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Abstract

One way for agents to reach a joint decision is to vote over the
alternatives. In open, anonymous settings such as the Inter-
net, an agent can vote more than once without being detected.
A voting rule is false-name-proof if no agent ever benefits
from casting additional votes. Previous work has shown that
all false-name-proof voting rules are unresponsive to agents’
preferences. However, that work implicitly assumes that cast-
ing additional votes is costless. In this paper, we consider
what happens if there is a cost to casting additional votes. We
characterize the optimal (most responsive) false-name-proof-
with-costs voting rule for 2 alternatives. In sharp contrast to
the costless setting, we prove that as the voting population
grows larger, the probability that this rule selects the major-
ity winner converges to 1. We also characterize the optimal
group false-name-proof rule for 2 alternatives, which is ro-
bust to coalitions of agents sharing the costs of additional
votes. Unfortunately, the probability that this rule chooses
the majority winner as the voting population grows larger is
relatively low. We derive an analogous rule in a setting with 3
alternatives, and provide bounding results and computational
approaches for settings with 4 or more alternatives.

Introduction
In multiagent systems, a general approach for the agents to
make a joint decision is for all of them to report their pref-
erences over the alternatives; then, based on these reported
preferences, an outcome is chosen according to amecha-
nism(or rule). One serious complication is that if this is to
their benefit, self-interested agents will lie about their pref-
erences.Mechanism designis the study of how to design the
mechanism so that good outcomes will be chosen in spite
of such self-interested behavior. By a result known as the
revelation principle(Gibbard 1973; Green & Laffont 1977;
Myerson 1979; 1981), we can, in a sense, without loss of
generality focus our attention on mechanisms that choose
outcomes in such a way that no agent has an incentive to
lie. There are multiple ways of making this idea precise; the
strongest is to require that the mechanism isstrategy-proof,
that is, each agent is always best off reporting its true pref-
erences, no matter what those preferences are and what the
other agents do.
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In a generalsocial choice(or voting) setting, there is
a (usually finite) set of alternatives, and each agent re-
ports ordinal preferences over these alternatives. For this
very general setting, negative results are known: for ex-
ample, the Gibbard-Satterthwaite theorem (Gibbard 1973;
Satterthwaite 1975) states that if there are at least three alter-
natives and preferences are unrestricted, then there exists no
deterministic voting rule (mechanism) that is nondictatorial
(more than one agent’s preferences are taken into account),
onto (for every alternative, there are some votes that make
that alternative win), and strategy-proof. Still, there are also
some positive results. For example, if there are only two
alternatives, then the majority rule (choose whichever alter-
native receives more votes) is strategy-proof. Also, if pref-
erences aresingle-peaked(Black 1948) (roughly, alterna-
tives are ordered on a line and agents always prefer alterna-
tives closer to their most-preferred alternative), then choos-
ing the most-preferred alternative of the median voter is
strategy-proof. If we assume additional structure—namely,
each agent can make or receive payments and its preferences
arequasilinear—then there are many strategy-proof mech-
anisms, for example, VCG mechanisms (Vickrey 1961;
Clarke 1971; Groves 1973). But we will not consider mech-
anisms that use payments in this paper.

Unfortunately, in open, anonymous environments such
as the Internet, new manipulations are possible: namely,
an agent can vote multiple times without being detected.
If the mechanism is such that there is never an incentive
for an agent to do so, the mechanism is said to befalse-
name-proof(Yokoo, Sakurai, & Matsubara 2004).1 False-
name-proofness is a much more restrictive requirement than
strategy-proofness: for example, not even the majority rule
is false-name-proof. Recently, an extremely negative re-
sult has been obtained for false-name-proofness in voting

1As is the case for strategy-proofness, false-name-proofness
is a dominant-strategies criterion, that is, using only one identi-
fier should be optimal regardless of one’s preferences and regard-
less of what the other agents do. A (weaker) Bayesian defini-
tion can also be given, but the dominant-strategies version is the
one that has been studied so far, and the related impossibility re-
sults for misreporting preferences concern strategy-proofness (that
is, a dominant-strategies criterion), so we focus on false-name-
proofness in the dominant-strategies sense in this paper. This also
makes our positive results stronger.



settings (Conitzer 2007a): this result implies that, unless
the agents unanimously agree that one alternative is pre-
ferred to another, then the winning alternative must be
chosen uniformly at random. Given this result, it would
seem reasonable to give up on false-name-proofness in gen-
eral social choice settings. (For combinatorial auction set-
tings, some reasonable false-name-proof mechanisms do
exist (Yokoo, Sakurai, & Matsubara 2001; Yokoo 2003;
Yokoo, Matsutani, & Iwasaki 2006), but here, too, impos-
sibility results are known (Yokoo, Sakurai, & Matsubara
2004; Rastegari, Condon, & Leyton-Brown 2007).) Indeed,
it has been proposed to perform some limited verification
of agents’ identities to remove the incentive to use false
names (Conitzer 2007b).

In this paper, we consider another way around the im-
possibility result for false-name-proofness in voting settings.
The impossibility result implicitly assumes that there is no
cost to voting multiple times; however, it is reasonable to
assume that casting an additional vote comes at a small
cost. For example, to cast an additional vote, an agent may
need to sign up for another (say, free e-mail) account, and
this requires some effort (e.g.most free e-mail providers re-
quire a user to solve a CAPTCHA (von Ahnet al. 2003;
von Ahn, Blum, & Langford 2004) before obtaining an ac-
count). In this context, a rule is false-name-proof (with
costs) if the cost of casting additional votes always out-
weighs the benefit to an agent. We characterize the optimal
rule with two alternatives in this setting, and show that as
the number of agents grows, the probability that this rule
chooses the alternative that the majority rulewould have
chosen,if there had been no false-name manipulation, con-
verges to 1—a very positive result, in sharp contrast to the
costless setting. However, we also consider the possibility
that multiple agents collude and share the cost of the ad-
ditional votes. We characterize the resulting optimalgroup
false-name-proofmechanism and show that unfortunately,
it does not have the convergence property. We also obtain
some results for a 3-alternative setting, and propose a linear
programming technique for settings with more alternatives,
in the spirit of automated mechanism design (Conitzer &
Sandholm 2002).

Definitions
In this section, we consider a setting with 2 alternatives,A
andB. We assume that each agent strictly prefers one of
the alternatives; which alternative is preferred is private in-
formation to the agent. We normalize each agent’s utility
function so that the agent receives utility1 if its favorite
alternative is selected, and0 otherwise. Votes can be cast
either forA or for B. We assume that each agent can cast
one vote for free; for each additional vote, the agent incurs
a cost ofc. This model can be generalized in several ways
without changing the results; we discuss this in a later sec-
tion. For simplicity of presentation we focus on the simpler
model first. This model is reasonable, for example, when
every agent already has an account (for other reasons), but
signing up for an additional account is costly (either because
there is a monetary cost, or because some effort needs to be
exerted, e.g. a CAPTCHA needs to be solved to obtain the
account). We will only consider voting rules that areanony-

mous, that is, each vote is treated in the same way. Hence,
we need only keep track of the number of votes for each
alternative.

Definition 1 (State) A state consists of a pair(xA, xB),
wherexj ≥ 0 is the number of votes forj ∈ {A,B}.

Voting rules are defined over states. In this paper, we al-
low for randomized voting rules.

Definition 2 (Voting rule) A voting ruleis a mapping from
the set of states to the set of probability distributions over
outcomes. The probability that alternativej ∈ {A,B} is se-
lected in state(xA, xB) is denoted byPj(xA, xB); we must
havePA(xA, xB) + PB(xA, xB) = 1.

A voting rule isneutral if alternatives are treated in the
same way. We will only consider neutral rules in this paper.

Definition 3 (Neutrality) A voting rule is neutral if
PA(x, y) = PB(y, x) for all (x, y).

Let (xA, xB) be the state that results from all the votes
with the exception of agenti’s vote(s). LettiA andtiB denote
the number of times that agenti votes for alternativesA and
B, respectively. Then, if agenti prefers alternativej, i’s
expected utility isui(xA, xB , tiA, tiB) = Pj(xA + tiA, xB +
tiB) − (tiA + tiB − 1)c. We now define some standard con-
cepts from mechanism design. In these definitions we only
consider alternativeA, but the analogous statement forB
follows from neutrality.

Definition 4 (Voluntary participation) A (neutral) voting
rule satisfiesvoluntary participation if for an agent i
who prefers A, for all (xA, xB), ui(xA, xB , 1, 0) ≥
ui(xA, xB , 0, 0).

Definition 5 (Strategy-proofness)A (neutral) voting rule
is strategy-proofif for an agenti who prefersA, for all
(xA, xB), ui(xA, xB , 1, 0) ≥ ui(xA, xB , 0, 1).

Definition 6 (False-name-proofness)A (neutral) voting
rule is false-name-proof (with costs)if for an agenti who
prefers A, for all (xA, xB), for all tiA ≥ 1 and tiB,
ui(xA, xB , 1, 0) ≥ ui(xA, xB , tiA, tiB).

In other words, a rule is false-name-proof if, given that an
agent casts a vote for its most preferred alternative, it does
not benefit from casting additional votes.

Lemma 1 A (neutral) rule satisfies voluntary participation
and false-name proofness if and only if for allxA, xB ≥ 0,

1. PA(xA + 1, xB) − PA(xA, xB) ≥ 0,
2. PA(xA, xB) − PA(xA, xB + 1) ≥ 0,
3. PA(xA + 2, xB) − PA(xA + 1, xB) ≤ c, and
4. PA(xA, xB + 1) − PA(xA, xB + 2) ≤ c.

Such rule is also strategy-proof.
We omit the proof of Lemma 1 due to space constraint. If
c = 0, then the optimal (in a sense to be made precise later)
neutral false-name-proof rule that satisfies voluntary partic-
ipation is the following “unanimity” rule:

• If one alternative gets all the votes, select it.

• Otherwise, select an alternative uniformly at random.



The disadvantage of this rule is clear: even if one alterna-
tive receives 100 votes and the other, 1 vote, then a coin is
flipped to determine the winner. That is, the rule is not very
responsiveto votes. In some sense, the “most” responsive
rule is the majority rule, which chooses the alternative that
receives more votes (and flips a coin if there is a tie), thereby
maximizing the sum of the utilities.2 However, the majority
rule is not false-name-proof. As we will see shortly, when
c > 0, there are false-name-proof rules that are more respon-
sive (more like majority) than the unanimity rule above. Our
objective is to maximize responsiveness under the constraint
of false-name-proofness.

One may wonder how we should compare two rules if one
is more responsive for some states, and the other is more
responsive for other states. However, this turns out not to
matter, because we will find a rule that isstrongly optimal,
that is, most responsive for all states.

Definition 7 (Strong optimality) A neutral false-name-
proof voting ruleP that satisfies voluntary participation
is strongly optimal if for any other neutral false-name-
proof voting ruleP̃ that satisfies voluntary participation,
for any state (xA, xB) where xA ≥ xB , we have
PA(xA, xB) ≥ P̃A(xA, xB).

It should be noted that by neutrality, it follows that
for such a rule we also have that ifxA ≤ xB , then
PA(xA, xB) ≤ P̃A(xA, xB). Also, there cannot exist two
different strongly optimal rules.

The optimal false-name-proof rule
We are now ready to present the (strongly) optimal false-
name-proof rule with 2 alternatives,FNP2.

Definition 8 (FNP2) Suppose without loss of generality
that xA ≥ xB . Rule FNP2 setsPA(xA, xB) = 1 if
xA > xB = 0, andPA(xA, xB) = min{1, 1

2
+c(xA−xB)}

if xA ≥ xB > 0 or xA = xB = 0.

For example, let us considerFNP2 over the states
(xA, xB), xA, xB ≤ 5, whenc = 0.15:

5 0 0 .05 .2 .35 .5
4 0 .05 .2 .35 .5 .65
3 0 .2 .35 .5 .65 .8
2 0 .35 .5 .65 .8 .95
1 0 .5 .65 .8 .95 1
0 .5 1 1 1 1 1

xB/xA 0 1 2 3 4 5

From Definition 8, it is easy to see that ruleFNP2 sat-
isfies strategy proofness: an agent can never increase the
probability of its preferred alternative being selected byvot-
ing for its less preferred alternative. Neutrality also follows
directly, since the labelling of alternatives is irrelevant to
FNP2, and sincePA(x, x) = 1/2 for any x ≥ 0. As the
following theorem proves, not only doesFNP2 satisfy the

2One can argue about the precise definition of responsiveness.
For example, the rule that choosesA if the total number of votes
is odd andB otherwise is more “responsive” in the sense that each
additional vote changes the outcome. However, such rules violate
neutrality and voluntary participation.

properties of neutrality, strategy proofness, and false-name
proofness, but it is also uniquely strongly optimal.

Theorem 1 RuleFNP2 is the unique strongly optimal neu-
tral false-name-proof voting rule with2 alternatives that sat-
isfies voluntary participation.

Proof: The rule is neutral by definition. We first prove
that it satisfies the conditions of Lemma 1. We begin
with Condition 1. If xA ≥ xB > 0, then PA(xA +
1, xB) − PA(xA, xB) = min{1, 1

2
+ c(xA + 1 − xB)} −

min{1, 1

2
+ c(xA − xB)} ≥ 0. If xB > xA > 0, then

PA(xA +1, xB)−PA(xA, xB) = (1−PB(xA +1, xB))−
(1 − PB(xA, xB)) = PB(xA, xB) − PB(xA + 1, xB) =
min{1, 1

2
+c(xB−xA)}−min{1, 1

2
+c(xB−xA−1)} ≥ 0.

Finally, if xA = 0 or xB = 0, it is easy to check that
PA(xA + 1, xB) − PA(xA, xB) ≥ 0. This proves Condi-
tion 1; Condition 2 follows by symmetry.

Next, we prove Condition 3. IfxA + 1 ≥ xB > 0, then
PA(xA + 2, xB) − PA(xA + 1, xB) = min{1, 1

2
+ c(xA +

2 − xB)} − min{1, 1

2
+ c(xA + 1 − xB)} ≤ c. If xB ≥

xA + 2, thenPA(xA + 2, xB) − PA(xA + 1, xB) = (1 −
PB(xA + 2, xB)) − (1 − PB(xA + 1, xB)) = PB(xA +
1, xB)−PB(xA +2, xB) = min{1, 1

2
+c(xB −xA−1)}−

min{1, 1

2
+ c(xB − xA − 2)} ≤ c. Finally, if xB = 0,

thenPA(xA + 2, xB) − PA(xA + 1, xB) = 1 − 1 = 0.
This proves Condition 3; Condition 4 follows by symmetry.
Hence,FNP2 satisfies the conditions of Lemma 1, so it is
in fact a neutral false-name-proof voting rule that satisfies
voluntary participation.

All that remains to show is strong optimality, that is, for
any other such rulẽP , for any state(xA, xB) with xA ≥ xB,
PA(xA, xB) ≥ P̃A(xA, xB), whereP is FNP2. (We re-
call that the analogous statement whenxB ≥ xA follows
by symmetry.) Neutrality requires that for anyx ≥ 0,
P̃A(x, x) = 1/2. Next, for anyx > 0, false-name proof-
ness requires that̃PA(x + 1, x) − P̃A(x, x) ≤ c, so that
P̃A(x + 1, x) ≤ 1/2 + c. Similarly, P̃A(x + 2, x)− P̃A(x +

1, x) ≤ c, so thatP̃A(x + 2, x) ≤ P̃A(x + 1, x) + c ≤
1/2 + 2c. Continuing in the same manner, for anyt > 0,
P̃A(x + t, x) ≤ 1/2 + tc must hold. Also, naturally,
P̃A(x+ t, x) ≤ 1. SoP̃A(x+ t, x) ≤ min{1, 1/2+ tc}. But
PA(x+ t, x) = min{1, 1/2+ tc}. HenceFNP2 is strongly
optimal.

By Lemma 1,FNP2 is also strategy-proof.

Responsiveness in the limit
In this section, we investigate the following question: as
n, the number of agents, goes to infinity, is it more likely
that FNP2 will choose the majority winner? The “ma-
jority winner” here refers to the winner that the majority
rulewould haveproduced if every agent voted exactly once.
Of course, if we actually used the majority rule, agents
would likely use false names. Ideally,FNP2 would usually
choose the majority winner, in which case we get the best of
both worlds: false-name-proofness and high responsiveness.

To make this concrete, suppose agents’ preferences are
drawn i.i.d.: with probabilityp an agent prefersA, with 1−p,



B. If c = 0, we need to use the aforementioned unanimity
rule; now, asn grows, the probability of all agents agreeing
goes to0, and the probability of flipping a coin goes to1.
Hence, the rule becomes completely unresponsive asn →
∞. But what ifc > 0? Here, we get the opposite result:

Theorem 2 As n → ∞, the probability that FNP2
chooses the majority winner converges to1.

We omit the remaining proofs due to space constraint, but
the intuition for this result is simple.FNP2 randomizes
only if the election is close to tied, that is,|xA − xB| <
1/(2c). However, asn increases, the binomial distribution
over agent preferences converges to a flatter and flatter nor-
mal distribution. Hence, the probability that the electionis
close to tied goes to0. WhenFNP2 does not randomize, it
chooses the majority winner.

Of course, Theorem 2 only shows what happens in the
limit. Figure 1 illustrates how oftenFNP2 fails to choose
the majority winner as a function ofn.3 The probability that
FNP2 fails to choose the majority winner also depends on
c (the higherc, the less often it will do so), as illustrated in
Figure 2. We note that withc ≥ 1/2, the majority winner is
always chosen. Finally, figure 3 illustrates how oftenFNP2
fails to choose the majority winner as a function ofp.
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Figure 1: The average probability thatFNP2 and majority dis-
agree as a function ofn (for fixed c = .1, p = 1/2, andn odd).
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Figure 2: The average probability thatFNP2 and majority dis-
agree as a function ofc (for fixedn = 501 andp = 1/2).

Group false-name proofness
In this section, we consider a stronger notion of false-name
proofness. So far, we have only considered the possibility of
a single agent casting multiple votes; in that case, the burden
(cost) of these votes must be assumed by that single agent.
However, other agents may benefit from such a manipula-
tion. Hence, it may be possible for a coalition of such agents

3In simulating Figures 1-3, we use1500 trials per parameter
triplet (c, p, n). Whenn is even,FNP2 performs better.
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Figure 3: The average probability thatFNP2 and majority dis-
agree as a function ofp (for fixed c andn).

to share the cost of this false-name manipulation—either im-
plicitly (each agent in the coalition casts some of the addi-
tional votes) or explicitly (say, one agent casts all the addi-
tional votes, but the other agents in the coalition compensate
that agent). This requires that the manipulating agents are
able to commit to such a plan.

We call a rule in which coalitions never benefit from
such a manipulationgroup false-name-proof(analogously
to group strategy-proof). It is easy to see thatFNP2 is
not group false-name-proof: in the example withc = .15
given above, ifxA = xB = 2 (for the true preferences),
then the two agents that preferA have an incentive to make
a contract to each cast an additional vote forA, resulting in a
probability of .8 thatA wins, so that each of these agents is
.3− .15 = .15 better off. Alternatively, one of them can cast
a single additional vote, and the other can compensate the
first one.075; then the first agent is.15− .15+ .075 = .075
better off, and the second one is.15− .075 = .075 better off
as well. (We assume quasilinear preferences.)

In this section, we only consider the variant where the
manipulating agents are able to commit to transfers among
themselves, so that they can share the cost equally. This is
equivalent to the variant where they cannot make transfers,
but commit to stochastic manipulations (e.g.the manipulat-
ing agents flip a coin over who casts the additional vote).

Definition 9 (Group false-name-proofness)A (neutral)
rule is group false-name-proof (with costs and transfers)
if for all k ≥ 1, for all (xA, xB), for all tA ≥ k and tB,
PA(xA+k, xB) ≥ PA(xA+tA, xB+tB)−c(tA+tB−k)/k.

The following lemma is analogous to Lemma 1.

Lemma 2 A (neutral) rule satisfies voluntary participa-
tion and group false-name proofness if and only if for all
xA, xB ≥ 0,

1. PA(xA + 1, xB) − PA(xA, xB) ≥ 0,
2. PA(xA, xB) − PA(xA, xB + 1) ≥ 0,
3. PA(xA + 2, xB) − PA(xA + 1, xB) ≤ c/(xA + 1), and
4. PA(xA, xB + 1) − PA(xA, xB + 2) ≤ c/(xB + 1).

Such rule is also group strategy-proof and false-name-proof.

We now present the strongly optimal group false-name-
proof rule (strong optimality is defined similarly as before).

Definition 10 [GFNP2] Suppose without loss of general-
ity that xA ≥ xB . RuleGFNP2 setsPA(xA, xB) = 1 if
xA > xB = 0, PA(xA, xB) = 1/2 if xA = xB = 0, and
PA(xA, xB) = min{1, 1/2+

∑xA−1

k=xB
( c

k
)} if xA ≥ xB > 0.



For example, let us considerGFNP2 over the states
(xA, xB), xA, xB ≤ 5, whenc = 0.15:

5 0 .8125 .6625 .5875 .5375 .5
4 0 .775 .625 .55 .5 .5375
3 0 .725 .575 .5 .55 .5875
2 0 .65 .5 .575 .625 .6625
1 0 .5 .65 .725 .775 .8125
0 .5 1 1 1 1 1

xB/xA 0 1 2 3 4 5

Theorem 3 RuleGFNP2 is the strongly optimal neutral
group false-name-proof voting rule with2 alternatives that
satisfies voluntary participation.

Responsiveness in the limit
If c is sufficiently large (at least1/2), thenFNP2 coin-
cides with the majority rule. However, there is no (finite)c
such thatGFNP2 coincides with the majority rule, because
for any c there there exists some sufficiently largek such
that a coalition of sizek would like to group false-name-
manipulate the majority rule in (for example) tied states.

We recall that if preferences are drawn i.i.d., then as
n → ∞, we will almost always choose the majority win-
ner underFNP2. However, forGFNP2, this turns out not
to (always) be the case. We note that the highest probability
with which a neutral rule that satisfies voluntary participa-
tion fails to select the majority winner is1/2 (e.g.the una-
nimity rule). Recall thatp is the probability that an agent
prefers alternativeA.

Theorem 4 Let w ∈ (0, 1/2). If p ∈ [ 2c
4c−2w+1

, 1 −
2c

4c−2w+1
], then asn → ∞, GFNP2 fails to select the ma-

jority winner with probability at leastw.

For example, ifc = .1 andp ∈ [1/3, 2/3], Theorem 4
states that asn → ∞, GFNP2 yields the opposite out-
come from the majority rule at least40% of the time. If
c = .01 andp ∈ [1/3, 2/3], this becomes49%. If c = .01
and p ∈ [10/21, 11/21], this becomes49.9%. Finally, if
p = 1/2, Theorem 4 states that asn → ∞, GFNP2 yields
the opposite outcome from the majority rule50% of the
time, implying that it arbitrarily selects an alternative.We
omit figures due to space constraint.

3 alternatives
We now move on the case of 3 alternatives. Here, we assume
that each agent has a utility of1 for their most preferred al-
ternative, and0 for the other alternatives. Hence, each agent
simply votes for their most preferred alternative. While this
is without loss of generality in the 2-alternative case, it is
not so here. With this assumption, reasonable strategy-proof
rules are possible, for example, the plurality rule (choosethe
alternative with the most votes). Without this assumption,no
reasonable strategy-proof rules exist (Gibbard 1973; 1977;
Satterthwaite 1975). We only study false-name-proofness,
not group false-name-proofness.

For technical reasons, we make one more assumption in
the remainder of this paper: every alternative receives at
least one vote. For example, if the alternatives are political
candidates, presumably they would vote for themselves.

We now generalize strong optimality.

Definition 11 (Strong optimality) A neutral, strategy-
proof, and false-name-proof voting ruleP that satisfies vol-
untary participation isstrongly optimalif for any other neu-
tral, strategy-proof, and false-name-proof voting ruleP̃ that
satisfies voluntary participation, for any state(xA, xB , xC)
wherexA ≥ xB ≥ xC ≥ 1, either PA(xA, xB , xC) >

P̃A(xA, xB , xC); or PA(xA, xB , xC) = P̃A(xA, xB , xC)

andPB(xA, xB , xC) ≥ P̃B(xA, xB , xC).

(We emphasize that we are restricting attention to the case
where every alternative receives at least one vote.) It is not
hard to see that ifc ≥ 2

3
, the plurality rule is the strongly

optimal voting rule.

Definition 12 (FNP3) Suppose without loss of general-
ity that xA ≥ xB ≥ xC ≥ 1. Rule FNP3 is de-
fined as follows.PA(xA, xB , xC) = min{1, 1

2
+ c(xA −

xB) − 1

2
max{0, 1

3
− c(xB − xC)}}, PC(xA, xB , xC) =

max{0, 1

3
− c(xA+xB

2
− xC)}, PB(xA, xB , xC) = 1 −

PA(xA, xB , xC) − PC(xA, xB , xC).

Theorem 5 FNP3 is the strongly optimal neutral strategy-
proof false-name-proof voting rule with3 alternatives that
satisfies voluntary participation.

The following lemma provides some intuition aboutFNP3.

Lemma 3 Under ruleFNP3, Pj(xA, xB , xC) = Pj(xA−
xC + 1, xB − xC + 1, 1) for all j ∈ {A,B,C}.

Lemma 3 allows us to represent ruleFNP3 on a
two-dimensional grid, because we only need to consider
PA(xA, xB , 1). For example, following isPA(xA, xB , 1)
under ruleFNP3 whenc = 0.2 and1 ≤ xA, xB ≤ 6:

6 0 0 0 .10 .30 .50
5 0 0 .10 .30 .50 .70
4 .03 .17 .30 .50 .70 .90
3 .13 .33 .50 .70 .90 1
2 .23 .43 .63 .83 1 1
1 .33 .53 .73 .93 1 1

xB/xA 1 2 3 4 5 6

Interestingly, underFNP3, sometimes a vote for one al-
ternative increases the winning probability of another alter-
native (but not enough to violate strategy-proofness)—for
example,PB(4, 2, 2) > PB(4, 2, 1) whenc = .3.

4+ alternatives
Unfortunately, we were unable to generalize the strongly op-
timal rule tok ≥ 4 alternatives. We can, however, obtain
an upper bound on the probability of choosing the plural-
ity winner that must hold for any false-name-proof rule. We
continue to assume that agents strictly prefer one of the al-
ternatives and equally dislike all other alternatives.
Procedure 1 (Upper bound) Let (x1, ..., xm), wherem ≥
2, denote the state, such thatx1 ≥ x2 ≥ ... ≥ xm ≥ 1.
An upper boundB1(x1, ..., xm) on P1(x1, ..., xm) can be
derived using the following recursion.

1. Base condition:4

4(xk, ..., xk, xk+1, ..., xm), wherek ∈ {1, ..., m − 1}, is the
state where the firstk alternatives receivexk votes, and alternatives
k + 1, ..., m receivexk+1, ..., xm votes, respectively.



Bm(xm−1, ..., xm−1, xm) = max{0, 1

m
− c(xm−1− xm)}

2. For k ∈ {1, ...,m − 1}, Bk(xk, ..., xk, xk+1, ..., xm) =
1

k

(
1 − max{0, Bk+1(xk+1, ..., xk+1, xk+2, ..., xm) −

c(xk − xk+1)}
)
.

Procedure 1 is a recursive application of the follow-
ing observations. By neutrality, the firstk + 1 alterna-
tives are selected with the same probability at any state
(xk+1, ..., xk+1, xk+2, ..., xm). It follows from false-name
proofness that at a state(xk, ..., xk, xk+1, xk+2, ..., xm),
wherexk ≥ xk+1, Pk+1(xk, ..., xk, xk+1, xk+2, ..., xm) ≥
Pk+1(xk+1, ..., xk+1, xk+2, ..., xm) − c(xk − xk+1).

A general linear programming approach
While we were unable to give a general characterization of
the optimal rule for 4+ alternatives, in this section, we do
propose a linear programming approach for finding an opti-
mal false-name-proof voting rule given a specific value ofc,
an upper boundZ on the number of votes for each alterna-
tive, and a prior distributionπ over states. We continue to
assume that each alternative receives at least one vote. We
show how to find the rule that minimizes the expected dis-
tance to plurality (or any other ruleP ′). (Standard tricks can
be used to linearize the absolute value operator.)

Procedure 2 (Linear program)

Minimize
∑Z

x1=1
. . .

∑Z

xm=1
π(x1, . . . , xm)

[
∑m

k=1
|Pk(x1, . . . , xm) − P ′

k(x1, . . . , xm)|
]

subject to

1. Participation: ∀x1, . . . , xm ∈ {1, . . . , Z}, ∀k ∈
{1, . . . ,m}, Pk(x1, . . . , xk−1, xk + 1, xk+1, . . . , xm) −
Pk(x1, . . . , xm) ≥ 0.

2. Neutrality: ∀x1, . . . , xm ∈ {1, ..., Z}, for any permuta-
tion (w1, . . . , wm) of (x1, . . . , xm), ∀j, k ∈ {1, . . . ,m},
if wj = xk thenPj(w1, . . . , wm) = Pk(x1, . . . , xm).

3. Strategy proofness:∀x1, . . . , xm ∈ {1, . . . , Z}, ∀j, k ∈
{1, . . . ,m}, Pk(x1, . . . , xk−1, xk + 1, xk+1, . . . , xm) ≥
Pk(x1, . . . , xj−1, xj + 1, xj+1, . . . , xm).

4. False-name proofness:∀x1, . . . , xm ∈ {1, . . . , Z}, ∀k ∈
{1, . . . ,m}, Pk(x1, . . . , xk−1, xk + 1, xk+1, . . . , xm) −
Pk(x1, . . . , xm) ≤ c.
We note that because we require strategy-proofness, it

never makes sense to cast a false-name vote for another al-
ternative, which simplifies constraint (4).

Extensions and future work
In the above, we have assumed that all agents have the same
costc for casting an additional vote. In fact, all that is needed
for all of the above results to go through is that we know
that each agent has a cost ofat leastc for each additional
vote (and this is the greatest lower bound that we know). In
fact, a single agent can have different costs for, say, her first
and second additional votes, as long as we know the cost for
each to be at leastc. Additionally, we have assumed the first
vote is free (for example, everyone already has one e-mail
account). The analysis can be extended to settings where
an agent’s first vote is costly. However, in such settings,
voluntary participation cannot be satisfied.

Future work can take on a number of directions. An im-
mediate direction is to more robustly extend our results to

settings with 3 or more alternatives. This can also be done
under different assumptions. For instance, one could derive
the optimal false-name-proof rule that does not necessarily
satisfy voluntary participation or strategy-proofness. One
could also considerdichotomouspreferences (Inada 1964),
for which responsive strategy-proof rules exist. (Under such
preferences, each voter (equally) approves of a set of alter-
natives and (equally) disapproves of the remaining alterna-
tives.) Another direction is to extend the group false-name-
proofness results to the setting where agents cannot use
transfers and where only deterministic contracts are allowed.
Yet another direction is to consider weaker (e.g. Bayes-Nash
equilibrium) notions of false-name-proofness.
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