
Communication Complexity of Common Voting Rules ∗

Vincent Conitzer
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

conitzer@cs.cmu.edu

Tuomas Sandholm
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

sandholm@cs.cmu.edu

ABSTRACT
We determine the communication complexity of the com-
mon voting rules. The rules (sorted by their communication
complexity from low to high) are plurality, plurality with
runoff, single transferable vote (STV), Condorcet, approval,
Bucklin, cup, maximin, Borda, Copeland, and ranked pairs.
For each rule, we first give a deterministic communication
protocol and an upper bound on the number of bits com-
municated in it; then, we give a lower bound on (even the
nondeterministic) communication requirements of the vot-
ing rule. The bounds match for all voting rules except STV
and maximin.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; J.4 [Computer Applications]:
Social and Behavioral Sciences—Economics

General Terms
Algorithms, Economics, Theory

Keywords
Communication Complexity, Voting

1. INTRODUCTION
One key factor in the practicality of any preference ag-

gregation rule is its communication burden. To successfully
aggregate the agents’ preferences, it is usually not necessary

∗This material is based upon work supported by the Na-
tional Science Foundation under ITR grants IIS-0121678
and IIS-0427858, and a Sloan Fellowship. The authors thank
Ilya Segal for helpful comments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’05,June 5–8, 2005, Vancouver, British Columbia, Canada.
Copyright 2005 ACM 1-59593-049-3/05/0006 ...$5.00.

for all the agents to report all of their preference information.
Clever protocols that elicit the agents’ preferences partially
and sequentially have the potential to dramatically reduce
the required communication. This has at least the following
advantages:

• It can make preference aggregation feasible in settings
where the total amount of preference information is
too large to communicate.

• Even when communicating all the preference informa-
tion is feasible, reducing the communication require-
ments lessens the burden placed on the agents. This is
especially true when the agents, rather than knowing
all their preferences in advance, need to invest effort
(such as computation or information gathering) to de-
termine their preferences [16].

• It preserves (some of) the agents’ privacy.

Most of the work on reducing the communication burden
in preference aggregation has focused on resource allocation
settings such as combinatorial auctions, in which an auc-
tioneer auctions off a number of (possibly distinct) items
in a single event. Because in a combinatorial auction, bid-
ders can have separate valuations for each of an exponen-
tial number of possible bundles of items, this is a setting
in which reducing the communication burden is especially
crucial. This can be accomplished by supplementing the
auctioneer with an elicitor that incrementally elicits parts
of the bidders’ preferences on an as-needed basis, based on
what the bidders have revealed about their preferences so
far, as suggested by Conen and Sandholm [5]. For example,
the elicitor can ask for a bidder’s value for a specific bundle
(value queries), which of two bundles the bidder prefers (or-
der queries), which bundle he ranks kth or what the rank of
a given bundle is (rank queries), which bundle he would pur-
chase given a particular vector of prices (demand queries),
etc.—until (at least) the final allocation can be determined.
Experimentally, this yields drastic savings in preference rev-
elation [11]. Furthermore, if the agents’ valuation functions
are drawn from certain natural subclasses, the elicitation
problem can be solved using only polynomially many queries
even in the worst case [23, 4, 13, 18, 14]. For a review
of preference elicitation in combinatorial auctions, see [17].
Ascending combinatorial auctions are a well-known special
form of preference elicitation, where the elicitor asks demand
queries with increasing prices [15, 21, 1, 9]. Finally, resource

allocation problems have also been studied from a communi-
cation complexity viewpoint, thereby deriving lower bounds
on the required communication. For example, Nisan and Se-
gal show that exponential communication is required even
to obtain a surplus greater than that obtained by auction-
ing off all objects as a single bundle [14]. Segal also studies
social choice rules in general, and shows that for a large
class of social choice rules, supporting budget sets must be
revealed such that if every agent prefers the same outcome
in her budget set, this proves the optimality of that out-
come. Segal then uses this characterization to prove bounds
on the communication required in resource allocation as well
as matching settings [20].

In this paper, we will focus on the communication re-
quirements of a generally applicable subclass of social choice
rules, commonly known as voting rules. In a voting setting,
there is a set of candidate outcomes over which the voters
express their preferences by submitting a vote (typically,
a ranking of the candidates), and the winner (that is, the
chosen outcome) is determined based on these votes. The
communication required by voting rules can be large either
because the number of voters is large (such as, for example,
in national elections), or because the number of candidates
is large (for example, the agents can vote over allocations of
a number of resources), or both. Prior work [8] has studied
elicitation in voting, studying how computationally hard it
is to decide whether a winner can be determined with the in-
formation elicited so far, as well as how hard it is to find the
optimal sequence of queries given perfect suspicions about
the voters’ preferences. In addition, that paper discusses
strategic (game-theoretic) issues introduced by elicitation.

In contrast, in this paper, we are concerned with the
worst-case number of bits that must be communicated to ex-
ecute a given voting rule, when nothing is known in advance
about the voters’ preferences. We determine the communi-
cation complexity of the common voting rules. For each rule,
we first give an upper bound on the (deterministic) commu-
nication complexity by providing a communication protocol
for it and analyzing how many bits need to be transmitted
in this protocol. (Segal’s results [20] do not apply to most
voting rules because most voting rules are not intersection-
monotonic (or even monotonic).1) For many of the voting
rules under study, it turns out that one cannot do better
than simply letting each voter immediately communicate all
her (potentially relevant) information. However, for some
rules (such as plurality with runoff, STV and cup) there is
a straightforward multistage communication protocol that,
with some analysis, can be shown to significantly outperform
the immediate communication of all (potentially relevant)
information. Finally, for some rules (such as the Condorcet
and Bucklin rules), we need to introduce a more complex
communication protocol to achieve the best possible upper

1For two of the rules that we study that are intersection-
monotonic, namely the approval and Condorcet rules, Se-
gal’s results can in fact be used to give alternative proofs
of our lower bounds. We only give direct proofs for these
rules here because 1) these direct proofs are among the eas-
ier ones in this paper, 2) the alternative proofs are nontrivial
even given Segal’s results, and 3) a space constraint applies.
However, we hope to also include the alternative proofs in a
later version.

bound. After obtaining the upper bounds, we show that
they are tight by giving matching lower bounds on (even the
nondeterministic) communication complexity of each voting
rule. There are two exceptions: STV, for which our upper
and lower bounds are apart by a factor logm; and maximin,
for which our best deterministic upper bound is also a factor
logm above the (nondeterministic) lower bound, although
we give a nondeterministic upper bound that matches the
lower bound.

2. REVIEW OF VOTING RULES
In this section, we review the common voting rules that

we study in this paper. A voting rule2 is a function map-
ping a vector of the n voters’ votes (i.e. preferences over
candidates) to one of the m candidates (the winner) in the
candidate set C. In some cases (such as the Condorcet rule),
the rule may also declare that no winner exists. We do not
concern ourselves with what happens in case of a tie be-
tween candidates (our lower bounds hold regardless of how
ties are broken, and the communication protocols used for
our upper bounds do not attempt to break the ties). All of
the rules that we study are rank-based rules, which means
that a vote is defined as an ordering of the candidates (with
the exception of the plurality rule, for which a vote is a sin-
gle candidate, and the approval rule, for which a vote is a
subset of the candidates).

We will consider the following voting rules. (For rules that
define a score, the candidate with the highest score wins.)

• scoring rules. Let ~α = 〈α1, . . . , αm〉 be a vector of
integers such that α1 ≥ α2 . . . ≥ αm. For each voter, a
candidate receives α1 points if it is ranked first by the voter,
α2 if it is ranked second etc. The score s~α of a candidate
is the total number of points the candidate receives. The
Borda rule is the scoring rule with ~α = 〈m−1,m−2, . . . , 0〉.
The plurality rule is the scoring rule with ~α = 〈1, 0, . . . , 0〉.
• single transferable vote (STV). The rule proceeds through

a series of m− 1 rounds. In each round, the candidate with
the lowest plurality score (that is, the least number of voters
ranking it first among the remaining candidates) is elimi-
nated (and each of the votes for that candidate “transfer”
to the next remaining candidate in the order given in that
vote). The winner is the last remaining candidate.

• plurality with run-off. In this rule, a first round elimi-
nates all candidates except the two with the highest plurality
scores. Votes are transferred to these as in the STV rule,
and a second round determines the winner from these two.

• approval. Each voter labels each candidate as either
approved or disapproved. The candidate approved by the
greatest number of voters wins.

• Condorcet. For any two candidates i and j, let N(i, j) be
the number of voters who prefer i to j. If there is a candidate
i that is preferred to any other candidate by a majority of
the voters (that is, N(i, j) > N(j, i) for all j 6= i—that is, i
wins every pairwise election), then candidate i wins.

2The term voting protocol is often used to describe the same
concept, but we seek to draw a sharp distinction between
the rule mapping preferences to outcomes, and the commu-
nication/elicitation protocol used to implement this rule.

• maximin (aka. Simpson). The maximin score of i is
s(i) = minj 6=iN(i, j)—that is, i’s worst performance in a
pairwise election. The candidate with the highest maximin
score wins.

• Copeland. For any two distinct candidates i and j, let
C(i, j) = 1 if N(i, j) > N(j, i), C(i, j) = 1/2 if N(i, j) =
N(j, i) and C(i, j) = 0 if N(i, j) < N(j, i). The Copeland
score of candidate i is s(i) =

∑
j 6=i C(i, j).

• cup (sequential binary comparisons). The cup rule is
defined by a balanced3 binary tree T with one leaf per can-
didate, and an assignment of candidates to leaves (each leaf
gets one candidate). Each non-leaf node is assigned the
winner of the pairwise election of the node’s children; the
candidate assigned to the root wins.

• Bucklin. For any candidate i and integer l, let B(i, l)
be the number of voters that rank candidate i among the
top l candidates. The winner is arg mini(min{l : B(i, l) >
n/2}). That is, if we say that a voter “approves” her top
l candidates, then we repeatedly increase l by 1 until some
candidate is approved by more than half the voters, and this
candidate is the winner.

• ranked pairs. This rule determines an order � on all
the candidates, and the winner is the candidate at the top
of this order. Sort all ordered pairs of candidates (i, j) by
N(i, j), the number of voters who prefer i to j. Starting
with the pair (i, j) with the highest N(i, j), we “lock in”
the result of their pairwise election (i � j). Then, we move
to the next pair, and we lock the result of their pairwise
election. We continue to lock every pairwise result that does
not contradict the ordering � established so far.

We emphasize that these definitions of voting rules do not
concern themselves with how the votes are elicited from the
voters; all the voting rules, including those that are sug-
gestively defined in terms of “rounds”, are in actuality just
functions mapping the vector of all the voters’ votes to a
winner. Nevertheless, there are always many different ways
of eliciting the votes (or the relevant parts thereof) from the
voters. For example, in the plurality with runoff rule, one
way of eliciting the votes is to ask every voter to declare her
entire ordering of the candidates up front. Alternatively, we
can first ask every voter to declare only her most preferred
candidate; then, we will know the two candidates in the
runoff, and we can ask every voter which of these two candi-
dates she prefers. Thus, we distinguish between the voting
rule (the mapping from vectors of votes to outcomes) and the
communication protocol (which determines how the relevant
parts of the votes are actually elicited from the voters). The
goal of this paper is to give efficient communication proto-
cols for the voting rules just defined, and to prove that there
do not exist any more efficient communication protocols.

It is interesting to note that the choice of the communica-
tion protocol may affect the strategic behavior of the voters.
Multistage communication protocols may reveal to the vot-
ers some information about how the other voters are voting
(for example, in the two-stage communication protocol just
given for plurality with runoff, in the second stage voters

3Balanced means that the difference in depth between two
leaves can be at most one.

will know which two candidates have the highest plurality
scores). In general, when the voters receive such informa-
tion, it may give them incentives to vote differently than
they would have in a single-stage communication protocol
in which all voters declare their entire votes simultaneously.
Of course, even the single-stage communication protocol is
not strategy-proof4 for any reasonable voting rule, by the
Gibbard-Satterthwaite theorem [10, 19]. However, this does
not mean that we should not be concerned about adding
even more opportunities for strategic voting. In fact, many
of the communication protocols introduced in this paper do
introduce additional opportunities for strategic voting, but
we do not have the space to discuss this here. (In prior
work [8], we do give an example where an elicitation proto-
col for the approval voting rule introduces strategic voting,
and give principles for designing elicitation protocols that
do not introduce strategic problems.)

Now that we have reviewed voting rules, we move on to a
brief review of communication complexity theory.

3. REVIEW OF SOME COMMUNICATION
COMPLEXITY THEORY

In this section, we review the basic model of a commu-
nication problem and the lower-bounding technique of con-
structing a fooling set. (The basic model of a communication
problem is due to Yao [22]; for an overview see Kushilevitz
and Nisan [12].)

Each player 1 ≤ i ≤ n knows (only) input xi. Together,
they seek to compute f(x1, x2, . . . , xn). In a deterministic
protocol for computing f , in each stage, one of the players
announces (to all other players) a bit of information based
on her own input and the bits announced so far. Even-
tually, the communication terminates and all players know
f(x1, x2, . . . , xn). The goal is to minimize the worst-case
(over all input vectors) number of bits sent. The determin-
istic communication complexity of a problem is the worst-
case number of bits sent in the best (correct) deterministic
protocol for it. In a nondeterministic protocol, the next
bit to be sent can be chosen nondeterministically. For the
purposes of this paper, we will consider a nondeterministic
protocol correct if for every input vector, there is some se-
quence of nondeterministic choices the players can make so
that the players know the value of f when the protocol ter-
minates. The nondeterministic communication complexity
of a problem is the worst-case number of bits sent in the
best (correct) nondeterministic protocol for it.

We are now ready to give the definition of a fooling set.

Definition 1. A fooling set is a set of input vectors
{(x1

1, x
1
2, . . . , x

1
n), (x2

1, x
2
2, . . . , x

2
n), . . . , (xk1 , x

k
2 , . . . , x

k
n) such

that for any i, f(xi1, x
i
2, . . . , x

i
n) = f0 for some constant f0,

but for any i 6= j, there exists some vector (r1, r2, . . . , rn) ∈
{i, j}n such that f(xr11 , x

r2
2 , . . . , x

rn
n) 6= f0. (That is, we can

mix the inputs from the two input vectors to obtain a vector
with a different function value.)

It is known that if a fooling set of size k exists, then log k
is a lower bound on the communication complexity (even
the nondeterministic communication complexity) [12].
4A strategy-proof protocol is one in which it is in the players’
best interest to report their preferences truthfully.

For the purposes of this paper, f is the voting rule that
maps the votes to the winning candidate, and xi is voter
i’s vote (the information that the voting rule would require
from the voter if there were no possibility of multistage
communication—i.e. the most preferred candidate (plural-
ity), the approved candidates (approval), or the ranking of
all the candidates (all other protocols)). However, when we
derive our lower bounds, f will only signify whether a dis-
tinguished candidate a wins. (That is, f is 1 if a wins, and
0 otherwise.) This will strengthen our lower bound results
(because it implies that even finding out whether one given
candidate wins is “hard”).5 Thus, a fooling set in our con-
text is a set of vectors of votes so that a wins (does not win)
with each of them; but for any two different vote vectors in
the set, there is a way of taking some voters’ votes from the
first vector and the others’ votes from the second vector, so
that a does not win (wins).

To simplify the proofs of our lower bounds, we make as-
sumptions such as “the number of voters n is odd” in many
of these proofs. Therefore, technically, we do not prove the
lower bound for (number of candidates, number of voters)
pairs (m,n) that do not satisfy these assumptions (for exam-
ple, if we make the above assumption, then we technically
do not prove the lower bound for any pair (m,n) in which
n is even). Nevertheless, we always prove the lower bound
for a representative set of (m,n) pairs. For example, for ev-
ery one of our lower bounds it is the case that for infinitely
many values of m, there are infinitely many values of n such
that the lower bound is proved for the pair (m,n).

4. RESULTS
We are now ready to present our results. For each voting

rule, we first give a deterministic communication protocol
for determining the winner to establish an upper bound.
Then, we give a lower bound on the nondeterministic com-
munication complexity (even on the complexity of deciding
whether a given candidate wins, which is an easier ques-
tion). The lower bounds match the upper bounds in all but
two cases: the STV rule (upper bound O(n(logm)2); lower
bound Ω(n logm)) and the maximin rule (upper bound
O(nm logm), although we do give a nondeterministic pro-
tocol that is O(nm); lower bound Ω(nm)).

When we discuss a voting rule in which the voters rank the
candidates, we will represent a ranking in which candidate c1
is ranked first, c2 is ranked second, etc. as c1 � c2 � . . . cm.

5One possible concern is that in the case where ties are pos-
sible, it may require much communication to verify whether
a specific candidate a is among the winners, but little com-
munication to produce one of the winners. However, all the
fooling sets we use in the proofs have the property that if
a wins, then a is the unique winner. Therefore, in these
fooling sets, if one knows any one of the winners, then one
knows whether a is a winner. Thus, computing one of the
winners requires at least as much communication as veri-
fying whether a is among the winners. In general, when a
communication problem allows multiple correct answers for
a given vector of inputs, this is known as computing a rela-
tion rather than a function [12]. However, as per the above,
we can restrict our attention to a subset of the domain where
the voting rule truly is a (single-valued) function, and hence
lower bounding techniques for functions rather than rela-
tions will suffice.

Sometimes for the purposes of a proof the internal ranking
of a subset of the candidates does not matter, and in this
case we will not specify it. For example, if S = {c2, c3},
then c1 � S � c4 indicates that either the ranking c1 �
c2 � c3 � c4 or the ranking c1 � c3 � c2 � c4 can be used
for the proof.

We first give a universal upper bound.

Theorem 1. The deterministic communication complex-
ity of any rank-based voting rule is O(nm logm).

Proof. This bound is achieved by simply having every-
one communicate their entire ordering of the candidates (in-
dicating the rank of an individual candidate requires only
O(logm) bits, so each of the n voters can simply indicate
the rank of each of the m candidates).

The next lemma will be useful in a few of our proofs.

Lemma 1. If m divides n, then log(n!)−m log((n/m)!) ≥
n(logm− 1)/2.

Proof. If n/m = 1 (that is, n = m), then this expres-

sion simplifies to log(n!). We have log(n!) =
n∑
i=1

log i ≥
n∫

x=1

log(i)dx, which, using integration by parts, is equal to

n logn− (n− 1) > n(logn− 1) = n(logm− 1) > n(logm−
1)/2. So, we can assume that n/m ≥ 2. We observe that

log(n!) =
n∑
i=1

log i =
n/m−1∑
i=0

m∑
j=1

log(im+j) ≥
n/m−1∑
i=1

m∑
j=1

log(im)

= m
n/m−1∑
i=1

log(im), and that m log((n/m)!) = m
n/m∑
i=1

log(i).

Therefore, log(n!) − m log((n/m)!) ≥ m
n/m−1∑
i=1

log(im) −

m
n/m∑
i=1

log(i) = m((
n/m−1∑
i=1

log(im/i))−log(n/m)) = m((n/m−

1) logm− log n+logm) = n logm−m logn. Now, using the
fact that n/m ≥ 2, we havem logn = n(m/n) logm(n/m) =
n(m/n)(logm + log(n/m)) ≤ n(1/2)(logm + log 2). Thus,
log(n!) − m log((n/m)!) ≥ n logm − m log n ≥ n logm −
n(1/2)(logm+ log 2) = n(logm− 1)/2.

Theorem 2. The deterministic communication complex-
ity of the plurality rule is O(n logm).

Proof. Indicating one of the candidates requires only
O(logm) bits, so each voter can simply indicate her most
preferred candidate.

Theorem 3. The nondeterministic communication com-
plexity of the plurality rule is Ω(n logm) (even to decide
whether a given candidate a wins).

Proof. We will exhibit a fooling set of size n′!
((n
′
m

)!)m
where

n′ = (n−1)/2. Taking the logarithm of this gives log(n′!)−
m log((n′/m)!), so the result follows from Lemma 1. The
fooling set will consist of all vectors of votes satisfying the
following constraints:

• For any 1 ≤ i ≤ n′, voters 2i−1 and 2i vote the same.

• Every candidate receives equally many votes from the
first 2n′ = n− 1 voters.

• The last voter (voter n) votes for a.

Candidate a wins with each one of these vote vectors be-
cause of the extra vote for a from the last voter. Given that
m divides n′, let us see how many vote vectors there are in
the fooling set. We need to distribute n′ voter pairs evenly
over m candidates, for a total of n′/m voter pairs per can-

didate; and there are precisely n′!
((n
′
m

)!)m
ways of doing this.6

All that remains to show is that for any two distinct vectors
of votes in the fooling set, we can let each of the voters vote
according to one of these two vectors in such a way that a
loses. Let i be a number such that the two vote vectors dis-
agree on the candidate for which voters 2i− 1 and 2i vote.
Without loss of generality, suppose that in the first vote
vector, these voters do not vote for a (but for some other
candidate, b, instead). Now, construct a new vote vector by
taking votes 2i − 1 and 2i from the first vote vector, and
the remaining votes from the second vote vector. Then, b
receives 2n′/m+ 2 votes in this newly constructed vote vec-
tor, whereas a receives at most 2n′/m+1 votes. So, a is not
the winner in the newly constructed vote vector, and hence
we have a correct fooling set.

Theorem 4. The deterministic communication complex-
ity of the plurality with runoff rule is O(n logm).

Proof. First, let every voter indicate her most preferred
candidate using logm bits. After this, the two candidates
in the runoff are known, and each voter can indicate which
one she prefers using a single additional bit.

Theorem 5. The nondeterministic communication com-
plexity of the plurality with runoff rule is Ω(n logm) (even
to decide whether a given candidate a wins).

Proof. We will exhibit a fooling set of size n′!
((n
′

m′)!)
m′

where m′ = m/2 and n′ = (n − 2)/4. Taking the loga-
rithm of this gives log(n′!)−m′ log((n′/m′)!), so the result
follows from Lemma 1. Divide the candidates into m′ pairs:
(c1, d1), (c2, d2), . . . , (cm′ , dm′) where c1 = a and d1 = b.
The fooling set will consist of all vectors of votes satisfying
the following constraints:

• For any 1 ≤ i ≤ n′, voters 4i − 3 and 4i − 2 rank
the candidates ck(i) � a � C − {a, ck(i)}, for some
candidate ck(i). (If ck(i) = a then the vote is simply
a � C − {a}.)

• For any 1 ≤ i ≤ n′, voters 4i− 1 and 4i rank the can-
didates dk(i) � a � C − {a, dk(i)} (that is, their most
preferred candidate is the candidate that is paired with
the candidate that the previous two voters vote for).

6An intuitive proof of this is the following. We can count
the number of permutations of n′ elements as follows. First,
divide the elements into m buckets of size n′/m, so that if
x is placed in a lower-indexed bucket than y, then x will
be indexed lower in the eventual permutation. Then, decide
on the permutation within each bucket (for which there are
(n′/m)! choices per bucket). It follows that n′! equals the
number of ways to divide n′ elements into m buckets of size
n′/m, times ((n′/m)!)m.

• Every candidate is ranked at the top of equally many
of the first 4n′ = n− 2 votes.

• Voter 4n′+1 = n−1 ranks the candidates a � C−{a}.

• Voter 4n′ + 2 = n ranks the candidates b � C − {b}.

Candidate a wins with each one of these vote vectors:
because of the last two votes, candidates a and b are one vote
ahead of all the other candidates and continue to the runoff,
and at this point all the votes that had another candidate
ranked at the top transfer to a, so that a wins the runoff.
Given that m′ divides n′, let us see how many vote vectors
there are in the fooling set. We need to distribute n′ groups
of four voters evenly over the m′ pairs of candidates, and

(as in the proof of Theorem 3) there are n′!
((n
′

m′)!)
m′ ways of

doing this. All that remains to show is that for any two
distinct vectors of votes in the fooling set, we can let each
of the voters vote according to one of these two vectors in
such a way that a loses. Let i be a number such that ck(i) is

not the same in both of these two vote vectors, that is, c1k(i)

(ck(i) in the first vote vector) is not equal to c2k(i) (ck(i) in
the second vote vector). Without loss of generality, suppose
c1k(i) 6= a. Now, construct a new vote vector by taking votes
4i − 3, 4i − 2, 4i − 1, 4i from the first vote vector, and the
remaining votes from the second vote vector. In this newly
constructed vote vector, c1k(i) and d1

k(i) each receive 4n′/m+2

votes in the first round, whereas a receives at most 4n′/m+1
votes. So, a does not continue to the runoff in the newly
constructed vote vector, and hence we have a correct fooling
set.

Theorem 6. The nondeterministic communication com-
plexity of the Borda rule is Ω(nm logm) (even to decide
whether a given candidate a wins).

Proof. We will exhibit a fooling set of size (m′!)n
′

where
m′ = m−2 and n′ = (n−2)/4. This will prove the theorem

because m′! is Ω(m logm), so that log((m′!)n
′
) = n′ log(m′!)

is Ω(nm logm). For every vector (π1, π2, . . . , πn′) consisting
of n′ orderings of all candidates other than a and another
fixed candidate b (technically, the orderings take the form of
a one-to-one function πi : {1, 2, . . . ,m′} → C − {a, b} with
πi(j) = c indicating that candidate c is the jth in the order
represented by πi), let the following vector of votes be an
element of the fooling set:

• For 1 ≤ i ≤ n′, let voters 4i − 3 and 4i − 2 rank the
candidates a � b � πi(1) � πi(2) � . . . � πi(m′).

• For 1 ≤ i ≤ n′, let voters 4i − 1 and 4i rank the
candidates πi(m

′) � πi(m′− 1) � . . . � πi(1) � b � a.

• Let voter 4n′ + 1 = n − 1 rank the candidates a �
b � π0(1) � π0(2) � . . . � π0(m′) (where π0 is an
arbitrary order of the candidates other than a and b
which is the same for every element of the fooling set).

• Let voter 4n′ + 2 = n rank the candidates π0(m′) �
π0(m′ − 1) � . . . � π0(1) � a � b.

We observe that this fooling set has size (m′!)n
′
, and that

candidate a wins in each vector of votes in the fooling set (to

see why, we observe that for any 1 ≤ i ≤ n′, votes 4i−3 and
4i − 2 rank the candidates in the exact opposite way from
votes 4i− 1 and 4i, which under the Borda rule means they
cancel out; and the last two votes give one more point to a
than to any other candidate—besides b who gets two fewer
points than a). All that remains to show is that for any two
distinct vectors of votes in the fooling set, we can let each of
the voters vote according to one of these two vectors in such
a way that a loses. Let the first vote vector correspond to
the vector (π1

1 , π
1
2 , . . . , π

1
n′), and let the second vote vector

correspond to the vector (π2
1 , π

2
2 , . . . , π

2
n′). For some i, we

must have π1
i 6= π2

i , so that for some candidate c /∈ {a, b},
(π1
i)−1(c) < (π2

i)−1(c) (that is, c is ranked higher in π1
i than

in π2
i). Now, construct a new vote vector by taking votes

4i−3 and 4i−2 from the first vote vector, and the remaining
votes from the second vote vector. a’s Borda score remains
unchanged. However, because c is ranked higher in π1

i than
in π2

i , c receives at least 2 more points from votes 4i−3 and
4i − 2 in the newly constructed vote vector than it did in
the second vote vector. It follows that c has a higher Borda
score than a in the newly constructed vote vector. So, a is
not the winner in the newly constructed vote vector, and
hence we have a correct fooling set.

Theorem 7. The nondeterministic communication com-
plexity of the Copeland rule is Ω(nm logm) (even to decide
whether a given candidate a wins).

Proof. We will exhibit a fooling set of size (m′!)n
′

where
m′ = (m − 2)/2 and n′ = (n − 2)/2. This will prove the

theorem because m′! is Ω(m logm), so that log((m′!)n
′
) =

n′ log(m′!) is Ω(nm logm). We write the set of candidates
as the following disjoint union: C = {a, b} ∪ L ∪ R where
L = {l1, l2, . . . , lm′} and R = {r1, r2, . . . , rm′}. For every
vector (π1, π2, . . . , πn′) consisting of n′ permutations of the
integers 1 through m′ (πi : {1, 2, . . . ,m′} → {1, 2, . . . ,m′}),
let the following vector of votes be an element of the fooling
set:

• For 1 ≤ i ≤ n′, let voter 2i − 1 rank the candidates
a � b � lπi(1) � rπi(1) � lπi(2) � rπi(2) � . . . �
lπi(m′) � rπi(m′).

• For 1 ≤ i ≤ n′, let voter 2i rank the candidates
rπi(m′) � lπi(m′) � rπi(m′−1) � lπi(m′−1) � . . . �
rπi(1) � lπi(1) � b � a.

• Let voter n− 1 = 2n′ + 1 rank the candidates a � b �
l1 � r1 � l2 � r2 � . . . � lm′ � rm′ .

• Let voter n = 2n′+2 rank the candidates rm′ � lm′ �
rm′−1 � lm′−1 � . . . � r1 � l1 � a � b.

We observe that this fooling set has size (m′!)n
′
, and

that candidate a wins in each vector of votes in the fool-
ing set (every pair of candidates is tied in their pairwise
election, with the exception that a defeats b, so that a wins
the election by half a point). All that remains to show is
that for any two distinct vectors of votes in the fooling
set, we can let each of the voters vote according to one
of these two vectors in such a way that a loses. Let the
first vote vector correspond to the vector (π1

1 , π
1
2 , . . . , π

1
n′),

and let the second vote vector correspond to the vector

(π2
1 , π

2
2 , . . . , π

2
n′). For some i, we must have π1

i 6= π2
i , so that

for some j ∈ {1, 2, . . . ,m′}, we have (π1
i)−1(j) < (π2

i)−1(j).
Now, construct a new vote vector by taking vote 2i−1 from
the first vote vector, and the remaining votes from the sec-
ond vote vector. a’s Copeland score remains unchanged. Let
us consider the score of lj . We first observe that the rank of
lj in vote 2i − 1 in the newly constructed vote vector is at
least 2 higher than it was in the second vote vector, because
(π1
i)−1(j) < (π2

i)−1(j). Let D1(lj) be the set of candidates
in L ∪ R that voter 2i − 1 ranked lower than lj in the first
vote vector (D1(lj) = {c ∈ L ∪ R : lj �1

2i−1 c}), and let
D2(lj) be the set of candidates in L ∪ R that voter 2i − 1
ranked lower than lj in the second vote vector (D2(lj) =
{c ∈ L ∪ R : lj �2

2i−1 c}). Then, it follows that in the
newly constructed vote vector, lj defeats all the candidates
in D1(lj)−D2(lj) in their pairwise elections (because lj re-
ceives an “extra” vote in each one of these pairwise elections
relative to the second vote vector), and loses to all the candi-
dates in D2(lj)−D1(lj) (because lj loses a vote in each one
of these pairwise elections relative to the second vote vec-
tor), and ties with everyone else. But |D1(lj)|−|D2(lj)| ≥ 2,
and hence |D1(lj)−D2(lj)| − |D2(lj)−D1(lj)| ≥ 2. Hence,
in the newly constructed vote vector, lj has at least two
more pairwise wins than pairwise losses, and therefore has
at least 1 more point than if lj had tied all its pairwise elec-
tions. Thus, lj has a higher Copeland score than a in the
newly constructed vote vector. So, a is not the winner in the
newly constructed vote vector, and hence we have a correct
fooling set.

Theorem 8. The nondeterministic communication com-
plexity of the maximin rule is O(nm).

Proof. The nondeterministic protocol will guess which
candidate w is the winner, and, for each other candidate
c, which candidate o(c) is the candidate against whom c
receives its lowest score in a pairwise election. Then, let
every voter communicate the following:

• for each candidate c 6= w, whether she prefers c to w;

• for each candidate c 6= w, whether she prefers c to o(c).

We observe that this requires the communication of 2n(m−
1) bits. If the guesses were correct, then, letting N(d, e) be
the number of voters preferring candidate d to candidate e,
we should have N(c, o(c)) < N(w, c′) for any c 6= w, c′ 6= w,
which will prove that w wins the election.

Theorem 9. The nondeterministic communication com-
plexity of the maximin rule is Ω(nm) (even to decide whether
a given candidate a wins).

Proof. We will exhibit a fooling set of size 2n
′m′ where

m′ = m− 2 and n′ = (n− 1)/4. Let b be a candidate other
than a. For every vector (S1, S2, . . . , Sn′) consisting of n′

subsets Si ⊆ C − {a, b}, let the following vector of votes be
an element of the fooling set:

• For 1 ≤ i ≤ n′, let voters 4i − 3 and 4i − 2 rank the
candidates Si � a � C − (Si ∪ {a, b}) � b.

• For 1 ≤ i ≤ n′, let voters 4i − 1 and 4i rank the
candidates b � C − (Si ∪ {a, b}) � a � Si.

• Let voter 4n′ + 1 = n rank the candidates a � b �
C − {a, b}.

We observe that this fooling set has size (2m
′
)n
′

= 2n
′m′ ,

and that candidate a wins in each vector of votes in the
fooling set (in every one of a’s pairwise elections, a is ranked
higher than its opponent by 2n′+1 = (n+1)/2 > n/2 votes).
All that remains to show is that for any two distinct vectors
of votes in the fooling set, we can let each of the voters vote
according to one of these two vectors in such a way that
a loses. Let the first vote vector correspond to the vector
(S1

1 , S
1
2 , . . . , S

1
n′), and let the second vote vector correspond

to the vector (S2
1 , S

2
2 , . . . , S

2
n′). For some i, we must have

S1
i 6= S2

i , so that either S1
i * S2

i or S2
i * S1

i . Without loss

of generality, suppose S1
i * S2

i , and let c be some candidate

in S1
i − S2

i . Now, construct a new vote vector by taking
votes 4i − 3 and 4i − 2 from the first vote vector, and the
remaining votes from the second vote vector. In this newly
constructed vote vector, a is ranked higher than c by only
2n′−1 voters, for the following reason. Whereas voters 4i−3
and 4i − 2 do not rank c higher than a in the second vote
vector (because c /∈ S2

i), voters 4i − 3 and 4i − 2 do rank
c higher than a in the first vote vector (because c ∈ S1

i).
Moreover, in every one of b’s pairwise elections, b is ranked
higher than its opponent by at least 2n′ voters. So, a has
a lower maximin score than b, therefore a is not the winner
in the newly constructed vote vector, and hence we have a
correct fooling set.

Theorem 10. The deterministic communication complex-
ity of the STV rule is O(n(logm)2).

Proof. Consider the following communication protocol.
Let each voter first announce her most preferred candidate
(O(n logm) communication). In the remaining rounds, we
will keep track of each voter’s most preferred candidate
among the remaining candidates, which will be enough to
implement the rule. When candidate c is eliminated, let
each of the voters whose most preferred candidate among the
remaining candidates was c announce their most preferred
candidate among the candidates remaining after c’s elimina-
tion. If candidate c was the ith candidate to be eliminated
(that is, there were m − i + 1 candidates remaining before
c’s elimination), it follows that at most n/(m− i+ 1) voters
had candidate c as their most preferred candidate among
the remaining candidates, and thus the number of bits to be
communicated after the elimination of the ith candidate is
O((n/(m−i+1)) logm).7 Thus, the total communication in

this communication protocol is O(n logm+
m−1∑
i=1

(n/(m− i+

1)) logm). Of course,
m−1∑
i=1

1/(m− i+ 1) =
m∑
i=2

1/i, which is

O(logm). Substituting into the previous expression, we find
that the communication complexity is O(n(logm)2).

Theorem 11. The nondeterministic communication com-
plexity of the STV rule is Ω(n logm) (even to decide whether
a given candidate a wins).

Proof. We omit this proof because of space constraint.

7Actually, O((n/(m− i+ 1)) log(m− i+ 1)) is also correct,
but it will not improve the bound.

Theorem 12. The deterministic communication complex-
ity of the approval rule is O(nm).

Proof. Approving or disapproving of a candidate requires
only one bit of information, so every voter can simply ap-
prove or disapprove of every candidate for a total commu-
nication of nm bits.

Theorem 13. The nondeterministic communication com-
plexity of the approval rule is Ω(nm) (even to decide whether
a given candidate a wins).

Proof. We will exhibit a fooling set of size 2n
′m′ where

m′ = m− 1 and n′ = (n− 1)/4. For every vector
(S1, S2, . . . , Sn′) consisting of n′ subsets Si ⊆ C − {a}, let
the following vector of votes be an element of the fooling
set:

• For 1 ≤ i ≤ n′, let voters 4i − 3 and 4i − 2 approve
Si ∪ {a}.

• For 1 ≤ i ≤ n′, let voters 4i − 1 and 4i approve C −
(Si ∪ {a}).

• Let voter 4n′ + 1 = n approve {a}.

We observe that this fooling set has size (2m
′
)n
′

= 2n
′m′ ,

and that candidate a wins in each vector of votes in the
fooling set (a is approved by 2n′ + 1 voters, whereas each
other candidate is approved by only 2n′ voters). All that
remains to show is that for any two distinct vectors of votes
in the fooling set, we can let each of the voters vote ac-
cording to one of these two vectors in such a way that a
loses. Let the first vote vector correspond to the vector
(S1

1 , S
1
2 , . . . , S

1
n′), and let the second vote vector correspond

to the vector (S2
1 , S

2
2 , . . . , S

2
n′). For some i, we must have

S1
i 6= S2

i , so that either S1
i * S2

i or S2
i * S1

i . Without loss

of generality, suppose S1
i * S2

i , and let b be some candidate

in S1
i − S2

i . Now, construct a new vote vector by taking
votes 4i − 3 and 4i − 2 from the first vote vector, and the
remaining votes from the second vote vector. In this newly
constructed vote vector, a is still approved by 2n′+ 1 votes.
However, b is approved by 2n′ + 2 votes, for the following
reason. Whereas voters 4i−3 and 4i−2 do not approve b in
the second vote vector (because b /∈ S2

i), voters 4i − 3 and
4i− 2 do approve b in the first vote vector (because b ∈ S1

i).
It follows that b’s score in the newly constructed vote vector
is b’s score in the second vote vector (2n′), plus two. So, a
is not the winner in the newly constructed vote vector, and
hence we have a correct fooling set.

Interestingly, an Ω(m) lower bound can be obtained even
for the problem of finding a candidate that is approved by
more than one voter [20].

Theorem 14. The deterministic communication complex-
ity of the Condorcet rule is O(nm).

Proof. We maintain a set of active candidates S which
is initialized to C. At each stage, we choose two of the active
candidates (say, the two candidates with the lowest indices),
and we let each voter communicate which of the two candi-
dates she prefers. (Such a stage requires the communication
of n bits, one per voter.) The candidate preferred by fewer

voters (the loser of the pairwise election) is removed from
S. (If the pairwise election is tied, both candidates are re-
moved.) After at most m− 1 iterations, only one candidate
is left (or zero candidates are left, in which case there is no
Condorcet winner). Let a be the remaining candidate. To
find out whether candidate a is the Condorcet winner, let
each voter communicate, for every candidate c 6= a, whether
she prefers a to c. (This requires the communication of at
most n(m − 1) bits.) This is enough to establish whether
a won each of its pairwise elections (and thus, whether a is
the Condorcet winner).

Theorem 15. The nondeterministic communication com-
plexity of the Condorcet rule is Ω(nm) (even to decide whether
a given candidate a wins).

Proof. We will exhibit a fooling set of size 2n
′m′ where

m′ = m− 1 and n′ = (n− 1)/2. For every vector
(S1, S2, . . . , Sn′) consisting of n′ subsets Si ⊆ C − {a}, let
the following vector of votes be an element of the fooling
set:

• For 1 ≤ i ≤ n′, let voter 2i − 1 rank the candidates
Si � a � C − Si.
• For 1 ≤ i ≤ n′, let voter 2i rank the candidates C −
Si � a � Si.
• Let voter 2n′+1 = n rank the candidates a � C−{a}.

We observe that this fooling set has size (2m
′
)n
′

= 2n
′m′ ,

and that candidate a wins in each vector of votes in the
fooling set (a wins each of its pairwise elections by a single
vote). All that remains to show is that for any two distinct
vectors of votes in the fooling set, we can let each of the
voters vote according to one of these two vectors in such a
way that a loses. Let the first vote vector correspond to
the vector (S1

1 , S
1
2 , . . . , S

1
n′), and let the second vote vector

correspond to the vector (S2
1 , S

2
2 , . . . , S

2
n′). For some i, we

must have S1
i 6= S2

i , so that either S1
i * S2

i or S2
i * S1

i .

Without loss of generality, suppose S1
i * S2

i , and let b be

some candidate in S1
i − S2

i . Now, construct a new vote
vector by taking vote 2i − 1 from the first vote vector, and
the remaining votes from the second vote vector. In this
newly constructed vote vector, b wins its pairwise election
against a by one vote (vote 2i − 1 ranks b above a in the
newly constructed vote vector because b ∈ S1

i , whereas in
the second vote vector vote 2i− 1 ranked a above b because
b /∈ S2

i). So, a is not the Condorcet winner in the newly
constructed vote vector, and hence we have a correct fooling
set.

Theorem 16. The deterministic communication complex-
ity of the cup rule is O(nm).

Proof. Consider the following simple communication pro-
tocol. First, let all the voters communicate, for every one of
the matchups in the first round, which of its two candidates
they prefer. After this, the matchups for the second round
are known, so let all the voters communicate which candi-
date they prefer in each matchup in the second round–etc.
Because communicating which of two candidates is preferred
requires only one bit per voter, and because there are only
m − 1 matchups in total, this communication protocol re-
quires O(nm) communication.

Theorem 17. The nondeterministic communication com-
plexity of the cup rule is Ω(nm) (even to decide whether a
given candidate a wins).

Proof. We will exhibit a fooling set of size 2n
′m′ where

m′ = (m− 1)/2 and n′ = (n− 7)/2. Given that m+ 1 is a
power of 2, so that one candidate gets a bye (that is, does not
face an opponent) in the first round, let a be the candidate
with the bye. Of the m′ first-round matchups, let lj denote
the one (“left”) candidate in the jth matchup, and let rj be
the other (“right”) candidate. Let L = {lj : 1 ≤ j ≤ m′}
and R = {rj : 1 ≤ j ≤ m′}, so that C = L ∪R ∪ {a}.

.

.
.

.
.

.

. . .
l r l r l r

a

m’1 1 2 2 m’

Figure 1: The schedule for the cup rule used in the
proof of Theorem 17.

For every vector (S1, S2, . . . , Sn′) consisting of n′ subsets
Si ⊆ R, let the following vector of votes be an element of
the fooling set:

• For 1 ≤ i ≤ n′, let voter 2i − 1 rank the candidates
Si � L � a � R− Si.

• For 1 ≤ i ≤ n′, let voter 2i rank the candidates R −
Si � L � a � Si.

• Let voters 2n′+1 = n−6, 2n′+2 = n−5, 2n′+3 = n−4
rank the candidates L � a � R.

• Let voters 2n′ + 4 = n − 3, 2n′ + 5 = n − 2 rank the
candidates a � r1 � l1 � r2 � l2 � . . . � rm′ � lm′ .

• Let voters 2n′+ 6 = n− 1, 2n′+ 7 = n rank the candi-
dates rm′ � lm′ � rm′−1 � lm′−1 � . . . � r1 � l1 � a.

We observe that this fooling set has size (2m
′
)n
′

= 2n
′m′ .

Also, candidate a wins in each vector of votes in the fooling
set, for the following reasons. Each candidate rj defeats its
opponent lj in the first round. (For any 1 ≤ i ≤ n′, the
net effect of votes 2i − 1 and 2i on the pairwise election
between rj and lj is zero; votes n − 6, n − 5, n − 4 prefer
lj to rj , but votes n − 3, n − 2, n − 1, n all prefer rj to lj .)
Moreover, a defeats every rj in their pairwise election. (For
any 1 ≤ i ≤ n′, the net effect of votes 2i − 1 and 2i on the
pairwise election between a and rj is zero; votes n − 1, n
prefer rj to a, but votes n − 6, n − 5, n − 4, n − 3, n − 2 all
prefer a to rj .) It follows that a will defeat all the candidates
that it faces.

All that remains to show is that for any two distinct vec-
tors of votes in the fooling set, we can let each of the voters
vote according to one of these two vectors in such a way that
a loses. Let the first vote vector correspond to the vector

(S1
1 , S

1
2 , . . . , S

1
n′), and let the second vote vector correspond

to the vector (S2
1 , S

2
2 , . . . , S

2
n′). For some i, we must have

S1
i 6= S2

i , so that either S1
i * S2

i or S2
i * S1

i . Without

loss of generality, suppose S1
i * S2

i , and let rj be some can-

didate in S1
i − S2

i . Now, construct a new vote vector by
taking vote 2i from the first vote vector, and the remaining
votes from the second vote vector. We note that, whereas
in the second vote vector vote 2i preferred rj to lj (because
rj ∈ R−S2

i), in the newly constructed vote vector this is no
longer the case (because rj ∈ S1

i). It follows that, whereas
in the second vote vector, rj defeated lj in the first round
by one vote, in the newly constructed vote vector, lj de-
feats rj in the first round. Thus, at least one lj advances
to the second round after defeating its opponent rj . Now,
we observe that in the newly constructed vote vector, any
lk wins its pairwise election against any rq with q 6= k. This
is because among the first 2n′ votes, at least n′− 1 prefer lk
to rq; votes n− 6, n− 5, n− 4 prefer lk to rq; and, because
q 6= k, either votes n − 3, n − 2 prefer lk to rq (if k < q),
or votes n − 1, n prefer lk to rq (if k > q). Thus, at least
n′ + 4 = (n + 1)/2 > n/2 votes prefer lk to rq. Moreover,
any lk wins its pairwise election against a. This is because
only votes n − 3 and n − 2 prefer a to lk. It follows that,
after the first round, any surviving candidate lk can only
lose a matchup against another surviving lk′ , so that one of
the lk must win the election. So, a is not the winner in the
newly constructed vote vector, and hence we have a correct
fooling set.

Theorem 18. The deterministic communication complex-
ity of the Bucklin rule is O(nm).

Proof. Let l be the minimum integer for which there is
a candidate who is ranked among the top l candidates by
more than half the votes. We will do a binary search for l.
At each point, we will have a lower bound lL which is smaller
than l (initialized to 0), and an upper bound lH which is at
least l (initialized to m). While lH − lL > 1, we continue
by finding out whether b(lH − l)/2c is smaller than l, after
which we can update the bounds.

To find out whether a number k is smaller than l, we
determine every voter’s k most preferred candidates. Ev-
ery voter can communicate which candidates are among her
k most preferred candidates using m bits (for each candi-
date, indicate whether the candidate is among the top k or
not), but because the binary search requires logm iterations,
this gives us an upper bound of O((logm)nm), which is not
strong enough. However, if lL < k < lH , and we already
know a voter’s lL most preferred candidates, as well as her lH
most preferred candidates, then the voter no longer needs to
communicate whether the lL most preferred candidates are
among her k most preferred candidates (because they must
be), and she no longer needs to communicate whether the
m− lH least preferred candidates are among her k most pre-
ferred candidates (because they cannot be). Thus the voter
needs to communicate only m− lL− (m− lH) = lH − lL bits
in any given stage. Because each stage, lH − lL is (roughly)
halved, each voter in total communicates only (roughly)
m+m/2 +m/4 + . . . ≤ 2m bits.

Theorem 19. The nondeterministic communication com-
plexity of the Bucklin rule is Ω(nm) (even to decide whether
a given candidate a wins).

Proof. We will exhibit a fooling set of size 2n
′m′ where

m′ = (m−1)/2 and n′ = n/2. We write the set of candidates
as the following disjoint union: C = {a} ∪ L ∪ R where
L = {l1, l2, . . . , lm′} and R = {r1, r2, . . . , rm′}. For any
subset S ⊆ {1, 2, . . . ,m′}, let L(S) = {li : i ∈ S} and let
R(S) = {ri : i ∈ S}. For every vector (S1, S2, . . . , Sn′)
consisting of n′ sets Si ⊆ {1, 2, . . . ,m′}, let the following
vector of votes be an element of the fooling set:

• For 1 ≤ i ≤ n′, let voter 2i − 1 rank the candidates
L(Si) � R−R(Si) � a � L− L(Si) � R(Si).

• For 1 ≤ i ≤ n′, let voter 2i rank the candidates L −
L(Si) � R(Si) � a � L(Si) � R−R(Si).

We observe that this fooling set has size (2m
′
)n
′

= 2n
′m′ ,

and that candidate a wins in each vector of votes in the fool-
ing set, for the following reason. Each candidate in C −{a}
is ranked among the top m′ candidates by exactly half the
voters (which is not enough to win). Thus, we need to look
at the voters’ top m′+1 candidates, and a is ranked m′+1th
by all voters. All that remains to show is that for any two
distinct vectors of votes in the fooling set, we can let each of
the voters vote according to one of these two vectors in such
a way that a loses. Let the first vote vector correspond to
the vector (S1

1 , S
1
2 , . . . , S

1
n′), and let the second vote vector

correspond to the vector (S2
1 , S

2
2 , . . . , S

2
n′). For some i, we

must have S1
i 6= S2

i , so that either S1
i * S2

i or S2
i * S1

i .

Without loss of generality, suppose S1
i * S2

i , and let j be

some integer in S1
i − S2

i . Now, construct a new vote vector
by taking vote 2i − 1 from the first vote vector, and the
remaining votes from the second vote vector. In this newly
constructed vote vector, a is still ranked m′ + 1th by all
votes. However, lj is ranked among the top m′ candidates
by n′ + 1 = n/2 + 1 votes. This is because whereas vote
2i− 1 does not rank lj among the top m′ candidates in the
second vote vector (because j /∈ S2

i , we have lj /∈ L(S2
i)),

vote 2i− 1 does rank lj among the top m′ candidates in the
first vote vector (because j ∈ S1

i , we have lj ∈ L(S1
i)). So, a

is not the winner in the newly constructed vote vector, and
hence we have a correct fooling set.

Theorem 20. The nondeterministic communication com-
plexity of the ranked pairs rule is Ω(nm logm) (even to de-
cide whether a given candidate a wins).

Proof. We omit this proof because of space constraint.

5. DISCUSSION
One key obstacle to using voting for preference aggrega-

tion is the communication burden that an election places
on the voters. By lowering this burden, it may become fea-
sible to conduct more elections over more issues. In the
limit, this could lead to a shift from representational gov-
ernment to a system in which most issues are decided by
referenda—a veritable e-democracy. In this paper, we ana-
lyzed the communication complexity of the common voting
rules. Knowing which voting rules require little communi-
cation is especially important when the issue to be voted
on is of low enough importance that the following is true:
the parties involved are willing to accept a rule that tends

to produce outcomes that are slightly less representative of
the voters’ preferences, if this rule reduces the communica-
tion burden on the voters significantly. The following table
summarizes the results we obtained.

Rule Lower bound Upper bound
plurality Ω(n logm) O(n logm)
plurality w/ runoff Ω(n logm) O(n logm)
STV Ω(n logm) O(n(logm)2)
Condorcet Ω(nm) O(nm)
approval Ω(nm) O(nm)
Bucklin Ω(nm) O(nm)
cup Ω(nm) O(nm)
maximin Ω(nm) O(nm)
Borda Ω(nm logm) O(nm logm)
Copeland Ω(nm logm) O(nm logm)
ranked pairs Ω(nm logm) O(nm logm)

Communication complexity of voting rules, sorted from low
to high. All of the upper bounds are deterministic (with
the exception of maximin, for which the best deterministic
upper bound we proved is O(nm logm)). All of the lower
bounds hold even for nondeterministic communication and
even just for determining whether a given candidate a is
the winner.

One area of future research is to study what happens when
we restrict our attention to communication protocols that
do not reveal any strategically useful information. This re-
striction may invalidate some of the upper bounds that we
derived using multistage communication protocols. Also, all
of our bounds are worst-case bounds. It may be possible to
outperform these bounds when the distribution of votes has
additional structure.

When deciding which voting rule to use for an election,
there are many considerations to take into account. The
voting rules that we studied in this paper are the most com-
mon ones that have survived the test of time. One way to
select among these rules is to consider recent results on com-
plexity. The table above shows that from a communication
complexity perspective, plurality, plurality with runoff, and
STV are preferable. However, plurality has the undesirable
property that it is computationally easy to manipulate by
voting strategically [3, 7]. Plurality with runoff is NP-hard
to manipulate by a coalition of weighted voters, or by an
individual that faces correlated uncertainty about the oth-
ers’ votes [7, 6]. STV is NP-hard to manipulate in those
settings as well [7], but also by an individual with perfect
knowledge of the others’ votes (when the number of can-
didates is unbounded) [2]. Therefore, STV is more robust,
although it may require slightly more worst-case communi-
cation as per the table above. Yet other selection criteria
are the computational complexity of determining whether
enough information has been elicited to declare a winner,
and that of determining the optimal sequence of queries [8].

6. REFERENCES
[1] Lawrence Ausubel and Paul Milgrom. Ascending auctions

with package bidding. Frontiers of Theoretical Economics,
1, 2002. No. 1, Article 1.

[2] John Bartholdi, III and James Orlin. Single transferable
vote resists strategic voting. Social Choice and Welfare,
8(4):341–354, 1991.

[3] John Bartholdi, III, Craig Tovey, and Michael Trick. The
computational difficulty of manipulating an election. Social
Choice and Welfare, 6(3):227–241, 1989.

[4] Avrim Blum, Jeffrey Jackson, Tuomas Sandholm, and
Martin Zinkevich. Preference elicitation and query learning.
Journal of Machine Learning Research, 5:649–667, 2004.

[5] Wolfram Conen and Tuomas Sandholm. Preference
elicitation in combinatorial auctions: Extended abstract. In
Proceedings of the ACM Conference on Electronic
Commerce (ACM-EC), pages 256–259, 2001.

[6] Vincent Conitzer, Jerome Lang, and Tuomas Sandholm.
How many candidates are needed to make elections hard to
manipulate? In Theoretical Aspects of Rationality and
Knowledge (TARK), pages 201–214, 2003.

[7] Vincent Conitzer and Tuomas Sandholm. Complexity of
manipulating elections with few candidates. In Proceedings
of the National Conference on Artificial Intelligence
(AAAI), pages 314–319, 2002.

[8] Vincent Conitzer and Tuomas Sandholm. Vote elicitation:
Complexity and strategy-proofness. In Proceedings of the
National Conference on Artificial Intelligence (AAAI),
pages 392–397, 2002.

[9] Sven de Vries, James Schummer, and Rakesh V. Vohra. On
ascending auctions for heterogeneous objects, 2003. Draft.

[10] Allan Gibbard. Manipulation of voting schemes.
Econometrica, 41:587–602, 1973.

[11] Benoit Hudson and Tuomas Sandholm. Effectiveness of
query types and policies for preference elicitation in
combinatorial auctions. In International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 386–393, 2004.

[12] E Kushilevitz and N Nisan. Communication Complexity.
Cambridge University Press, 1997.

[13] Sebastién Lahaie and David Parkes. Applying learning
algorithms to preference elicitation. In Proceedings of the
ACM Conference on Electronic Commerce, 2004.

[14] Noam Nisan and Ilya Segal. The communication
requirements of efficient allocations and supporting prices.
Journal of Economic Theory, 2005. Forthcoming.

[15] David Parkes. iBundle: An efficient ascending price bundle
auction. In Proceedings of the ACM Conference on
Electronic Commerce (ACM-EC), pages 148–157, 1999.

[16] Tuomas Sandholm. An implementation of the contract net
protocol based on marginal cost calculations. In
Proceedings of the National Conference on Artificial
Intelligence (AAAI), pages 256–262, 1993.

[17] Tuomas Sandholm and Craig Boutilier. Preference
elicitation in combinatorial auctions. In Peter Cramton,
Yoav Shoham, and Richard Steinberg, editors,
Combinatorial Auctions, chapter 10. MIT Press, 2005.

[18] Paolo Santi, Vincent Conitzer, and Tuomas Sandholm.
Towards a characterization of polynomial preference
elicitation with value queries in combinatorial auctions. In
Conference on Learning Theory (COLT), pages 1–16, 2004.

[19] Mark Satterthwaite. Strategy-proofness and Arrow’s
conditions: existence and correspondence theorems for
voting procedures and social welfare functions. Journal of
Economic Theory, 10:187–217, 1975.

[20] Ilya Segal. The communication requirements of social choice
rules and supporting budget sets, 2004. Draft. Presented at
the DIMACS Workshop on Computational Issues in
Auction Design, Rutgers University, New Jersey, USA.

[21] Peter Wurman and Michael Wellman. AkBA: A
progressive, anonymous-price combinatorial auction. In
Proceedings of the ACM Conference on Electronic
Commerce (ACM-EC), pages 21–29, 2000.

[22] A. C. Yao. Some complexity questions related to distributed
computing. In Proceedings of the 11th ACM symposium on
theory of computing (STOC), pages 209–213, 1979.

[23] Martin Zinkevich, Avrim Blum, and Tuomas Sandholm. On
polynomial-time preference elicitation with value queries.
In Proceedings of the ACM Conference on Electronic
Commerce (ACM-EC), pages 176–185, 2003.

