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Abstract

One way for agents to reach a joint decision is to vote over the
alternatives. In open, anonymous settings such as the Inter-
net, an agent can vote more than once without being detected.
A voting rule is false-name-proof if no agent ever benefits
from casting additional votes. Previous work has shown that
all false-name-proof voting rules are unresponsive to agents’
preferences. However, that work implicitly assumes that cast-
ing additional votes is costless. In this paper, we consider
what happens if there is a cost to casting additional votes. We
characterize the optimal (most responsive) false-name-proof-
with-costs voting rule for 2 alternatives. In sharp contrast to
the costless setting, we prove that as the voting population
grows larger, the probability that this rule selects the major-
ity winner converges to 1. We also characterize the optimal
group false-name-proof rule for 2 alternatives, which is ro-
bust to coalitions of agents sharing the costs of additional
votes. Unfortunately, the probability that this rule chooses
the majority winner as the voting population grows larger is
relatively low. We derive an analogous rule in a setting with 3
alternatives, and provide bounding results and computational
approaches for settings with 4 or more alternatives.
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In a generalsocial choice(or voting) setting, there is
a (usually finite) set of alternatives, and each agent re-
ports ordinal preferences over these alternatives. Far thi
very general setting, negative results are known: for ex-
ample, the Gibbard-Satterthwaite theorem (Gibbard 1973;
Satterthwaite 1975) states that if there are at least thiree a
natives and preferences are unrestricted, then thereseast
deterministic voting rule (mechanism) that is nondictetor
(more than one agent’s preferences are taken into account),
onto (for every alternative, there are some votes that make
that alternative win), and strategy-proof. Still, there afso
some positive results. For example, if there are only two
alternatives, then the majority rule (choose whichevesralt
native receives more votes) is strategy-proof. Also, iffpre
erences aresingle-peakedBlack 1948) (roughly, alterna-
tives are ordered on a line and agents always prefer alterna-
tives closer to their most-preferred alternative), theaas:
ing the most-preferred alternative of the median voter is
strategy-proof. If we assume additional structure—namely,
each agent can make or receive payments and its preferences
are quasilinear—then there are many strategy-proof mech-
anisms, for example, VCG mechanisms (Vickrey 1961;
Clarke 1971; Groves 1973). But we will not consider mech-

In multiagent systems, a general approach for the agents to @nisms that use payments in this paper.

make a joint decision is for all of them to report their pref-

Unfortunately, in open, anonymous environments such

erences over the alternatives; then, based on these rdporte as the Internet, new manipulations are possible: namely,

preferences, an outcome is chosen according noeaha-
nism(or rule). One serious complication is that if this is to
their benefit, self-interested agents will lie about thegfp
erencesMechanism desigis the study of how to design the

an agent can vote multiple times without being detected.
If the mechanism is such that there is never an incentive
for an agent to do so, the mechanism is said tdfdige-
name-proof(Yokoo, Sakurai, & Matsubara 2004) False-

mechanism so that good outcomes will be chosen in spite name-proofness is a much more restrictive requirement than
of such self-interested behavior. By a result known as the strategy-proofness: for example, not even the majoritg rul
revelation principle(Gibbard 1973; Green & Laffont 1977;  is false-name-proof. Recently, an extremely negative re-
Myerson 1979; 1981), we can, in a sense, without loss of sult has been obtained for false-name-proofness in voting
generality focus our attention on mechanisms that choose

outcomes in such a way that no agent has an incentive to  !As is the case for strategy-proofness, false-name-proofness
lie. There are multiple ways of making this idea precise; the is a dominant-strategies criterion, that is, using only one identi-
strongest is to require that the mechanisrstiategy-proaf fier should be optimal regardless of one’s preferences and regard
that is, each agent is always best off reporting its true-pref less of what the other agents do. A (weaker) Bayesian defini-

erences, no matter what those preferences are and what thdion can also be given, but the dominant-strategies version is the
other ag’ents do one that has been studied so far, and the related impossibility re-

sults for misreporting preferences concern strategy-proofneas (th
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is, a dominant-strategies criterion), so we focus on false-name-
proofness in the dominant-strategies sense in this paper. This also
makes our positive results stronger.



settings (Conitzer 2007a): this result implies that, usles

the agents unanimously agree that one alternative is pre-

ferred to another, then the winning alternative must be
chosen uniformly at random. Given this result, it would

seem reasonable to give up on false-name-proofness in gen-

eral social choice settings. (For combinatorial auction se

mous that is, each vote is treated in the same way. Hence,
we need only keep track of the number of votes for each
alternative.

Definition 1 (State) A state consists of a pair(za,zg),
wherez; > 0 is the number of votes fgre {A, B}.

tings, some reasonable false-name-proof mechanisms do Voting rules are defined over states. In this paper, we al-

exist (Yokoo, Sakurai, & Matsubara 2001; Yokoo 2003;
Yokoo, Matsutani, & Iwasaki 2006), but here, too, impos-
sibility results are known (Yokoo, Sakurai, & Matsubara
2004; Rastegari, Condon, & Leyton-Brown 2007).) Indeed,
it has been proposed to perform some limited verification
of agents’ identities to remove the incentive to use false
names (Conitzer 2007b).

In this paper, we consider another way around the im-
possibility result for false-name-proofness in votingisefs.
The impossibility result implicitly assumes that there & n

low for randomized voting rules.

Definition 2 (Voting rule) A voting ruleis a mapping from
the set of states to the set of probability distributionsrove
outcomes. The probability that alternatiye= { A, B} is se-
lected in statéx 4, z) is denoted byP; (x4, x5); we must
haveP(za,25) + Pe(xa,xp) = 1.

A voting rule isneutral if alternatives are treated in the
same way. We will only consider neutral rules in this paper.

Definition 3 (Neutrality) A voting rule is neutral if

cost to voting multiple times; however, it is reasonable to  p, (z ) = Pg(y, z) for all (z,y).

assume that casting an additional vote comes at a small
cost. For example, to cast an additional vote, an agent may

need to sign up for another (say, free e-mail) account, and
this requires some effore(g.most free e-mail providers re-
quire a user to solve a CAPTCHA (von Alet al. 2003;
von Ahn, Blum, & Langford 2004) before obtaining an ac-
count). In this context, a rule is false-name-proof (with
costs) if the cost of casting additional votes always out-
weighs the benefit to an agent. We characterize the optimal
rule with two alternatives in this setting, and show that as
the number of agents grows, the probability that this rule
chooses the alternative that the majority rweuld have
chosenjf there had been no false-name manipulation, con-
verges to 1—a very positive result, in sharp contrast to the
costless setting. However, we also consider the posgibilit
that multiple agents collude and share the cost of the ad-
ditional votes. We characterize the resulting optimgiadup
false-name-proofnechanism and show that unfortunately,
it does not have the convergence property. We also obtain
some results for a 3-alternative setting, and propose aifine
programming technique for settings with more alternatives
in the spirit of automated mechanism design (Conitzer &
Sandholm 2002).

Definitions
In this section, we consider a setting with 2 alternativés,
and B. We assume that each agent strictly prefers one of
the alternatives; which alternative is preferred is pevi-
formation to the agent. We normalize each agent’s utility
function so that the agent receives utilityif its favorite
alternative is selected, artdotherwise. Votes can be cast
either for A or for B. We assume that each agent can cast
one vote for free; for each additional vote, the agent incurs
a cost ofc. This model can be generalized in several ways
without changing the results; we discuss this in a later sec-
tion. For simplicity of presentation we focus on the simpler

Let (z4,zp5) be the state that results from all the votes
with the exception of ageris vote(s). Lett!, andt, denote

the number of times that agentotes for alternatives! and

B, respectively. Then, if agerntprefers alternative, i's
expected utility isu; (x4, x5, tYy,ts) = Pj(za +ty, 25 +

ti) — (ty + ti — 1)c. We now define some standard con-
cepts from mechanism design. In these definitions we only
consider alternatived, but the analogous statement fBr
follows from neutrality.

Definition 4 (Voluntary participation) A (neutral) voting
rule satisfiesvoluntary participationif for an agent:
who prefers A, for all (xa,2p), wi(ra,zp,1,0) >
ui(‘rAa B, 07 0)
Definition 5 (Strategy-proofness) A (neutral) voting rule
is strategy-proofif for an agenti: who prefersA, for all
(xa,2p), ui(xa,25,1,0) > u;j(xa,25,0,1).
Definition 6 (False-name-proofness)A (neutral) voting
rule is false-name-proof (with costs) for an agenti who
prefers A, for all (z4,zp), for all ¢, > 1 and t’,
ui(xa,2p,1,0) > uj(xa, xp,th, ).

In other words, a rule is false-name-proof if, given that an

agent casts a vote for its most preferred alternative, isdoe
not benefit from casting additional votes.

Lemma 1 A (neutral) rule satisfies voluntary participation
and false-name proofness if and only if forall, x5 > 0,

1. PA(IA + 1,?EB) — PA(;EA,IB) >0,

2. Pa(za,zp) — Pa(za, 25 +1) >0,

3. Pa(xa+2,25) — Pa(za+ 1,zp) < ¢ and

4., Py(xa,xzp +1) — Pa(za,z5+2) <c

Such rule is also strategy-proof.

We omit the proof of Lemma 1 due to space constraint. If

model first. This model is reasonable, for example, when . _  then the optimal (in a sense to be made precise later)
every agent already has an account (for other reasons), butpeytral false-name-proof rule that satisfies voluntargipar

signing up for an additional account is costly (either beeau

ipation is the following “unanimity” rule:

there is a monetary cost, or because some effort needs to be

exerted, e.g. a CAPTCHA needs to be solved to obtain the
account). We will only consider voting rules that amony-

e If one alternative gets all the votes, select it.
e Otherwise, select an alternative uniformly at random.



The disadvantage of this rule is clear: even if one alterna-
tive receives 100 votes and the other, 1 vote, then a coin is
flipped to determine the winner. That is, the rule is not very
responsiveo votes. In some sense, the “most” responsive
rule is the majority rule, which chooses the alternative tha
receives more votes (and flips a coin if there is a tie), thereb
maximizing the sum of the utilities However, the majority
rule is not false-name-proof. As we will see shortly, when
¢ > 0, there are false-name-proof rules that are more respon-
sive (more like majority) than the unanimity rule above. Our
objective is to maximize responsiveness under the constrai
of false-name-proofness.

One may wonder how we should compare two rules if one

is more responsive for some states, and the other is more

responsive for other states. However, this turns out not to
matter, because we will find a rule thatsgongly optimal
that is, most responsive for all states.

Definition 7 (Strong optimality) A neutral false-name-
proof voting rule P that satisfies voluntary participation
is strongly optimalif for any other neutral false-name-
proof voting rule P that satisfies voluntary participation,
for any state (x4,x2p) where z4, > x5, we have

PA(I'A,LL‘B) > ﬁA(xA,xB).
It should be noted that by neutrality, it follows that
for such a rule we also have that if4, < xp, then

Pi(za,25) < Pa(za,z5). Also, there cannot exist two
different strongly optimal rules.

The optimal false-name-proof rule

We are now ready to present the (strongly) optimal false-
name-proof rule with 2 alternatives,N P2.

Definition 8 (F'N P2) Suppose without loss of generality
that z4 > xp. Rule FNP2 setsPs(za,zp) 1 if
xa >xp =0,andPs(z4,zp) = min{l, %—&—c(mA—a:B)}
ifxga>xp>00rzy =ap =0.

For example, let us consideF’ NP2 over the states
(xa,zB), x4,25 < 5, whenc = 0.15:

5 0] 0 [ 05] 2[35] 5
4 |lo|.05| 2|35 5]|.65
3 0| .2|.35| 5|.65| .8
2 0|.35| .5|.65| .8|.95
1 0| 5|65 .8|.95| 1
o |51 ]1]1]1]1

[ep/za O[] 1 [ 2] 3] 4]5]

From Definition 8, it is easy to see that rut&V P2 sat-

isfies strategy proofness: an agent can never increase the

properties of neutrality, strategy proofness, and falzme
proofness, but it is also uniquely strongly optimal.

Theorem 1 RuleF'N P2 is the unique strongly optimal neu-
tral false-name-proof voting rule withalternatives that sat-
isfies voluntary participation.

Proof: The rule is neutral by definition. We first prove
that it satisfies the conditions of Lemma 1. We begin
with Condition 1. Ifzy > zp > 0, then Pa(za +
L,zg) — Pa(za,zp) = min{l, 3 + c(za + 1 — zp)} —
min{l,% +c(xa —ap)} > 0. fzg > x4 > 0, then
Py(xa+1,2B) — Pa(va, ) = (1—Pp(ra+1,25))—

1 — Pg(xa,x)) = Pp(xa,xp) — P(xa + 1,25)
min{1, %—!—c(a:B—xA)}—min{l, 5+c(rp—ra—1)} >0.
Finally, if x4 = 0 orxg = 0, it is easy to check that
Pa(zxa + 1,25) — Pa(xza,zp) > 0. This proves Condi-
tion 1; Condition 2 follows by symmetry.

Next, we prove Condition 3. I£4 + 1 > x5 > 0, then
Pao(za+2,25) — Pa(za+1,25) = min{l, % +c(za +
2—2p)} —min{l,$ + c(za+1—2p)} <c lfap >
za+2,thenPy(xa +2,25) — Pa(za+ Lzg) = (1 —
Pp(xa +2,2p)) — (1 — Pp(za + 1,2B)) = Pp(za +
Lag)—Pp(ra+2,25) = min{l, ; +c(zp—za—1)} —
min{l,% +c(zg — x4 —2)} < e Finally, if zg = 0,
thenPA(xA + 2,333) — PA(IA + I,IB) =1—-1=0.
This proves Condition 3; Condition 4 follows by symmetry.
Hence,F' N P2 satisfies the conditions of Lemma 1, so it is
in fact a neutral false-name-proof voting rule that satssfie
voluntary participation.

All that remains to show is strong optimality, that is, for
any other such rul@, for any statéx 4, xg) with x4 > x5,
Py(xa,x5) > Pa(xa,xp), whereP is FNP2. (We re-
call that the analogous statement whep > x4 follows
by symmetry.) Neutrality requires that for any > 0,
Py(z,z) = 1/2. Next, for anyz > 0, false-name proof-
ness requires thaPs(x + 1,z) — Pa(x,2) < ¢, so that
Py(z+1,2) <1/2+c. Similarly, P4(z +2,x) — Pa(z +
1,2) < ¢, sothatPy(x + 2,2) < Pa(z + 1,2) + ¢ <
1/2 + 2¢. Continuing in the same manner, for ahy> 0,
Pa(xz 4+ t,z) < 1/2 + tc must hold. Also, naturally,
Pao(z+t,2) < 1. SOPs(x+t,2) < min{l,1/2+tc}. But
Pa(z+t,2) = min{1,1/2+tc}. HenceF' N P2 is strongly
optimal. m

By Lemma 1,F N P2 is also strategy-proof.
Responsiveness in the limit

In this section, we investigate the following question: as
n, the number of agents, goes to infinity, is it more likely
that £ N P2 will choose the majority winner? The “ma-
jority winner” here refers to the winner that the majority
rule would haveproduced if every agent voted exactly once.
Of course, if we actually used the majority rule, agents
20ne can argue about the precise definition of responsiveness. would likely use f"?"se names. IdqulE,NPQ would usually
For example, the rule that choosasif the total number of votes  choose the majority winner, in which case we get the best of
is odd andB otherwise is more “responsive” in the sense that each Poth worlds: false-name-proofness and high responsigenes
additional vote changes the outcome. However, such rules violate ~ To make this concrete, suppose agents’ preferences are
neutrality and voluntary participation. drawn i.i.d.: with probabilityp an agent preferd, with 1—p,

probability of its preferred alternative being selectedvby
ing for its less preferred alternative. Neutrality alsddels
directly, since the labelling of alternatives is irrelevaa
FNP2, and sincePy(x,x) = 1/2 for anyz > 0. As the
following theorem proves, not only dodd\ P2 satisfy the



B. If ¢ = 0, we need to use the aforementioned unanimity
rule; now, as grows, the probability of all agents agreeing
goes to0, and the probability of flipping a coin goes to
Hence, the rule becomes completely unresponsive as

oo. But what if¢ > 0? Here, we get the opposite result:

Theorem2 As n — oo, the probability that FF N P2
chooses the majority winner converged to

We omit the remaining proofs due to space constraint, but
the intuition for this result is simple.F’N P2 randomizes
only if the election is close to tied, that ifs4 — z5| <
1/(2¢). However, as: increases, the binomial distribution

over agent preferences converges to a flatter and flatter nor-

mal distribution. Hence, the probability that the electisn
close to tied goes t0. WhenF N P2 does not randomize, it
chooses the majority winner.

Of course, Theorem 2 only shows what happens in the
limit. Figure 1 illustrates how ofte’ N P2 fails to choose
the majority winner as a function of.2 The probability that
F'N P2 falls to choose the majority winner also depends on
¢ (the highere, the less often it will do so0), as illustrated in
Figure 2. We note that with > 1/2, the majority winner is
always chosen. Finally, figure 3 illustrates how offéy P2
fails to choose the majority winner as a functiorpof
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Figure 1:The average probability thdt N P2 and majority dis-

agree as a function of (for fixedc = .1, p = 1/2, andn odd).
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Figure 2: The average probability thdf N P2 and majority dis-
agree as a function ef(for fixedn = 501 andp = 1/2).

Group false-name proofness

In this section, we consider a stronger notion of false-name
proofness. So far, we have only considered the possibility o
a single agent casting multiple votes; in that case, thedvurd
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0.1f

0.081
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0.2 0.4 0.6 0.8 1
Figure 3: The average probability that N P2 and majority dis-
agree as a function of (for fixed c andn).

to share the cost of this false-name manipulation—either im-
plicitly (each agent in the coalition casts some of the addi-
tional votes) or explicitly (say, one agent casts all thei-add
tional votes, but the other agents in the coalition comptensa
that agent). This requires that the manipulating agents are
able to commit to such a plan.

We call a rule in which coalitions never benefit from
such a manipulatiogroup false-name-proofanalogously
to group strategy-proof). It is easy to see thaV P2 is
not group false-name-proof: in the example with= .15
given above, ifx4 = xzp = 2 (for the true preferences),
then the two agents that prefdrhave an incentive to make
a contract to each cast an additional votedoresulting in a
probability of .8 that A wins, so that each of these agents is
.3—.15 = .15 better off. Alternatively, one of them can cast
a single additional vote, and the other can compensate the
first one.075; then the first agent id5 — .15+ .075 = .075
better off, and the second one1$ — .075 = .075 better off
as well. (We assume quasilinear preferences.)

In this section, we only consider the variant where the
manipulating agents are able to commit to transfers among
themselves, so that they can share the cost equally. This is
equivalent to the variant where they cannot make transfers,
but commit to stochastic manipulatioresd.the manipulat-
ing agents flip a coin over who casts the additional vote).

Definition 9 (Group false-name-proofness)A  (neutral)

rule is group false-name-proof (with costs and transfers)

if forall Kk > 1, for all (za,zp), forallty, > kandig,

Pa(xa+k,xp) > Pa(va+ta, cp+tp)—c(ta+tp—k)/k.
The following lemma is analogous to Lemma 1.

Lemma 2 A (neutral) rule satisfies voluntary participa-

tion and group false-name proofness if and only if for all

TA,TB Z 01

1. PA(IA + 1,%3) — PA(IA,LEB) >0,

2. Py(xa,xp) — Pa(za, 2+ 1) >0,

3. PA(IA + 2,$B) — PA(mA + 1,1‘3) < C/(IA —+ 1), and

4, PA(IA,IB -+ 1) — PA(LEA,.TB —+ 2) < C/(IB + 1)

Such rule is also group strategy-proof and false-name-roo
We now present the strongly optimal group false-name-

0

(cost) of these votes must be assumed by that single agent.proof rule (strong optimality is defined similarly as befpre

However, other agents may benefit from such a manipula-
tion. Hence, it may be possible for a coalition of such agents

%In simulating Figures 1-3, we usk500 trials per parameter
triplet (¢, p, n). Whenn is even,F'N P2 performs better.

Definition 10 [GF N P2] Suppose without loss of general-
ity thatz s > zp. RuleGFNP2 setsPa(za,zp) = 1if
xa >axp =0, Pa(za,zp) = 1/2if x4 = 2 = 0, and
Pa(za,xp) =min{l,1/24+ 374 1 (£)}if wa > 2p > 0.

k=zp



For example, let us conside&F N P2 over the states
(xa,2B), 4,25 <5, whenc = 0.15:

5 || 0] 8125] 6625 5875] 5375| 5
4 |lo| .775| 625 | 55 | 5 | .5375
3 ||o| .725| 575 | 5 | 55 | .5875
2 |o| 65| 5 | 575 | .625 | .6625
1 [o| 5 | 65 | .725| .775 | 8125
o [|5] 1 1 1 1 1

[ep/za O] 1 [ 2 [ 38 [ 4 [ 5 |

Theorem 3 Rule GF'N P2 is the strongly optimal neutral
group false-name-proof voting rule withalternatives that
satisfies voluntary participation.

Responsiveness in the limit

If ¢ is sufficiently large (at least/2), then FN P2 coin-
cides with the majority rule. However, there is no (finite)
such thatz F'N P2 coincides with the majority rule, because
for any ¢ there there exists some sufficiently largesuch
that a coalition of size: would like to group false-name-
manipulate the majority rule in (for example) tied states.
We recall that if preferences are drawn i.i.d., then as

n — oo, we will almost always choose the majority win-
ner underF' N P2. However, forGF' N P2, this turns out not

Definition 11 (Strong optimality) A neutral, strategy-
proof, and false-name-proof voting ruké that satisfies vol-
untary participation isstrongly optimalif for any other neu-
tral, strategy-proof, and false-name-proof voting ritehat
satisfies voluntary participation, for any states, x5, z¢)
wherez, > xp > z¢ > 1, either Py(za,2p,20) >

]SA(wA,xB,ﬂjc); or Pa(za,xp,xc) = Pa(za,zp,20)

and Pp(z4,25,20) > Pp(ra, 25, 70).

(We emphasize that we are restricting attention to the case
where every alternative receives at least one vote.) Itis no
hard to see that it > 2, the plurality rule is the strongly
optimal voting rule.

Definition 12 (¥ N P3) Suppose without loss of general-
ity that x4 > 2 > 2¢ > 1. Rule FNP3 is de-
fined as follows.Pa(z 4, 25,xc) = min{l,% +c(xa —
rp) — %InaX{O,% —clep —xz0)}}, Po(za,zp,20) =
max{O,% — 0(7‘7"“;”"3 —zc)}, P(za,zp,2¢) = 1 —
Pa(za,zB,20) — Po(za,7B,20).

Theorem 5 F'N P3is the strongly optimal neutral strategy-

proof false-name-proof voting rule with alternatives that
satisfies voluntary participation.

to (always) be the case. We note that the highest probability The following lemma provides some intuition abdidv P3.

with which a neutral rule that satisfies voluntary partieipa
tion fails to select the majority winner is/2 (e.g.the una-
nimity rule). Recall thap is the probability that an agent
prefers alternatived.

2c
Theorem4 Letw € (0,1/2). fp € [f=5m ! —
ﬁ;“], then asn — oo, GF'N P2 fails to select the ma-

jority winner with probability at least.

For example, ife = .1 andp € [1/3,2/3], Theorem 4
states that asa — oo, GF'N P2 yields the opposite out-
come from the majority rule at leadb% of the time. If
¢ = .01 andp € [1/3,2/3], this becomed9%. If ¢ = .01
andp € [10/21,11/21], this becomesl9.9%. Finally, if
p = 1/2, Theorem 4 states that as— oo, GF'N P2 yields
the opposite outcome from the majority rui®% of the
time, implying that it arbitrarily selects an alternativéve
omit figures due to space constraint.

3 alternatives

We now move on the case of 3 alternatives. Here, we assume

that each agent has a utility offor their most preferred al-

Lemma 3 Under ruleFNP3, Pj(za,2p,2zc) = Pj(xa—
zo+ 1,2 —xc+1,1)forall j € {A, B,C}.

Lemma 3 allows us to represent rulENP3 on a
two-dimensional grid, because we only need to consider
Py(xza,xp,1). For example, following isPa(za,xp,1)
under ruleFF NP3 whenc = 0.2 andl < z 4,25 < 6:

6 0 0 0 | .10 | .30 | .50
5 0 0 | .10| .30 | .50 | .70
4 .03|.17| .30 | .50 | .70 | .90
3 13| .33 50| .70 90| 1
2 23| 43| 63| .83 | 1 1
1 3315373193 1 1

[op/za [ 1 ]2 ]3] 4]57]6]
Interestingly, unde#’ N P3, sometimes a vote for one al-
ternative increases the winning probability of anotheeralt
native (but not enough to violate strategy-proofness)—for
example,Pgs(4,2,2) > Pg(4,2,1) whenc = .3.

4+ alternatives
Unfortunately, we were unable to generalize the strongly op

ternative, and for the other alternatives. Hence, each agent timal rule tok > 4 alternatives. We can, however, obtain

simply votes for their most preferred alternative. Whilesthi
is without loss of generality in the 2-alternative casesgit i
not so here. With this assumption, reasonable strategyfpro
rules are possible, for example, the plurality rule (chabse

an upper bound on the probability of choosing the plural-
ity winner that must hold for any false-name-proof rule. We
continue to assume that agents strictly prefer one of the al-
ternatives and equally dislike all other alternatives.

alternative with the most votes). Without this assumptian,
reasonable strategy-proof rules exist (Gibbard 1973; 1977
Satterthwaite 1975). We only study false-name-proofness
not group false-name-proofness.

For technical reasons, we make one more assumption in .
the remainder of this paper: every alternative receives at 1- Base conditiort:
least one vote. For example, if the alternatives are palitic
candidates, presumably they would vote for themselves.

We now generalize strong optimality.

Procedure 1 (Upper bound) Let (x4, ..., z,,), Wherem >

2, denote the state, such that > 2o, > ... > z,, > 1.
* An upper boundB (z1, ..., ,,) on Py(x1,...,z,,) can be
derived using the following recursion.

&k, oo, Thy Tht 1, -y T ), Wherek € {1,...,m — 1}, is the
state where the firdt alternatives receive votes, and alternatives
k+1,...,mreceiveryti, ..., x, VOtes, respectively.



B (X1 ooy Tin—1, Tm) = max{0, %—c(mm,l—wm)}

2. Fork € {1,....m — 1}, Be(@p, ooy Thy Thog 1y oeey i) =
+(1 = max{0, Beg1(Ths1, oor Tht 1, T2y oo Tin) —
(@ — Tp41)}).

Procedure 1 is a recursive application of the follow-
ing observations. By neutrality, the firdt + 1 alterna-

tives are selected with the same probability at any state

(Thg1s ooy Tht 1, Tht2y -, T ). It fOllOws from false-name
proofness that at a stater, ..., Tk, Tra1, Tha2y - Tin)s
wherex; > Tht1, Pk+1(:L'k, s Ty Lot 1, T2, ...,l‘m) >
Prg 1 (Thg1s oy Tt 1, Thog 25 ooy Try) — (X — Thge1)-

A general linear programming approach

While we were unable to give a general characterization of
the optimal rule for 4+ alternatives, in this section, we do
propose a linear programming approach for finding an opti-
mal false-name-proof voting rule given a specific value,of
an upper bound’ on the number of votes for each alterna-
tive, and a prior distributionr over states. We continue to

assume that each alternative receives at least one vote. We

show how to find the rule that minimizes the expected dis-
tance to plurality (or any other rule’). (Standard tricks can
be used to linearize the absolute value operator.)
Procedure 2 (Linear program)

Minimize 27 | ...7 _ w(ay,. . a) |
S |Pe(@, .o @) — Pl(z1,. .., 2m)|] subjectto

1. Participation: Vzq,.. e {1,....7}, Vk €
{1,....,m}, Pe(z1,...,xp_1,28 + 1,211, ... -
Pi(x1,...,2m) > 0.

2. Neutrality: Vaq, ..., 2, € {1,..., Z}, for any permuta-
tion (wy,...,wy) of (x1,...,2m), Vi, k € {1,...,m},
if w; =z thenPj(wy, ..., wy) = Pp(T1,...,Zm).

3. Strategy proofnessiaxy, ...,z € {1,..., 2}, Vj,k €
{1,....m}, Pe(21,...,op—1, 26 + 1, 2041,
Pk(xl,...,mjfl,mj+17$J‘+1,...7wm).

4. False-name proofnesszy, ...,z € {1,..., 2}, Vk €
{1,....,m}, Pe(z1,...,xp—1,2% + 1, Zp11,...
Pk(l'l,...,.rm) SC-

* Im,

:xm

Y]

wxm

7$m

We note that because we require strategy-proofness, it
never makes sense to cast a false-name vote for another al-

ternative, which simplifies constraint (4).
Extensions and future work

settings with 3 or more alternatives. This can also be done
under different assumptions. For instance, one could eeriv
the optimal false-name-proof rule that does not necegsaril
satisfy voluntary participation or strategy-proofnessneO
could also considedichotomougpreferences (Inada 1964),
for which responsive strategy-proof rules exist. (Undextsu
preferences, each voter (equally) approves of a set of alter
natives and (equally) disapproves of the remaining alterna
tives.) Another direction is to extend the group false-name
proofness results to the setting where agents cannot use
transfers and where only deterministic contracts are athw
Yet another direction is to consider weaker (e.g. BayeshiNas
equilibrium) notions of false-name-proofness.
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