
1 would have an incentive to misreport type θ12 when
its true type is θ11. So, the best the mechanism can do
is to select o2 in this case.) However, if we allow for
randomization even just in the case where agent 1 has
type θ11, we can do better by choosing o2 with prob-
ability 1

2 , and o3 with probability 1
2 . (This gives an

expected social welfare of 5 1
2 , and there is no incentive

for agent 1 to manipulate because the expected utility
that it gets from reporting truthfully in the case where
its type is θ11 is 1—which is the same as it would get
by misreporting θ12.)

6 Related research

While we are, to our knowledge, the first to study the
computational complexity of mechanism design, there
has been a significant amount of research on other as-
pects of computing in games. For example, there has

3This type of argument can also be used in many other
settings where a shift from integer programming to linear
programming makes the computational problem easier.

been considerable work on finding equilibria in games.
AI work on this topic has focused on novel knowledge
representations which, in certain settings, can drasti-
cally speed up equilibrium finding (e.g. [11–13]).

A recent stream studies the complexity of executing
mechanisms: voting mechanisms [4], combinatorial
auctions (e.g. [18]), and other optimal and approxi-
mate mechanisms (e.g. [17]).

Another research stream has focused on determining
the computational complexity of manipulating mech-
anisms, with the goal of designing mechanisms where
constructing a beneficial manipulation is hard [2, 3, 6].

Yet another stream has focused on games where the
agents need to compute their preferences, and have
limited computing available. In that setting, compu-
tational complexity actually affects the equilibrium,
not merely the complexity of finding one [14, 15].

7 Conclusions and future research

The aggregation of conflicting preferences is a central
problem in multiagent systems, be the agents human
or artificial. The key difficulty is that the coordinator,
who tries to aggregate the preferences, is uncertain
about the agents’ preferences a priori, and the agents
may report their preferences insincerely.

Mechanism design is the art of designing the rules of
the game so that the agents are motivated to report
their preferences truthfully and a (socially) desirable
outcome is chosen. We proposed an approach where a
mechanism is automatically created for the preference
aggregation setting at hand. This approach can be
used even in settings that do not satisfy the assump-
tions of general classical mechanisms. It may also yield
better mechanisms (in terms of stronger nonmanipula-
bility guarantees and/or better social outcomes) than
the classical mechanisms. Finally, it may allow one to
circumvent impossibility results (such as the Gibbard-
Satterthwaite theorem) which state that there is no
mechanism that is desirable across all preferences.

The downside is that the mechanism design optimiza-
tion problem needs to be solved anew each time. Fo-
cusing on settings where side payments are not pos-
sible, we showed that the mechanism design problem
is NP -complete for deterministic mechanisms. This
holds both for dominant-strategy implementation and
for Bayes-Nash implementation. We then showed that
if we allow randomized mechanisms, the mechanism
design problem becomes solvable in polynomial time
in both cases. In other words, the coordinator can
tackle the computational complexity introduced by its
uncertainty about the agents’ preferences by making
the agents face additional uncertainty. This comes at

no loss, and in some cases at a gain, in the (social)
objective.

Future research includes extending the approach of
automated mechanism design to settings where side
payments are viable but the classical general mecha-
nisms do not work (for example because the agents
do not have quasilinear preferences or additional re-
quirements are posed, such as strong budget balance).
Another interesting use of automated mechanism de-
sign is to solve for mechanisms for a variety of settings
(real or artificially generated), and to see whether gen-
eral mechanisms (or mechanism design principles) can
be inferred. Yet another direction is to study auto-
mated mechanism design in settings where the agents’
preferences have special structure, allowing for more
concise input representation, and perhaps also more
efficient mechanism design algorithms.

References
[1] Kenneth Arrow. The property rights doctrine and demand rev-

elation under incomplete information. In M Boskin, ed., Eco-
nomics and human welfare. New York Academic Press, 1979.

[2] John J. Bartholdi, III and James B. Orlin. Single transfer-
able vote resists strategic voting. Social Choice and Welfare,
8(4):341–354, 1991.

[3] John J. Bartholdi, III, Craig A. Tovey, and Michael A. Trick.
The computational difficulty of manipulating an election. So-
cial Choice and Welfare, 6(3):227–241, 1989.

[4] John J. Bartholdi, III, Craig A. Tovey, and Michael A. Trick.
Voting schemes for which it can be difficult to tell who won the
election. Social Choice and Welfare, 6:157–165, 1989.

[5] E H Clarke. Multipart pricing of public goods. Public Choice,
11:17–33, 1971.

[6] Vincent Conitzer and Tuomas Sandholm. Complexity of ma-
nipulating elections with few candidates. AAAI, 2002.

[7] C d’Aspremont and L A Gérard-Varet. Incentives and incom-
plete information. J. of Public Economics, 11:25–45, 1979.

[8] Michael R Garey and David S Johnson. Computers and In-
tractability. W. H. Freeman and Company, 1979.

[9] A Gibbard. Manipulation of voting schemes. Econometrica,
41:587–602, 1973.

[10] Theodore Groves. Incentives in teams. Econometrica, 41:617–
631, 1973.

[11] Michael Kearns, Michael Littman, and Satinder Singh. Graph-
ical models for game theory. UAI, 2001.

[12] Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel.
Efficient computation of equilibria for extensive two-person
games. Games and Economic Behavior, 14(2):247–259, 1996.

[13] Daphne Koller and B Milch. Multi-agent influence diagrams
for representing and solving games. IJCAI, 1027–1034, 2001.

[14] Kate Larson and Tuomas Sandholm. Bargaining with limited
computation: Deliberation equilibrium. Artificial Intelligence,
132(2):183–217, 2001. Early version: AAAI-00.

[15] Kate Larson and Tuomas Sandholm. Costly valuation compu-
tation in auctions. TARK, 169–182, 2001.

[16] Andreu Mas-Colell, Michael Whinston, and Jerry R. Green.
Microeconomic Theory. Oxford University Press, 1995.

[17] Noam Nisan and Amir Ronen. Algorithmic mechanism design.
In STOC, 129–140, 1999.

[18] Tuomas Sandholm. Algorithm for optimal winner determina-
tion in combinatorial auctions. Artificial Intelligence, 135:1–
54, January 2002. Early versions: ICE-98 talk; Washington
Univ. WUCS-99-01; IJCAI-99.

[19] M Satterthwaite. Strategy-proofness and Arrow’s conditions:
existence and correspondence theorems for voting procedures
and social welfare functions. J. Econ. Theory 10:187-217, 1975.

[20] W Vickrey. Counterspeculation, auctions, and competitive
sealed tenders. Journal of Finance, 16:8–37, 1961.

