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Voting over alternatives

> >
voting rule 

(mechanism) 
determines winnerdetermines winner 

based on votes

> >> >

• Can vote over other things too
– Where to go for dinner tonight, other joint plans, …g g , j p ,



Voting (rank aggregation)
• Set of m candidates (aka. alternatives, outcomes)
• n voters; each voter ranks all the candidates

– E.g., for set of candidates {a, b, c, d}, one possible vote is b > a > d > c
– Submitted ranking is called a vote

• A voting rule takes as input a vector of votes (submitted by theA voting rule takes as input a vector of votes (submitted by the 
voters), and as output produces either:
– the winning candidate, or

an aggregate ranking of all candidates– an aggregate ranking of all candidates

• Can vote over just about anything
– political representatives, award nominees, where to go for dinner p p g

tonight, joint plans, allocations of tasks/resources, …
– Also can consider other applications: e.g., aggregating search engines’ 

rankings into a single rankingg g g



Example voting rules
• Scoring rules are defined by a vector (a1, a2, …, am); being 

ranked ith in a vote gives the candidate ai points
Plurality is defined by (1 0 0 0) (winner is candidate that is– Plurality is defined by (1, 0, 0, …, 0) (winner is candidate that is 
ranked first most often)

– Veto (or anti-plurality) is defined by (1, 1, …, 1, 0) (winner is candidate 
that is ranked last the least often)that is ranked last the least often)

– Borda is defined by (m-1, m-2, …, 0)

• Plurality with (2-candidate) runoff: top two candidates in 
terms of plurality score proceed to runoff; whichever is 
ranked higher than the other by more voters, wins

• Single Transferable Vote (STV aka Instant Runoff):• Single Transferable Vote (STV, aka. Instant Runoff): 
candidate with lowest plurality score drops out; if you voted 
for that candidate, your vote transfers to the next (live) 
candidate on your list; repeat until one candidate remains

• Similar runoffs can be defined for rules other than plurality



Pairwise elections

> >
>

two votes prefer Obama to McCain

> >

two votes prefer Obama to Nader

> >

>

> >

>

two votes prefer Nader to McCain

> >> >
> >



Condorcet cycles

> >
>

two votes prefer McCain to Obama

> >
two votes prefer Obama to Nader

> >

>

> >

>

two votes prefer Nader to McCain

> > ?> > ?
“weird” preferences



Voting rules based on pairwise elections
• Copeland: candidate gets two points for each pairwise 

election it wins, one point for each pairwise election it ties
M i i ( k Si ) did t h t i i• Maximin (aka. Simpson): candidate whose worst pairwise 
result is the best wins

• Slater: create an overall ranking of the candidates that isSlater: create an overall ranking of the candidates that is 
inconsistent with as few pairwise elections as possible
– NP-hard!

C / i i li i ti i did t l f i i• Cup/pairwise elimination: pair candidates, losers of pairwise 
elections drop out, repeat

• Ranked pairs (Tideman): look for largest pairwise defeat, lockRanked pairs (Tideman): look for largest pairwise defeat, lock 
in that pairwise comparison, then the next-largest one, etc., 
unless it creates a cycle



Even more voting rules…
K t ll ki f th did t th t h• Kemeny: create an overall ranking of the candidates that has 
as few disagreements as possible (where a disagreement is 
with a vote on a pair of candidates)p )
– NP-hard!

• Bucklin: start with k=1 and increase k gradually until some 
candidate is among the top k candidates in more than halfcandidate is among the top k candidates in more than half 
the votes; that candidate wins

• Approval (not a ranking-based rule): every voter labels each pp ( g ) y
candidate as approved or disapproved, candidate with the 
most approvals wins



Condorcet criterion
• A candidate is the Condorcet winner if it wins all of its 

pairwise elections
• Does not always exist• Does not always exist…
• … but the Condorcet criterion says that if it does exist, it 

should win

• Many rules do not satisfy this
• E.g. for plurality:

– b > a > c > d
– c > a > b > dc > a > b > d
– d > a > b > c

• a is the Condorcet winner, but it does not win under plurality



One more voting rule…

• Dodgson: candidate wins that can be made 
Condorcet winner with fewest swaps of adjacent j
alternatives in votes
– NP-hard!



Choosing a rule…
• How do we choose a rule from all of these rules?

Th. 11:35 Social Choice

• How do we know that there does not exist another, “perfect” 
rule?

• Axiomatic approach
• E.g., Kemeny is the unique rule satisfying Condorcet and consistency 

properties [Young & Levenglick 1978]

• Maximum likelihood approach
• View votes as perturbations of “correct” ranking, try to estimate 

correct rankingcorrect ranking
• Kemeny is the MLE under one natural model [Young 1995], but other 

noise models lead to other rules [Drissi & Truchon 2002, Conitzer & 
Sandholm 2005 Truchon 2008 Conitzer et al 2009 Xia et al 2010]Sandholm 2005, Truchon 2008, Conitzer et al. 2009, Xia et al. 2010]

• Distance rationalizability
• Look for a closeby consensus profile (e.g., Condorcet consistent) and 

choose its winner
• See Elkind, Faliszewski, Slinko COMSOC 2010 talk
• Also Baigent 1987, Meskanen and Nurmi 2008, …



Majority criterion
• If a candidate is ranked first by a majority (> ½) of 

the votes, that candidate should win
– Relationship to Condorcet criterion?

S f• Some rules do not even satisfy this
• E.g. Borda:

– a > b > c > d > e
– a > b > c > d > e

c > b > d > e > a– c > b > d > e > a
• a is the majority winner, but it does not win under 

BordaBorda



Monotonicity criteria
I f ll t i it th t “ ki did t• Informally, monotonicity means that “ranking a candidate 
higher should help that candidate,” but there are multiple 
nonequivalent definitionsq

• A weak monotonicity requirement: if 
– candidate w wins for the current votes, 

th i th iti f i f th t d l– we then improve the position of w in some of the votes and leave 
everything else the same,

then w should still win.
• E.g., STV does not satisfy this:

– 7 votes b > c > a
7 votes a > b > c– 7 votes a > b > c

– 6 votes c > a > b

• c drops out first, its votes transfer to a, a wins
• But if 2 votes b > c > a change to a > b > c, b drops out first, 

its 5 votes transfer to c, and c wins



Monotonicity criteria…
A t t i it i t if• A strong monotonicity requirement: if 
– candidate w wins for the current votes, 
– we then change the votes in such a way that for each vote, if a g y ,

candidate c was ranked below w originally, c is still ranked below w in 
the new vote

then w should still win.then w should still win.
• Note the other candidates can jump around in the vote, as 

long as they don’t jump ahead of w
• None of our rules satisfy this



Independence of irrelevant alternatives

• Independence of irrelevant alternatives criterion: if
– the rule ranks a above b for the current votes,
– we then change the votes but do not change which is 

ahead between a and b in each vote
then a should still be ranked ahead of b.

• None of our rules satisfy this



Arrow’s impossibility theorem [1951]

• Suppose there are at least 3 candidates
• Then there exists no rule that is 

simultaneously:
– Pareto efficient (if all votes rank a above b, then 

the rule ranks a above b),
– nondictatorial (there does not exist a voter such 

that the rule simply always copies that voter’s 
ki ) dranking), and

– independent of irrelevant alternatives



Muller-Satterthwaite impossibility theorem 
[1977][ 9 ]

• Suppose there are at least 3 candidates
• Then there exists no rule that simultaneously:

– satisfies unanimity (if all votes rank a first, then a 
should win),

– is nondictatorial (there does not exist a voter such 
that the rule simply always selects that voter’s first 
candidate as the winner), and
i (i h )– is monotone (in the strong sense).



Gibbard-Satterthwaite impossibility theorem

• Suppose there are at least 3 candidates
• There exists no rule that is simultaneously:

– onto (for every candidate, there are some votes 
that would make that candidate win),

– nondictatorial (there does not exist a voter such 
that the rule simply always selects that voter’s first 
candidate as the winner), and

i l bl– nonmanipulable



Hard-to-Hard to
compute rulescompute rules

Tu. 10:10 Winner Determination in 
Voting and Tournament Solutions



Kemeny & Slater
• Closely related

• Kemeny:
• NP-hard [Bartholdi, Tovey, Trick 1989]

• Even with only 4 voters [Dwork et al. 2001]
• Exact complexity of Kemeny winner determination: complete 

for Θ 2^p [Hemaspaandra Spakowski Vogel 2005]for Θ_2 p [Hemaspaandra, Spakowski, Vogel 2005]

• Slater:Slater:
• NP-hard, even if there are no pairwise ties [Ailon et 

al. 2005, Alon 2006, Conitzer 2006, Charbit et al. 2007]



Pairwise election graphs
P i i l ti b t d b h• Pairwise election between a and b: compare how 
often a is ranked above b vs. how often b is 
ranked above aranked above a

• Graph representation: edge from winner to loser 
(no edge if tie), weight = margin of victory

• E.g., for votes a > b > c > d, c > a > d > b this 
gives

a ba b2
2

d c
2

2
d c



Kemeny on pairwise election graphs
Fi l ki li t t h• Final ranking = acyclic tournament graph
– Edge (a, b) means a ranked above b
– Acyclic = no cycles, tournament = edge between every y y , g y

pair
• Kemeny ranking seeks to minimize the total weight

of the inverted edgesof the inverted edges

2

pairwise election graph Kemeny ranking

b
2

a b2

2 42

a b
2

d c

2
10

4

d c
2

d c4 d c
(b > d > c > a)



Slater on pairwise election graphs
Fi l ki li h• Final ranking = acyclic tournament graph

• Slater ranking seeks to minimize the number
f i t d dof inverted edges

pairwise election graph Slater ranking

a b a b
p g p

a

d c d c
(a > b > d > c)



An integer program for computing 
Kemeny/Slater rankingsKemeny/Slater rankings

y(a b) is 1 if a is ranked below b, 0 otherwisey(a, b) 

w(a, b) is the weight on edge (a, b) (if it exists)
in the case of Slater weights are always 1in the case of Slater, weights are always 1

minimize: ΣeE we ye

subject to: j
for all a, b  V, y(a, b) + y(b, a) = 1
for all a, b, c  V, y(a b) + y(b c) + y(c a) ≥ 1, , , y(a, b) y(b, c) y(c, a) 



Preprocessing trick for Slater
• Set S of similar alternatives: against any g y

alternative x outside of the set, all alternatives 
in S have the same result against x

a b

d c
• There exists a Slater ranking where all 

alternatives in S are adjacent
• A nontrivial set of similar alternatives can be 

found in polynomial time (if one exists)



Preprocessing trick for Slater…
bl t f i il bsolve set of similar 

alternatives 
recursively

a b d
y

d cd c a b>dsolve remainder 
(now with 

c

(
weighted nodes)

c
a > b > d > c



A few recent references for 
computing Kemeny / Slater rankingscomputing Kemeny / Slater rankings

• Betzler et al. COMSOC 2010
• Betzler et al.  How similarity helps to efficiently 
compute Kemeny rankings.  AAMAS’09

Conitzer Computing Slater rankings using similarities• Conitzer.  Computing Slater rankings using similarities 
among candidates.  AAAI’06
• Conitzer et al Improved bounds for computingConitzer et al.  Improved bounds for computing 
Kemeny rankings.  AAAI’06
• Davenport and Kalagnanam.  A computational study of p g p y
the Kemeny rule for preference aggregation.  AAAI’04
• Meila et al.  Consensus ranking under the exponential 

d l UAI’07model.  UAI’07



Dodgson
• Recall Dodgson’s rule: candidate wins that requires 

fewest swaps of adjacent candidates in votes to 
b C d t ibecome Condorcet winner 

• NP-hard to compute an alternative’s Dodgson score 
[Bartholdi Tovey Trick 1989][Bartholdi, Tovey, Trick 1989]
• Exact complexity of winner determination: complete for 
Θ_2^p [Hemaspaandra, Hemaspaandra, Rothe 1997]

• Several papers on approximating Dodgson scores
[Caragiannis et al. 2009, Caragiannis et al. 2010]

• Interesting point: if we use an approximation it’s a• Interesting point: if we use an approximation, it s a 
different rule!  What are its properties?  Maybe we can 
even get better properties?

Th. 14:55 Approximation of Voting Rules 



ComputationalComputational 
hardness as ahardness as a 

barrier tobarrier to 
manipulationmanipulation



Manipulability Th. 14:05 Strategic Voting

• Sometimes, a voter is better off revealing her preferences 
insincerely, aka. manipulating

• E.g., plurality
– Suppose a voter prefers a > b > c
– Also suppose she knows that the other votes areAlso suppose she knows that the other votes are

• 2 times b > c > a
• 2 times c > a > b

– Voting truthfully will lead to a tie between b and c– Voting truthfully will lead to a tie between b and c
– She would be better off voting e.g. b > a > c, guaranteeing b wins

• All our rules are (sometimes) manipulable



Inevitability of manipulability
Id ll h i t t f b t• Ideally, our mechanisms are strategy-proof, but may 
be too much to ask for

• Gibbard-Satterthwaite theorem:• Gibbard-Satterthwaite theorem:
Suppose there are at least 3 alternatives
There exists no rule that is simultaneously:There exists no rule that is simultaneously:
– onto (for every alternative, there are some votes that would 

make that alternative win),
di t t i l d– nondictatorial, and

– strategy-proof
• Typically don’t want a rule that is dictatorial or not onto• Typically don t want a rule that is dictatorial or not onto
• With restricted preferences (e.g., single-peaked preferences), 

we may still be able to get strategy-proofness
• Also if payments are possible and preferences are quasilinear

W. 17:00 Mechanism Design with 
Payments

Th. 16:00 Mechanism Design in 
Social Choice



Single-peaked preferences
W  10 10 P ibl  Wi  d Si l P k d El t t  

• Suppose candidates are ordered on a line

W. 10:10 Possible Winners and Single-Peaked Electorates 

• Every voter prefers candidates that are closer to 
her most preferred candidate
L t t t l h t f d• Let every voter report only her most preferred 
candidate (“peak”)

• Choose the median voter’s peak as the winner• Choose the median voter s peak as the winner
– This will also be the Condorcet winner

• Nonmanipulable! Impossibility results do not necessarily hold• Nonmanipulable! Impossibility results do not necessarily hold 
when the space of preferences is restricted

a1 a2 a3 a4 a5

v1v2 v3v4

v5



Computational hardness as a 
barrier to manip lationbarrier to manipulation

Tu. 11:35 Computing Strategic Manipulations

• A (successful) manipulation is a way of misreporting 
one’s preferences that leads to a better result for p
oneself

• Gibbard-Satterthwaite only tells us that for some 
instances, successful manipulations exist

• It does not say that these manipulations are always 
easy to find

• Do voting rules exist for which manipulations are 
t ti ll h d t fi d?computationally hard to find?



A formal computational problem 
• The simplest version of the manipulation problem:
• CONSTRUCTIVE-MANIPULATION:

We are given a voting rule r the (unweighted) votes of the– We are given a voting rule r,  the (unweighted) votes of the 
other voters, and an alternative p. 

– We are asked if we can cast our (single) vote to make p
iwin.

• E.g., for the Borda rule:
– Voter 1 votes A > B > CVoter 1 votes A  B  C
– Voter 2 votes B > A > C
– Voter 3 votes C > A > B

• Borda scores are now: A: 4, B: 3, C: 2
• Can we make B win?
• Answer: YES Vote B > C > A (Borda scores: A: 4 B: 5 C: 3)• Answer: YES. Vote B > C > A (Borda scores: A: 4, B: 5, C: 3)



Early research
Th CONSTRUCTIVE MANIPULATION• Theorem. CONSTRUCTIVE-MANIPULATION 
is NP-complete for the second-order 
Copeland rule. [Bartholdi, Tovey, Trick 1989]
– Second order Copeland = alternative’s score is 

sum of Copeland scores of alternatives it defeats

• Theorem. CONSTRUCTIVE-MANIPULATION 
is NP-complete for the STV rule. [Bartholdiis NP complete for the STV rule. [Bartholdi, 
Orlin 1991]

• Most other rules are easy to manipulate (in P)



Ranked pairs rule [Tideman 1987]
• Order pairwise elections by decreasing 

strength of victory
• Successively “lock in” results of pairwise 

elections unless it causes a cycle

a b6

12
8

10
412 Final ranking: 

c>a>b>d

d c2

• Theorem. CONSTRUCTIVE-MANIPULATIONTheorem. CONSTRUCTIVE MANIPULATION 
is NP-complete for the ranked pairs rule [Xia 
et al. IJCAI 2009]



“Tweaking” voting rules

• It would be nice to be able to tweak rules:
– Change the rule slightly so that

• Hardness of manipulation is increased (significantly)
M f th i i l l ’ ti till h ld• Many of the original rule’s properties still hold

• It would also be nice to have a single, 
universal tweak for all (or many) rulesuniversal tweak for all (or many) rules

• One such tweak: add a preround [Conitzer & Sandholm 
IJCAI 03]IJCAI 03]



Adding a preround 
[C it & S dh l IJCAI 03][Conitzer & Sandholm IJCAI-03]

A d d f ll• A preround proceeds as follows:
– Pair the alternatives
– Each alternative faces its opponent in a pairwise 

election
Th i d h i i l l– The winners proceed to the original rule

• Makes many rules hard to manipulate



Preround example (with Borda)
Voter 1: A>B>C>D>E>F
Voter 2: D>E>F>A>B>C

Match A with B
Match C with F

STEP 1:
A. Collect votes and 
B M t h lt ti Voter 3: F>D>B>E>C>A

A vs B: A ranked higher by 1,2

Match D with EB. Match alternatives 
(no order required)

g y ,
C vs F: F ranked higher by 2,3
D vs E: D ranked higher by all

STEP 2:
Determine winners of 

preround

Voter 1: A>D>F
Voter 2: D>F>A

STEP 3:
Infer votes on remaining 

lt ti

A gets 2 points

Voter 3: F>D>Aalternatives

STEP 4:
E i i l l F gets 3 points

D gets 4 points and wins!
Execute original rule 

(Borda)



Matching first, or vote 
collection first?collection first?

• Match, then collect,
“A vs C,
B vs D.”

“A vs C,
B vs D.”

“D > C > B > A”

• Collect, then match (randomly)

“A vs C,

, ( y)

B vs D.”
“A > C > D > B”



Could also interleave…
• Elicitor alternates between: 

– (Randomly) announcing part of the matching( y) g p g
– Eliciting part of each voter’s vote

“A vs F” “B E”A vs F
“C > D” “B vs E”

“A > E”

…

“A vs F”“A vs F”

…



How hard is manipulation 
h d i dd d?when a preround is added?

• Manipulation hardness differs depending on the p p g
order/interleaving of preround matching and vote 
collection:

NP h d if d hi i d fi• Theorem. NP-hard if preround matching is done first
• Theorem. #P-hard if vote collection is done first

Th PSPACE h d if th t i t l d (f• Theorem. PSPACE-hard if the two are interleaved (for 
a complicated interleaving protocol)

• In each case the tweak introduces the hardness for• In each case, the tweak introduces the hardness for 
any rule satisfying certain sufficient conditions
– All of Plurality, Borda, Maximin, STV satisfy the conditions 

in all cases, so they are hard to manipulate with the 
preround



What if there are few 
lt tialternatives? [Conitzer et al. JACM 2007]

• The previous results rely on the number of 
alternatives (m) being unbounded

• There is a recursive algorithm for manipulating STV 
with O(1 62m) calls (and usually much fewer)with O(1.62m) calls (and usually much fewer)

• E.g., 20 alternatives: 1.6220 = 15500

• Sometimes the alternative space is much larger
– Voting over allocations of goods/tasksVoting over allocations of goods/tasks
– California governor elections

• But what if it is not?
– A typical election for a representative will only have a few



STV manipulation algorithm
[Conitzer et al. JACM 2007]

Id i l t l ti d i ti f th• Idea: simulate election under various actions for the 
manipulator

nobody eliminated yet

rescue d don’t rescue d

d eliminatedli i d d eliminatedc eliminated
no choice for 
manipulator rescue a don’t rescue a

b eliminated

no choice for 
manipulator no choice for 

i l t

b eliminated a eliminated
manipulator

d eliminated

manipulator
rescue c

don’t rescue c

…

rescue a don’t rescue a

… …

… …



Analysis of algorithm
• Let T(m) be the maximum number of recursive calls ( )

to the algorithm (nodes in the tree) for m
alternatives 
L t T’( ) b th i b f i• Let T’(m) be the maximum number of recursive 
calls to the algorithm (nodes in the tree) for m
alternatives given that the manipulator’s vote isalternatives given that the manipulator s vote is 
currently committed

• T(m) ≤ 1 + T(m-1) + T’(m-1)
• T’(m) ≤ 1 + T(m-1)
• Combining the two: T(m) ≤ 2 + T(m-1) + T(m-2)
• The solution is O(((1+√5)/2)m)
• Note this is only worst-case; in practice manipulator 

b bl ’t k diff i t dprobably won’t make a difference in most rounds
– Walsh [ECAI 2010] shows an optimized version of this 

algorithm is highly effective in experiments (simulation)



Manipulation complexity 
with few alternativeswith few alternatives

• Ideally, would like hardness results for constant number of 
alternatives

• But then manipulator can simply evaluate each possible vote
– assuming the others’ votes are known & executing rule is in P

• Even for coalitions of manipulators there are only polynomiallyEven for coalitions of manipulators, there are only polynomially 
many effectively different vote profiles (if rule is anonymous)

• However, if we place weights on votes, complexity may 
returnreturn…

Unweighted Weighted

Constant #alternativesUnbounded #alternatives

Unweighted Weighted
voters voters

Individual
manipulation 

Can be
hard easy easyCan be

hard

voters voters

Coalitional
manipulation easyCan be

hard
Can be

hard
Potentially

hard



Constructive manipulation 
now becomes:now becomes:

• We are given the weighted votes of the others (with 
the weights)the weights)

• And we are given the weights of members of our 
coalition

• Can we make our preferred alternative p win?
• E.g., another Borda example:
• Voter 1 (weight 4): A>B>C, voter 2 (weight 7): B>A>C
• Manipulators: one with weight 4, one with weight 9
• Can we make C win?
• Yes! Solution: weight 4 voter votes C>B>A, weight 9 

t t C>A>Bvoter votes C>A>B
– Borda scores: A: 24, B: 22, C: 26 



A simple example of hardness
• We want: given the other voters’ votes…
• it is NP hard to find votes for the manipulators to• … it is NP-hard to find votes for the manipulators to 

achieve their objective
• Simple example: veto rule, constructiveSimple example: veto rule, constructive 

manipulation, 3 alternatives
• Suppose, from the given votes, p has received 2K-1 

more vetoes than a, and 2K-1 more than b
• The manipulators’ combined weight is 4K

i l t h i ht th t i lti l f 2– every manipulator has a weight that is a multiple of 2
• The only way for p to win is if the manipulators veto 

a with 2K weight and b with 2K weighta with 2K weight, and b with 2K weight
• But this is doing PARTITION => NP-hard!



What does it mean for a rule to 
be easy to manipulate?be easy to manipulate?

• Given the other voters’ votes…
• …there is a polynomial-time algorithm to find votes for the 

manipulators to achieve their objective
• If the rule is computationally easy to run, then it is easy toIf the rule is computationally easy to run, then it is easy to 

check whether a given vector of votes for the manipulators is 
successful

• Lemma: Suppose the rule satisfies (for some number of• Lemma: Suppose the rule satisfies (for some number of 
alternatives):
– If there is a successful manipulation…

th th i f l i l ti h ll i l t t– … then there is a successful manipulation where all manipulators vote 
identically.

• Then the rule is easy to manipulate (for that number of alternatives)
Si l h k ll ibl d i f th lt ti ( t t)– Simply check all possible orderings of the alternatives (constant)



Example: Maximin with 3 alternatives 
is easy to manipulate constructivelyis easy to manipulate constructively

• Recall: alternative’s Maximin score = worst score in any 
pairwise electionpairwise election

• 3 alternatives: p, a, b. Manipulators want p to win
• Suppose there exists a vote vector for the manipulators that pp p

makes p win
• WLOG can assume that all manipulators rank p first

– So they either vote p > a > b or p > b > aSo, they either vote p > a > b or p > b > a
• Case I: a’s worst pairwise is against b, b’s worst against a

– One of them would have a maximin score of at least half the vote 
weight and win (or be tied for first) => cannot happenweight, and win (or be tied for first) => cannot happen

• Case II: one of a and b’s worst pairwise is against p
– Say it is a; then can have all the manipulators vote p > a > b

Will t ff t ’ l d b’• Will not affect p or a’s score, can only decrease b’s score



Results for constructive
manipulationmanipulation



Destructive manipulation

• Exactly the same, except:
• Instead of a preferred alternative
• We now have a hated alternative
• Our goal is to make sure that the hated 

alternative does not win (whoever else wins)alternative does not win (whoever else wins)



Results for destructive
manipulationmanipulation



Hardness is only worst-case…
• Results such as NP-hardness suggest that 

the runtime of any successful manipulationthe runtime of any successful manipulation 
algorithm is going to grow dramatically on 
some instances

• But there may be algorithms that solve most
instances fast

• Can we make most manipulable instances 
hard to solve?



Bad news…
• Increasingly many results suggest that many instances are inIncreasingly many results suggest that many instances are in 

fact easy to manipulate
• Heuristic algorithms and/or experimental (simulation) evaluation 

[Conitzer & Sandholm AAAI-06, Procaccia & Rosenschein JAIR-07, Conitzer et al. JACM-07,[Conitzer & Sandholm AAAI 06, Procaccia & Rosenschein JAIR 07, Conitzer et al. JACM 07, 
Walsh IJCAI-09 / ECAI-10, Davies et al. COMSOC-10]

• Algorithms that only have a small “window of error” of instances 
on which they fail [Zuckerman et al. AIJ-09, Xia et al. EC-10]y [ ]

• Results showing that whether the manipulators can make a 
difference depends primarily on their number
– If n nonmanipulator votes drawn i i d with high probability o(√n)If n nonmanipulator votes drawn i.i.d., with high probability, o(√n)

manipulators cannot make a difference, ω(√n) can make any alternative 
win that the nonmanipulators are not systematically biased against 
[Procaccia & Rosenschein AAMAS-07, Xia & Conitzer EC-08a]
B d f Θ(√ ) h b i i d– Border case of Θ(√n) has been investigated [Walsh IJCAI-09]

• Quantitative versions of Gibbard-Satterthwaite showing that 
under certain conditions, for some voter, even a random 
manipulation on a random instance has significant probability of 
succeeding [Friedgut, Kalai, Nisan FOCS-08; Xia & Conitzer EC-08b; Dobzinski 
& Procaccia WINE-08, Isaksson et al. FOCS-10]



Weak monotonicity
i l t

voting rule
alternative set

nonmanipulator 
votes

nonmanipulator 
weights manipulator 

weights

• An instance (R, C, v, kv, kw)
is weakly monotone if for every pair of 
alternatives c1, c2 in C, one of the following 
two conditions holds:

• either: c2 does not win for any manipulator• either: c2 does not win for any manipulator 
votes w,

• or: if all manipulators rank c first and c last• or: if all manipulators rank c2 first and c1 last, 
then c1 does not win. 



A simple manipulation algorithm
[Conitzer & Sandholm AAAI 06]

Find-Two-Winners(R C v k k )Find Two Winners(R, C, v, kv, kw)
• choose arbitrary manipulator votes w1

R(C k k )• c1 ← R(C, v, kv, w1, kw)
• for every c2 in C, c2 ≠ c1

– choose w2 in which every manipulator ranks c2
first and c1 last

– c ← R(C, v, kv, w2, kw)
– if c ≠ c1 return {(w1, c1), (w2, c)}

• return {(w1, c1)}



Correctness of the algorithm
• Theorem.  Find-Two-Winners succeeds on every 

instance that
– (a) is weakly monotone, and
– (b) allows the manipulators to make either of exactly two 

alternatives winalternatives win.
• Proof.

– The algorithm is sound (never returns a wrong (w, c) pair).g ( g ( ) p )
– By (b), all that remains to show is that it will return a 

second pair, that is, that it will terminate early.
Suppose it reaches the round where c is the other– Suppose it reaches the round where c2 is the other 
alternative that can win.  

– If c = c1 then by weak monotonicity (a), c2 can never win 
( t di ti )(contradiction).

– So the algorithm must terminate. 



Experimental evaluation
F h t % f i l bl i t d• For what % of manipulable instances do 
properties (a) and (b) hold?
– Depends on distribution over instances…

• Use Condorcet’s distribution for 
nonmanipulator votes

There exists a correct ranking t of the alternatives– There exists a correct ranking t of the alternatives
– Roughly: a voter ranks a pair of alternatives 

correctly with probability p, incorrectly with 
probability 1-pprobability 1 p

• Independently?  This can cause cycles…
– More precisely: a voter has a given ranking r with 

probability proportional to pa(r, t)(1-p)d(r, t) where a(r t)probability proportional to p (1 p) where a(r, t)
= # pairs of alternatives on which r and t agree, and 
d(r, t) = # pairs on which they disagree

• Manipulators all have weight 1Manipulators all have weight 1
• Nonmanipulable instances are thrown away



p=.6, one manipulator, 3 alternatives



p=.5, one manipulator, 3 alternatives



p=.6, 5 manipulators, 3 alternatives



p=.6, one manipulator, 5 alternatives



Control problems [Bartholdi et al. 1992]
• Imagine that the chairperson of the election controls 

whether some alternatives participate
• Suppose there are 5 alternatives, a, b, c, d, e

Ch i t l h th d ( h• Chair controls whether c, d, e run (can choose any 
subset); chair wants b to win

• Rule is plurality; voters’ preferences are:• Rule is plurality; voters  preferences are:
• a > b > c > d > e (11 votes)
• b > a > c > d > e (10 votes)

many other types of control, 
e.g., introducing additional • b > a > c > d > e (10 votes)

• c > e > b > a > d (2 votes)
• d > b > a > c > e (2 votes)

voters
see also various work by 

Faliszewksi, Hemaspaandra,d > b > a > c > e (2 votes)
• c > a > b > d > e (2 votes)
• e > a > b > c > d (2 votes)

Faliszewksi, Hemaspaandra, 
Hemaspaandra, Rothe

Tu. 17:00 Bribery, e a b c d ( otes)
• Can the chair make b win?
• NP-hard

y,
Control, and Cloning in 

Elections



C bi t i lCombinatorial 
alternative 

spaces



Multi-issue domainsMulti issue domains

• Suppose the set of alternatives can beSuppose the set of alternatives can be 
uniquely characterized by multiple issues

• Let I={x1 x } be the set of p issuesLet I {x1,...,xp} be the set of p issues
• Let Di be the set of values that the i-th issue 

can take, then A=D1×... ×Dcan take, then A D1×... ×Dp

• Example:
– I={Main dish Wine}I {Main dish, Wine}
– A={ } ×{                            }



Example: joint plan 
[Brams, Kilgour & Zwicker SCW 98]

• The citizens of LA county vote to directlyThe citizens of LA county vote to directly 
determine a government plan

• Plan composed of multiple sub plans for• Plan composed of multiple sub-plans for 
several issues

E– E.g.,                   



CP-net [Boutilier et al UAI-99/JAIR-04]CP net [Boutilier et al. UAI 99/JAIR 04]

A t t ti f ti l d• A compact representation for partial orders 
(preferences) on multi-issue domains
A CP t i t f• An CP-net consists of
– A set of variables x1,...,xp, taking values on 

D1 DD1,...,Dp
– A directed graph G over x1,...,xp
– Conditional preference tables (CPTs) indicating ( ) g

the conditional preferences over xi, given the 
values of its parents in G



CP-net: an exampleCP net: an example

Variables: { }D { }D { }DVariables: x,y,z. { , },xD x x { , },yD y y { , }.zD z z

DAG, CPTs:

This CP-net 
encodes the 
following partial 
order:order:



Sequential voting rules 
[Lang IJCAI-07/Lang and Xia MSS-09]

• Inputs:Inputs:
– A set of issues x1,...,xp, taking values on A=D1×... ×Dp

– A linear order O over the issues. W.l.o.g. O=x1>...>xpg 1 p

– p local voting rules r1,...,rp

– A profile P=(V1,...,Vn) of O-legal linear orders
• O-legal means that preferences for each issue depend only on 

values of issues earlier in O

• Basic idea: use r1 to decide x1’s value then r2 toBasic idea: use r1 to decide x1 s value, then r2 to 
decide x2’s value (conditioning on x1’s value), etc.

• Let SeqO(r1,...,r ) denote the sequential voting ruleLet SeqO(r1,...,rp) denote the sequential voting rule



Sequential rule: an exampleSequential rule: an example

• Issues: main dish, wine
• Order: main dish > wine
• Local rules are majority rules

V• V1: >            ,               :        >        ,                  :        >  
• V2: >            ,               :        >        ,                  :        > 
• V3: > , : > , : >V3:             ,               :                ,                  :        
• Step 1: 
• Step 2: given            ,         is the winner for wine
• Winner:    (            ,       )

• Xia et al [AAAI’08 AAMAS’10] study rules• Xia et al. [AAAI 08, AAMAS 10] study rules 
that do not require CP-nets to be acyclic



Strategic sequential votingStrategic sequential voting

• Binary issues (two possible values each)Binary issues (two possible values each)
• Voters vote simultaneously on issues, one 

issue after anotherissue after another
• For each issue, the majority rule is used to 

d t i th l f th t idetermine the value of that issue
• Game-theoretic analysis?



Strategic voting in multi-issue 
domainsdomains

S T

• In the first stage, the voters vote simultaneously to determine S; then, in the 
second stage, the voters vote simultaneously to determine T

• If S is built, then in the second step                                    so the winner is
• If S is not built, then in the 2nd step                                    so the winner is
• In the first step, the voters are effectively comparing      and     , so the votes  

are                                       , and the final winner is 

[Xia et al. 2010; see also Farquharson 69, McKelvey & Niemi JET 78, Moulin 
Econometrica 79, Gretlein IJGT 83, Dutta & Sen SCW 93]



Multiple-election paradoxes for 
strategic voting [Xia et al. 2010]strategic voting [Xia et al. 2010]

• Theorem (informally). For any p≥2 and any n≥2p2 + 1,Theorem (informally). For any p≥2 and any n≥2p  1, 
there exists a profile such that the strategic winner 
is 
– ranked almost at the bottom (exponentially low 

positions) in every vote
– Pareto dominated by almost every other alternative
– an almost Condorcet loser

– multiple-election paradoxes [Brams, Kilgour & Zwicker SCW 98], 
[S i i SCW 98] [L & Ni JTP 00] [S i & Si b 01 APSR][Scarsini SCW 98], [Lacy & Niou JTP 00], [Saari & Sieberg 01 APSR], 
[Lang & Xia MSS 09]



PreferencePreference 
elicitation /elicitation / 

communicationcommunication 
complexitycomplexity



Preference elicitation (elections)

> ?”“
“yes”

“no”
“yes”

> center/auctioneer/
organizer/…

?”“
> ?”“ > ?

“most 
f d?”

“ ”
preferred?”

iwins



Elicitation algorithms
• Suppose agents always answer truthfully
• Design elicitation algorithm to minimize queriesDesign elicitation algorithm to minimize queries 

for given rule
• What is a good elicitation algorithm for STV?What is a good elicitation algorithm for STV?
• What about Bucklin?



An elicitation algorithm for the Bucklin 
voting rule based on binary searchvoting rule based on binary search

[Conitzer & Sandholm EC’05]

• Alternatives: A B C D E F G H• Alternatives: A B C D E F G H

• Top 4? {A B C D} {A B F G} {A C E H}Top 4? {A B C D} {A B F G} {A C E H}

• Top 2? {A D} {B F} {C H}

• Top 3? {A C D} {B F G} {C E H}

T t l i ti i /2 /4 ≤ 2 bitTotal communication is nm + nm/2 + nm/4 + … ≤ 2nm bits
(n number of voters, m number of candidates)



Other topics in computational 
voting theoryvoting theory

• Preference elicitation
• How do we compute the winner with minimal 

communication?
Given partial information about the votes which• Given partial information about the votes, which 
alternatives can still win? 

W. 10:10 Possible Winners 
and Single Peaked 

• Settings with exponentially many alternatives

and Single-Peaked 
Electorates 

• Settings with exponentially many alternatives



A few other topics in 
computational social choicecomputational social choice

• Allocating resources to agents Tu. 15:25 Multiagent Resource 
Allocation   Fairness  Judgment 

– “Fair” allocations
• Judgment aggregation

Allocation,  Fairness, Judgment 
Aggregation

W. 11:35 Cake Cutting Algorithms

• Matching
• Cooperative game theory

Th. 10:10 Matchings and Social 
Choice

– Weighted voting games, power indices
W. 15:15 Coalition Formation and 

Cooperative Game TheoryCooperative Game Theory



Getting involved in this community
• Community mailing list
htt //li t d k d / / b ib /https://lists.duke.edu/sympa/subscribe/comsoc



A few useful overviews
• Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A Short Introduction to 
Computational Social Choice. In Proc. 33rd Conference on Current Trends in 
Theory and Practice of Computer Science (SOFSEM-2007), LNCS 4362,Theory and Practice of Computer Science (SOFSEM 2007), LNCS 4362, 
Springer-Verlag, 2007.
• V. Conitzer. Making decisions based on the preferences of multiple agents.  
Communications of the ACM, 53(3):84–94, 2010.
• V. Conitzer. Comparing Multiagent Systems Research in Combinatorial 
Auctions and Voting.  To appear in the Annals of Mathematics and Artificial 
Intelligence.
• P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. A richer 
understanding of the complexity of election systems. In S. Ravi and S. Shukla, 
editors, Fundamental Problems in Computing: Essays in Honor of Professor 
Daniel J Rosenkrantz chapter 14 pages 375 406 Springer 2009Daniel J. Rosenkrantz, chapter 14, pages 375–406. Springer, 2009.
• P. Faliszewski and A. Procaccia. AI's War on Manipulation: Are We Winning?  
To appear in AI Magazine.
• L Xia Computational Social Choice: Strategic and Combinatorial AspectsL. Xia. Computational Social Choice: Strategic and Combinatorial Aspects.  
AAAI’10 Doctoral Consortium.


