Introduction to Voting

4x 😞 : 🎅 > 👷 > 🐶

3x 😞 : 🐶 > 👷 > 🎅

2x 😞 : 🐶 > 🐶 > 🎅
Introduction to Voting

Pairwise comparisons:

- 4x 😞: 🎅gorm>😀>😄
- 3x 😞: 😄>😀> Blowjob
- 2x 😞: 😄>😀> Blowjob

Markus Brill: Strategic Voting and Strategic Candidacy
Introduction to Voting

\[
\begin{align*}
4x:\text{ 😞 } & : & \text{erman} > \text{plus} > \text{erman} \\
3x:\text{ 😞 } & : & \text{erman} > \text{plus} > \text{erman} \\
2x:\text{ 😞 } & : & \text{erman} > \text{plus} > \text{erman}
\end{align*}
\]

Pairwise comparisons:

Majority tournament:

\[
\text{erman} > \text{plus} > \text{erman}
\]
Introduction to Voting

• A candidate is a **Condorcet winner** if he wins all pairwise comparisons

Pairwise comparisons:

- 4x 😞 : 👷🏼‍♂️ > 👍 > ⛄️
- 3x 😞 : 👷🏼‍♂️ > 👍 > ⛄️
- 2x 😞 : 👍 > 👷🏼‍♂️ > ⛄️

Majority tournament:
Introduction to Voting

- A candidate is a **Condorcet winner** if he wins all pairwise comparisons
 - a rule is **Condorcet-consistent** if it selects a Condorcet winner whenever one exists

```
Pairwise comparisons:

4x 😞 : 👨‍樵 > 👨‍樵 > 👨‍樵
3x 😐 : 👨‍樵 > 👨‍樵 > 👨‍樵
2x 😞 : 👨‍樵 > 👨‍樵 > 👨‍樵

Majority tournament:
```

Markus Brill: Strategic Voting and Strategic Candidacy
Introduction to Voting

- A candidate is a **Condorcet winner** if he wins all pairwise comparisons
 - a rule is **Condorcet-consistent** if it selects a Condorcet winner whenever one exists

- A candidate is a **majority winner** if he is ranked first by a majority of voters
Introduction to Voting

- A candidate is a **Condorcet winner** if he wins all pairwise comparisons
 - a rule is **Condorcet-consistent** if it selects a Condorcet winner whenever one exists
- A candidate is a **majority winner** if he is ranked first by a majority of voters
 - a rule is **majority-consistent** if it selects a majority winner whenever one exists

Pairwise comparisons:

- 4x 😞 : 🙅→,+→modx
- 3x 😞 : 🙅→,+→🎅
- 2x 😞 : +→modx

Majority tournament:
Introduction to Voting

- A candidate is a **Condorcet winner** if he wins all pairwise comparisons
 - a rule is **Condorcet-consistent** if it selects a Condorcet winner whenever one exists
- A candidate is a **majority winner** if he is ranked first by a majority of voters
 - a rule is **majority-consistent** if it selects a majority winner whenever one exists
- Condorcet-consistency implies majority-consistency
Introduction to Voting

• A candidate is a **Condorcet winner** if he wins all pairwise comparisons
 ‣ a rule is **Condorcet-consistent** if it selects a Condorcet winner whenever one exists

• A candidate is a **majority winner** if he is ranked first by a majority of voters
 ‣ a rule is **majority-consistent** if it selects a majority winner whenever one exists

• Condorcet-consistency implies majority-consistency
 ‣ a majority winner is also a Condorcet winner
Single-Peaked Preferences
Single-Peaked Preferences

- Let L be a linear ordering of the candidates
Single-Peaked Preferences

• Let L be a linear ordering of the candidates.

• A ranking is **single-peaked w.r.t. L** if its corresponding preference curve has a unique peak, and preference is declining if we move away from the peak.
Single-Peaked Preferences

- Let L be a linear ordering of the candidates.
- A ranking is **single-peaked w.r.t. L** if its corresponding preference curve has a unique peak, and preference is declining if we move away from the peak.
Single-Peaked Preferences

• Let L be a linear ordering of the candidates.

• A ranking is **single-peaked w.r.t. L** if its corresponding preference curve has a unique peak, and preference is declining if we move away from the peak.

 ‣ 🧑‍💻 > 🕺 > 👨‍📦 > 🎅 is **single-peaked** w.r.t. L.

Markus Brill: Strategic Voting and Strategic Candidacy
Single-Peaked Preferences

- Let L be a linear ordering of the candidates.
- A ranking is **single-peaked w.r.t. L** if its corresponding preference curve has a unique peak, and preference is declining if we move away from the peak.

 - $\text{WebHost} > \text{Developer} > \text{Police} > \text{Santa}$ is **single-peaked** w.r.t. L.

Markus Brill: Strategic Voting and Strategic Candidacy
Single-Peaked Preferences

- Let L be a linear ordering of the candidates

- A ranking is **single-peaked w.r.t. L** if its corresponding preference curve has a unique peak, and preference is declining if we move away from the peak

 - $\hat{\varepsilon} > \varepsilon > \check{\varepsilon} > \hat{\varepsilon}$ is **single-peaked** w.r.t. L

 - $\hat{\varepsilon} > \varepsilon > \check{\varepsilon} > \hat{\varepsilon}$ is **not single-peaked** w.r.t. L
Single-Peaked Preferences

- Let L be a linear ordering of the candidates.

- A ranking is **single-peaked w.r.t. L** if its corresponding preference curve has a unique peak, and preference is declining if we move away from the peak.
 - $\text{👨‍ fı₅₇₃₇ > 👶 > 👪 > 👹}$ is single-peaked w.r.t. L.
 - $\text{👨‍ fı₅₇₃₇ > 👪 > 👶 > 👹}$ is not single-peaked w.r.t. L.

Markus Brill: Strategic Voting and Strategic Candidacy
Single-Peaked Preferences

- Let \mathbf{L} be a linear ordering of the candidates.

- A ranking is **single-peaked w.r.t. \mathbf{L}** if its corresponding preference curve has a unique peak, and preference is declining if we move away from the peak.
 - $\mathbf{ miesiączkowcy } > \mathbf{ babsi } > \mathbf{ lalo }$ is **single-peaked** w.r.t. \mathbf{L}
 - $\mathbf{ lolo } > \mathbf{ babsi } > \mathbf{ lalo }$ is **not single-peaked** w.r.t. \mathbf{L}

- Every single-peaked preference profile has a Condorcet winner.
Single-Peaked Preferences

- Let L be a linear ordering of the candidates.

- A ranking is **single-peaked w.r.t. L** if its corresponding preference curve has a unique peak, and preference is declining if we move away from the peak.
 - $\text{ Lump } > \text{ Police } > \text{ Student } > \text{ Worker }$ is **single-peaked** w.r.t. L.
 - $\text{ Lump } > \text{ Police } > \text{ Student } > \text{ Worker }$ is **not single-peaked** w.r.t. L.

- Every single-peaked preference profile has a Condorcet winner.
 - Condorcet winner is the most preferred alternative of the **median voter**.
Single-Peaked Preferences

• Let L be a linear ordering of the candidates.

• A ranking is **single-peaked w.r.t. L** if its corresponding preference curve has a unique peak, and preference is declining if we move away from the peak.
 - $\hat{\mathcal{E}} > \mathcal{C} > \mathcal{M} > \mathcal{S}$ is **single-peaked** w.r.t. L.
 - $\mathcal{C} > \mathcal{M} > \mathcal{S} > \hat{\mathcal{E}}$ is **not single-peaked** w.r.t. L.

• Every single-peaked preference profile has a Condorcet winner.
 - Condorcet winner is the most preferred alternative of the **median voter**.
Single-Peaked Preferences

- Let L be a linear ordering of the candidates.

- A ranking is **single-peaked w.r.t. L** if its corresponding preference curve has a unique peak, and preference is declining if we move away from the peak.
 - 🧑‍ maç > ♂ > 🧑 > ⚔ is **single-peaked** w.r.t. L.
 - 🧑‍ maç > ♂ > 🧑 > ⚔ is **not single-peaked** w.r.t. L.

- Every single-peaked preference profile has a Condorcet winner.
 - Condorcet winner is the most preferred alternative of the **median voter**.
Strategic Voting & Strategic Candidacy

- Standard assumption in voting theory: set of candidates is fixed
Strategic Voting & Strategic Candidacy

- Standard assumption in voting theory: set of candidates is **fixed**
- This ignores **candidates’ incentives** to enter/leave an election
Strategic Voting & Strategic Candidacy

• Standard assumption in voting theory: set of candidates is fixed
• This ignores candidates’ incentives to enter/leave an election

~48% ~48% ~4%
Strategic Voting & Strategic Candidacy

• Standard assumption in voting theory: set of candidates is **fixed**
• This ignores **candidates’ incentives** to enter/leave an election
Strategic Voting & Strategic Candidacy

- Standard assumption in voting theory: set of candidates is **fixed**
- This ignores **candidates’ incentives** to enter/leave an election

 ~48% ~48% ~4%
Strategic Voting & Strategic Candidacy

• Standard assumption in voting theory: set of candidates is fixed
• This ignores candidates’ incentives to enter/leave an election

Dutta, Jackson, & Le Breton [Econometrica 2001]: strategic candidacy
Strategic Voting & Strategic Candidacy

- Standard assumption in voting theory: set of candidates is **fixed**
- This ignores **candidates’ incentives** to enter/leave an election

![Bush](image1), ![Gore](image2), ![Nader](image3)

- ~48% ~48% ~4%

- Dutta, Jackson, & Le Breton [Econometrica 2001]: **strategic candidacy**
- Most papers on strategic candidacy assume **truthful voting**
Strategic Voting & Strategic Candidacy

- Standard assumption in voting theory: set of candidates is **fixed**
- This ignores **candidates’ incentives** to enter/leave an election
- Dutta, Jackson, & Le Breton [Econometrica 2001]: **strategic candidacy**
- Most papers on strategic candidacy assume **truthful voting**
- Question: What if **both** voters and candidates act strategically?
Strategic Voting & Strategic Candidacy

• Standard assumption in voting theory: set of candidates is **fixed**
• This ignores **candidates’ incentives** to enter/leave an election

Dutta, Jackson, & Le Breton [Econometrica 2001]: **strategic candidacy**

• Most papers on strategic candidacy assume **truthful voting**
• Question: What if **both** voters and candidates act strategically?
 › will this lead to “better” voting outcomes?
The Candidacy Game

- Finite set of candidates $C = \{\text{👮, 👷, 🙅, 🎅, \ldots}\}$
The Candidacy Game

- Finite set of candidates \(C = \{\hat{\text{man}}, \hat{\text{woman}}, \hat{\text{black}}, \hat{\text{red}}, \ldots \} \)
- Finite set of voters \(V = \{\hat{\text{man}}, \hat{\text{woman}}, \hat{\text{black}}, \ldots \} \)
 - we assume that \(|V|\) is odd
The Candidacy Game

• Finite set of candidates $C = \{\text{👮 }, \text{👷 }, \text{💂 }, \text{🎅 }, \ldots \}$
• Finite set of voters $V = \{\text{😐 }, \text{😐 }, \text{😐 }, \ldots \}$
 ‣ we assume that $|V|$ is odd
• Both voters and candidates have preferences over candidates

\[
\begin{align*}
\text{😐 } & : \text{mı} > \text{👷 } > \text{俐} > \text{,module} \\
\text{ kè } & : \text{mı} > \text{俐} > \text{سوف} > \text{سعد}
\end{align*}
\]
The Candidacy Game

- Finite set of candidates $C = \{\text{👮}, \text{👷}, \text{💂}, \text{🎅}, \ldots\}$
- Finite set of voters $V = \{\text{😐}, \text{😐}, \text{😐}, \ldots\}$
 - we assume that $|V|$ is odd
- Both voters and candidates have preferences over candidates

 😐 : 👮 > 👷 > 👉 > 👽

 👷 : 👷 > 👽 > 👮

- Two-stage game
 - stage 1: candidates decide to run or not
 - stage 2: voters submit ranking of running candidates
The Candidacy Game

- Finite set of candidates $C = \{\text{👮, 💫, 🤷, 👾, ...}\}$
- Finite set of voters $V = \{😐, 😐, 😐, ...\}$
 - We assume that $|V|$ is odd
- Both voters and candidates have preferences over candidates
 - $婵 : 갯 > BODY > 🤷 > 🤴$
 - $婵 : 但不限 > 🤴 > 🤴 > 🤷$
- Two-stage game
 - Stage 1: candidates decide to run or not
 - Stage 2: voters submit ranking of running candidates
- What are the equilibrium outcomes of this game?
 - Setting 1: single-peaked preferences and majority-consistent voting rules
Related Work

- Dutta, Jackson, & Le Breton [Econometrica 2001]: **impossibility result**

- Dutta, Jackson, & Le Breton [JET 2002]: binary voting rules
 - characterization of equilibrium outcomes for **successive elimination**

- Samejima [Jap Econ Rev 2007]: **single-peaked preferences**
 - characterization of voting rules that never give candidates incentives not to run

- Lang, Maudet, & Polukarov [SAGT 2013]: existence of **pure equilibria**
Setting

- Preferences of voters and candidates are *single-peaked*
 - there exists a Condorcet winner, denoted 🧑‍🚀
Setting

- Preferences of voters and candidates are **single-peaked**
 - there exists a Condorcet winner, denoted 🤝
Setting

- Preferences of voters and candidates are **single-peaked**
 - there exists a Condorcet winner, denoted 🧑‍🎄
- **Majority-consistent** voting rules
 - examples: *plurality*, plurality with runoff, instant runoff (STV)
Setting

• Preferences of voters and candidates are **single-peaked**
 ‣ there exists a Condorcet winner, denoted 🎅

• **Majority-consistent** voting rules
 ‣ examples: **plurality**, plurality with runoff, instant runoff (STV)
Setting

- Preferences of voters and candidates are **single-peaked**
 - there exists a Condorcet winner, denoted 🎅

- **Majority-consistent** voting rules
 - examples: **plurality**, plurality with runoff, instant runoff (STV)
Setting

- Preferences of voters and candidates are **single-peaked**
 - there exists a Condorcet winner, denoted 🧑

- **Majority-consistent** voting rules
 - examples: **plurality**, plurality with runoff, instant runoff (STV)
Setting

- Preferences of voters and candidates are **single-peaked**
 - there exists a Condorcet winner, denoted 🎅

- **Majority-consistent** voting rules
 - examples: **plurality**, plurality with runoff, instant runoff (STV)
Equilibrium Concepts

- **Strategies** in the two-stage game
Equilibrium Concepts

- **Strategies** in the two-stage game
 - candidates: “run” or “not run”
Equilibrium Concepts

- **Strategies** in the two-stage game
 - candidates: “run” or “not run”
 - voters: for each $B \subseteq C$, a ranking of B
Equilibrium Concepts

- **Strategies** in the two-stage game
 - candidates: “run” or “not run”
 - voters: for each B\(\subseteq\)C, a ranking of B

- A strategy profile \(s = (s_C, s_V)\) is a
Equilibrium Concepts

- **Strategies** in the two-stage game
 - candidates: “run” or “not run”
 - voters: for each $B \subseteq C$, a ranking of B

- A strategy profile $s = (s_C, s_V)$ is a
 - **C-equilibrium** if no candidate wants to deviate
 - **strong C-equilibrium** if no coalition of candidates wants to deviate
Equilibrium Concepts

- **Strategies** in the two-stage game
 - candidates: “run” or “not run”
 - voters: for each \(B \subseteq C \), a ranking of \(B \)

- A strategy profile \(s = (s_C, s_V) \) is a
 - **C-equilibrium** if no candidate wants to deviate
 - **strong C-equilibrium** if no coalition of candidates wants to deviate
 - **V-equilibrium** if, for all \(B \subseteq C \), no voter wants to deviate
 - **strong V-equilibrium** if, for all \(B \subseteq C \), no coalition of voters wants to deviate
Equilibrium Concepts

- **Strategies** in the two-stage game
 - candidates: “run” or “not run”
 - voters: for each $B \subseteq C$, a ranking of B

- A strategy profile $s = (s_C, s_V)$ is a
 - **C-equilibrium** if no candidate wants to deviate
 - **strong C-equilibrium** if no coalition of candidates wants to deviate
 - **V-equilibrium** if, for all $B \subseteq C$, no voter wants to deviate
 - **strong V-equilibrium** if, for all $B \subseteq C$, no coalition of voters wants to deviate

- Relationships
 - $(C\text{-eq.} \land V\text{-eq.}) \iff$ subgame-perfect equilibrium
 - $(\text{strong } C\text{-eq.} \land \text{strong } V\text{-eq.}) \iff$ subgame-perfect strong equilibrium
Assumptions: single-peaked preferences, majority-consistent voting rule

Question: Which combinations of equilibrium notions guarantee that the Condorcet winner is selected?
Results

Assumptions: single-peaked preferences, majority-consistent voting rule

Question: Which combinations of equilibrium notions guarantee that the Condorcet winner is selected?

<table>
<thead>
<tr>
<th>voters</th>
<th>strong V-eq.</th>
<th>V-eq.</th>
<th>truthful voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>candidates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>strong C-eq.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-eq.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>naive candidacy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results

Assumptions: single-peaked preferences, majority-consistent voting rule

Question: Which combinations of equilibrium notions guarantee that the Condorcet winner is selected?

<table>
<thead>
<tr>
<th></th>
<th>voters</th>
<th>strong V-eq.</th>
<th>V-eq.</th>
<th>truthful voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>candidates</td>
<td>strong C-eq.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C-eq.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>naive candidacy</td>
<td></td>
<td></td>
<td></td>
<td>✘</td>
</tr>
</tbody>
</table>

Assumption: single-peaked preferences, majority-consistent voting rule.

Question: Which combinations of equilibrium notions guarantee that the Condorcet winner is selected?

Results:
- **Truthful Voting** (Voting where voters vote honestly) guarantees that the Condorcet winner is selected when coupled with **V-eq.** (Voting equilibrium) and **naive candidacy** (Candidacy where candidates act naïvely).
Results

Assumptions: single-peaked preferences, majority-consistent voting rule

Question: Which combinations of equilibrium notions guarantee that the Condorcet winner is selected?

<table>
<thead>
<tr>
<th>candidates</th>
<th>voters</th>
<th>strong V-eq.</th>
<th>V-eq.</th>
<th>truthful voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>strong C-eq.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-eq.</td>
<td></td>
<td></td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>naive candidacy</td>
<td></td>
<td></td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>
Assumptions: single-peaked preferences, majority-consistent voting rule

Question: Which combinations of equilibrium notions guarantee that the Condorcet winner is selected?

Results:

- (“everybody running”, “truthful voting”) is a C-equilibrium and a V-equilibrium

<table>
<thead>
<tr>
<th></th>
<th>C-eq.</th>
<th>naive candidancy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>
Results

Assumptions:
- single-peaked preferences, majority-consistent voting rule

Question:
Which combinations of equilibrium notions guarantee that the Condorcet winner is selected?

- ("everybody running", "truthful voting") is a C-equilibrium and a V-equilibrium

<table>
<thead>
<tr>
<th></th>
<th>C-eq.</th>
<th>naive candidacy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td></td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>
Assumptions: single-peaked preferences, majority-consistent voting rule

Question: Which combinations of equilibrium notions guarantee that the Condorcet winner is selected?

<table>
<thead>
<tr>
<th>candidates</th>
<th>voters</th>
<th>strong V-eq.</th>
<th>V-eq.</th>
<th>truthful voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>strong C-eq.</td>
<td>strong C-eq.</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>C-eq.</td>
<td>C-eq.</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>naive candidacy</td>
<td>naive candidacy</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
</tbody>
</table>
Strong V-equilibria

- Consider a single-peaked preference profile with Condorcet winner 🤷‍♂️ and a majority-consistent voting rule.

Theorem: (i) There exists a subgame-perfect strong equilibrium. (ii) In every strong V-equilibrium in which 🤷‍♂️ runs, 🤷‍♂️ wins.

Corollary: In every strong V-equilibrium that is also a C-equilibrium (strong or not), 🤷‍♂️ wins.
Assumptions: single-peaked preferences, majority-consistent voting rule

Question: Which combinations of equilibrium notions guarantee that the Condorcet winner is selected?

<table>
<thead>
<tr>
<th>candidates</th>
<th>voters</th>
<th>strong V-eq.</th>
<th>V-eq.</th>
<th>truthful voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>strong C-eq.</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-eq.</td>
<td>✔️</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>naive candid.</td>
<td>✔️</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>
Results

Assumptions: single-peaked preferences, majority-consistent voting rule

Question: Which combinations of equilibrium notions guarantee that the Condorcet winner is selected?

<table>
<thead>
<tr>
<th>candidates</th>
<th>voters</th>
<th>strong V-eq.</th>
<th>V-eq.</th>
<th>truthful voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>strong C-eq.</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-eq.</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>naive candidacy</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>
Strong C-equilibria & Truthful Voting

• **Theorem:**
 (i) There exists a strong C-eq. where all voters vote truthfully.
 (ii) In every strong C-eq. where all voters vote truthfully, 🎅 wins.
Strong C-equilibria & Truthful Voting

- **Theorem:**

 (i) There exists a strong C-eq. where all voters vote truthfully.

 (ii) In every strong C-eq. where all voters vote truthfully, 🎅 wins.
Strong C-equilibria & Truthful Voting

- **Theorem:**
 1. There exists a strong C-eq. where all voters vote truthfully.
 2. In every strong C-eq. where all voters vote truthfully, 🎅 wins.
Strong C-equilibria & Truthful Voting

• **Theorem:**

 (i) There exists a strong C-eq. where all voters vote truthfully.

 (ii) In every strong C-eq. where all voters vote truthfully, 🎅 wins.
Strong C-equilibria & Truthful Voting

- **Theorem:**
 1. There exists a strong C-eq. where all voters vote truthfully.
 2. In every strong C-eq. where all voters vote truthfully, 🎅 wins.
Assumptions: single-peaked preferences, majority-consistent voting rule

Question: Which combinations of equilibrium notions guarantee that the Condorcet winner is selected?

<table>
<thead>
<tr>
<th>voters</th>
<th>strong V-eq.</th>
<th>V-eq.</th>
<th>truthful voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>strong C-eq.</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
</tr>
<tr>
<td>C-eq.</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>naive candidacy</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
</tr>
</tbody>
</table>
Assumptions: single-peaked preferences, majority-consistent voting rule

Question: Which combinations of equilibrium notions guarantee that the Condorcet winner is selected?

<table>
<thead>
<tr>
<th></th>
<th>voters</th>
<th>strong V-eq.</th>
<th>V-eq.</th>
<th>truthful voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>candidates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>strong C-eq.</td>
<td>✔️</td>
<td>✔️</td>
<td>✘</td>
<td>✔️</td>
</tr>
<tr>
<td>C-eq.</td>
<td>✔️</td>
<td>✔️</td>
<td>✘</td>
<td>✘</td>
</tr>
<tr>
<td>naive candidacy</td>
<td>✔️</td>
<td>✔️</td>
<td>✘</td>
<td>✘</td>
</tr>
</tbody>
</table>
Assumptions: single-peaked preferences, majority-consistent voting rule

Question: Which combinations of equilibrium notions guarantee that the Condorcet winner is selected?

<table>
<thead>
<tr>
<th></th>
<th>strong C-eq.</th>
<th>C-eq.</th>
<th>naive candidacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>strong C-eq.</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>C-eq.</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>naive candidacy</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>
Results

Assumptions: single-peaked preferences, majority-consistent voting rule

Question: Which combinations of equilibrium notions guarantee that the Condorcet winner is selected?

<table>
<thead>
<tr>
<th>candidates</th>
<th>voters</th>
<th>strong V-eq.</th>
<th>V-eq.</th>
<th>truthful voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>strong C-eq.</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>C-eq.</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>naive candidacy</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>
(strong C-eq. ∧ strong V-eq.), but not subgame-perfect strong equilibrium

Example 1. Consider a preference profile with candidates a, b, c and a single voter with preferences a ∨ b ∨ c. The preferences of candidate b are given by b ∨ b c ∨ b a. The voting rule f selects the candidate ranked first by the voter whenever all three candidates run; if, however, at most two candidates run, the lexicographically last one is chosen, ignoring the voter’s vote. Let s be the strategy profile in which a and c run and the voter votes truthfully. The outcome of s under f is o_f(s) = c. We claim that s is (1) a strong C-equilibrium and (2) a strong V-equilibrium, but (3) not a subgame-perfect strong equilibrium (in fact not even a strong equilibrium).

For (1), observe that c has no incentive to participate in any deviation. The same holds for a, because the outcome will still be c if a deviates (whether b runs or not). And when all three candidates run, the outcome is a, making candidate b—the only deviator—worse off. For (2), s is a strong V-equilibrium because the voter makes his favorite candidate win in the only case where his vote has any influence. For (3), consider the following deviation. Candidate b deviates to running and the voter deviates to ranking b first whenever b runs. The outcome will change to b, and both deviators (candidate b and the voter) prefer b to c.
Example 4. Let R be a single-peaked preference profile with candidates $a < b < c$ and peak distribution $(5, 0, 4)$. If f is Borda’s rule, there does not exist a strong V-equilibrium (and hence no subgame-perfect strong equilibrium). To see this, consider the case where all candidates run. Observe that in any strong V-equilibrium, the outcome would have to be a. (Suppose the outcome is not a. Then, the five voters in $V_R(a)$ can jointly deviate and change the outcome to a. They can do this by having one voter voting $a > b > c$, and the remaining four voters voting exactly the opposite rankings of the voters in $V_R(c)$.) However, there is no strong V-equilibrium that yields outcome a. This is because the voters in $V_R(c)$ prefer both other alternatives to a, and—no matter how the voters in $V_R(a)$ vote—the voters in $V_R(c)$ can jointly deviate and achieve an outcome other than a. (One of b and c will obtain a score of at least 3 from the voters in $V_R(a)$. Without loss of generality, suppose it is b. Then the voters in $V_R(c)$ can all vote $b > c > a$, making b the winner.)
Example 5. Let R be a single-peaked preference profile with candidates $a < b < c$ and five voters: three voters have preferences $a > b > c$ and two voters have preferences $b > c > a$. The Condorcet winner is a. Let f be the voting rule veto8 and let s be the strategy profile where all candidates run and all voters vote truthfully. Then, $o_f(s) = b$. Moreover, s is a strong C-equilibrium and a strong V-equilibrium. The former holds because any deviation involving a does not change the outcome (provided b still runs), and c can only change the outcome to the less preferred alternative a. For the latter, the only interesting case is when all three candidates run. In this case, the two voters in $V_R(b)$ have no incentive to deviate from truthful voting (their favorite candidate is winning) and there is no way for the three voters in $V_R(a)$ to jointly deviate and achieve outcome a. (They can change the outcome to c by voting $a > c > b$, but they prefer b to c.) It can furthermore be shown that, when all candidates run, every strong V-equilibrium yields outcome b.
strong C-eq., truthful voting (1)

Example 6. Consider a single-peaked preference profile with candidates $a \prec b \prec c$ and five voters: three voters have preferences $a \succ b \succ c$ and two voters have preferences $b \succ c \succ a$. The Condorcet winner is a. Let s be the strategy profile where $s_a = s_b = s_c = 1$ and s_v is “truthful voting” for all voters v. It is easily verified that s is a strong C-equilibrium and $o_{Borda}(s) = b$. In fact, it can be checked that the Condorcet winner is not chosen in any strong C-equilibrium with truthful voting. (The only other strong C-equilibrium under truthful voting has candidates b and c running and also yields outcome b.)
strong C-eq., truthful voting (2)

Example 7. Consider the following preference profile with candidates \(a, b, c \) and 14 voters.

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

The preferences of the candidates are such that \(a \) prefers \(c \) over \(b \) and \(b \) prefers \(c \) over \(a \). Whereas the preferences of the voters are single-peaked with respect to the ordering \(a < b < c \), this is not true for the preferences of the candidates. (Therefore, this profile is not single-peaked according to the definition in Section 3.1.) The Condorcet winner is \(b \) and the Condorcet loser is \(c \). Let \(s \) be the strategy profile where all candidates run and all voters vote truthfully. It is easily verified that \(s \) is a strong C-equilibrium and \(o_{\text{plurality}}(s) = c \). In fact, “everybody running” is the only strong C-equilibrium under truthful voting.