
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

For Learning in Symmetric Teams,
Local Optima are Global Nash Equilibria
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Abstract
Although it has been known since the 1970s that
a globally optimal strategy profile in a common-
payoff game is a Nash equilibrium, global opti-
mality is a strict requirement that limits the re-
sult’s applicability. In this work, we show that
any locally optimal symmetric strategy profile is
also a (global) Nash equilibrium. Furthermore,
we show that this result is robust to perturbations
to the common payoff and to the local optimum.
Applied to machine learning, our result provides
a global guarantee for any gradient method that
finds a local optimum in symmetric strategy space.
While this result indicates stability to unilateral
deviation, we nevertheless identify broad classes
of games where mixed local optima are unstable
under joint, asymmetric deviations. We analyze
the prevalence of instability by running learning
algorithms in a suite of symmetric games, and we
conclude by discussing the applicability of our
results to multi-agent RL, cooperative inverse RL,
and decentralized POMDPs.

1. Introduction
We consider common-payoff games (also known as identical
interest games (Ui, 2009)), in which the payoff to all players
is always the same. Such games model a wide range of situ-
ations involving cooperative action towards a common goal.
Under the heading of team theory, they form an important
branch of economics (Marschak, 1955; Marschak & Radner,
1972). In cooperative AI (Dafoe et al., 2021), the common-
payoff assumption holds in Dec-POMDPs (Oliehoek et al.,
2016), where multiple agents operate independently accord-
ing to policies designed centrally to achieve a common
objective. Many applications of multiagent reinforcement
learning also assume a common payoff (Foerster et al., 2016;
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2018; Gupta et al., 2017). Finally, in assistance games (Rus-
sell, 2019) (also known as cooperative inverse reinforcement
learning or CIRL games (Hadfield-Menell et al., 2017)),
which include at least one human and one or more “robots,”
it is assumed that the robots’ payoffs are exactly the human’s
payoff, even if the robots must learn it.

Our focus is on symmetric strategy profiles in common-
payoff games. Loosely speaking, a symmetric strategy pro-
file is one in which some subset of players share the same
strategy; Section 3 defines this in a precise sense. For ex-
ample, in Dec-POMDPs, an offline solution search may
consider only symmetric strategies as a way of reducing
the search space. (Notice that this does not lead to iden-
tical behavior, because strategies are state-dependent.) In
common-payoff multiagent reinforcement learning, each
agent may collect percepts and rewards independently, but
the reinforcement learning updates can be pooled to learn a
single parameterized policy that all agents share; prior work
has found experimentally that “parameter sharing is crucial
for reaching the optimal protocol” (Foerster et al., 2016).
In team theory, it is common to develop a strategy that can
be implemented by every employee in a given category and
leads to high payoff for the company. In civic contexts,
symmetry commonly arises through notions of fairness and
justice. In treaty negotiations and legislation that mandates
how parties behave, for example, there is often a constraint
that all parties be treated equally.

For the purposes of this paper, we consider Nash equilibria—
strategy profiles for all players from which no individual
player has an incentive to deviate—as a reasonable solution
concept. Marschak & Radner (1972) make the obvious
point that a globally optimal (possibly asymmetric) strategy
profile—one that achieves the highest common payoff—is
necessarily a Nash equilibrium. Moreover, it can be found
in time linear in the size of the payoff matrix.

In any sufficiently complex game, however, we should not
expect to be able to find a globally optimal strategy profile.
For example, matrix games have size exponential in the
number of players, and the matrix representation of a game
tree has size exponential in the depth of the tree. Therefore,
global search over all possible contingency plans is infea-
sible for all but the smallest of games. This is why some
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Bot
L W

Rob L 1 2
W 0 1

(a) Bot’s laundry basket is broken

Bot
L W

Rob L 1 2
W 2 1

(b) Bot’s laundry basket is fixed

Bot
L W

Rob L 3 2
W 2 3

(c) Synergy working together

Table 1: Three versions of the laundry/washing up game. Solutions are described in the text.

of the most effective methods in machine learning, such as
gradient methods, employ local search over strategy space.

Lacking global guarantees, local search methods may con-
verge only to locally optimal strategy profiles. Roughly
speaking, a locally optimal strategy profile is a strategy
profile from which no group of players has an incentive to
slightly deviate. Obviously, a locally optimal profile may
not be a Nash equilibrium, as a player may still have an
incentive to deviate to some more distant point in strategy
space. Nonetheless, Ratliff et al. (2016) argue that a local
Nash equilibrium may still be stable in a practical sense if
agents are computationally unable to find a better strategy.

The central question of this work is: what can we say about
the (global) properties of locally optimal symmetric strategy
profiles? Our first main result, informally stated, is that in a
symmetric, common-payoff game, every local optimum in
symmetric strategies is a (global) Nash equilibrium. Sec-
tion 4 states the result more precisely and gives an example
illustrating its generality. Section 4.2 shows that the result
is robust to perturbations to the common payoff and to the
local optimum. Section 3.5 elaborates on the symmetry
required by the result, illustrating how the theorem applies
even when the physical environment is asymmetric and
when players have differing capabilities. Complete proofs
for all of our results are in the appendices.

Despite many decades of research on symmetry in common-
payoff games, our result appears to be novel. There are
some echoes of the result in the literature on single-agent de-
cision making (Piccione & Rubinstein, 1997; Briggs, 2010;
Schwarz, 2015), which can be connected to symmetric solu-
tions of common-payoff games by treating all players jointly
as a single agent, but our result appears more general than
published results. Perhaps closest to our work is Piccione
& Rubinstein (1997), which establishes an equilibrium-of-
sorts among the “modified multi-selves” of a single player’s
information set. The proof we give of our result also con-
tains elements similar to the proof (of a related but different
result) in Taylor (2016).

In the second half of our paper, we turn to the thorny ques-
tion of stability. Instability, if not handled carefully, might
lead to major coordination failures in practice (Bostrom
et al., 2016). While it is already known that local strict
optima in a totally symmetric team game attain one type

Figure 1: The strategy profile landscape of the symmetric
laundry game (Table 1b). Lighter color indicates higher ex-
pected utility. Although the symmetric optimum has lower
expected utility than the unrestricted optima, total symmetry
of the game implies that the symmetric optimum is a Nash
equilibrium; this is a special case of Theorem 4.0.2.

of stability, the issue is complex because there are several
ways of enforcing (or not enforcing) strict symmetries in
payoffs and strategies (Milchtaich, 2016). Whereas our
first main result implies stability to unilateral deviation,
our second main result establishes when stability exists to
joint, possibly-asymmetric, deviation. We prove for a non-
degenerate class of games that local optima in symmetric
strategy space fail to be local optima in asymmetric strategy
space if and only if at least one player is mixing, and we ex-
perimentally quantify how often mixing occurs for learning
algorithms in the GAMUT suite of games (Nudelman et al.,
2004).

2. Motivating examples
To gain some intuition for these concepts and claims, let
us consider a situation in which two robots, Rob and Bot,
have to do some housework—specifically, laundry (L) and
washing up (W ). Here, the common payoff is to the owners.
It is evident that a symmetric strategy profile—both doing
the laundry or both doing the washing up—is not ideal,
because the other task will not get done.
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The first version of the game, whose payoffs U are shown in
Table 1a, is asymmetric: while Rob can do both tasks, Bot’s
built-in laundry basket is broken and cannot hold clothes.
Here, as Marschak and Radner (Marschak & Radner, 1972)
pointed out, the strategy profile (L,W ) is both globally
optimal and a Nash equilibrium. If we posit a mixed (ran-
domized) strategy profile in which Rob and Bot have laundry
probabilities p and q respectively, the gradients ∂U/∂p and
∂U/∂q are +1 and −1, driving the solution to (L,W ).

In the second version of the game (Table 1b), Bot’s built-in
laundry basket has been repaired, and symmetry is restored.
The pure profiles (L,W ) and (W,L) are (asymmetric) glob-
ally optimal solutions and hence Nash equilibria. Figure 1
shows the entire payoff landscape as a function of p and
q: looking just at symmetric strategy profiles, it turns out
that there is a local optimum at p = q = 0.5, i.e., where
Rob and Bot toss fair coins to decide what to do. Although
the expected payoff of this solution is lower than that of the
asymmetric optima, the local optimum is, nonetheless, a
Nash equilibrium. All unilateral deviations from the sym-
metric local optimum result in the same expected payoff
because if one robot is tossing a coin, the other robot can do
nothing to improve the final outcome.

In the third version of the game (Table 1c), the robots are
able to do the best quality of work when they work together
on a task. In this case, there is again a Nash equilibrium
at p = q = 0.5, but it is a local minimum rather than a
local maximum in symmetric strategy space. Thus, not all
symmetric Nash equilibria are symmetric local optima; this
is because Nash equilibria depend on unilateral deviations,
whereas symmetric local optima depend on joint deviations
that maintain symmetry.

2.1. Complex coordination example where a simple
symmetric strategy is best

Consider 10 robots that must each choose between 3 actions,
a, b, and c. If all robots play action a, they receive a reward
of 1. If exactly one robot plays action b while the rest play
action c, they receive a reward of 1 + ϵ. Otherwise, the re-
ward is 0. For small enough ϵ, the optimal symmetric policy
is for all robots to play action a. Here, trying to coordinate
in symmetric strategies to reach the asymmetric optimum
is suboptimal—the best symmetric strategy is the simple
one. Furthermore, our subsequent theory shows that the best
symmetric strategy is stable; it is locally optimal even when
considering joint (possibly asymmetric) deviations.

3. Preliminaries: games and symmetries
3.1. Normal-form games

Throughout, we consider normal-form games G =
(N,A, u) defined by a finite set N with |N | = n players, a

finite set of action profiles A = A1×A2× . . .×An with Ai

specifying the actions available to player i, and the utility
function u = (u1, u2, . . . , un) with ui : A → R giving the
utility for each player i (Shoham & Leyton-Brown, 2008).
We call G common-payoff if ui(a) = uj(a) for all action
profiles a ∈ A and all players i, j. In common-payoff games
we may omit the player subscript i from utility functions.

We model each player as employing a (mixed) strategy si ∈
∆(Ai), a probability distribution over actions. We denote
the support of the probability distribution si by supp(si).
Given a (mixed) strategy profile s = (s1, s2, . . . , sn)
that specifies a strategy for each player, player i’s ex-
pected utility is EUi(s) =

∑
a∈A ui(a)

∏n
j=1 sj(aj). If a

strategy si for player i maximizes expected utility given
the strategies s−i of all the other players, i.e., if si ∈
argmaxs′i∈∆(Ai) EUi(s

′
i, s−i), we call si a best response

to s−i. If each strategy si in a strategy profile s is a best
response to s−i, we call s a Nash equilibrium. A Nash
equilibrium s is strict if every si is the unique best response
to s−i.

Note that, while we have chosen to use the normal-form
game representation for simplicity, normal-form games are
highly expressive. Normal-form games can represent mixed
strategies in all finite games, including games with sequen-
tial actions, stochastic transitions, and partial observation
such as imperfect-information extensive form games with
perfect recall, Markov games, and Dec-POMDPs. To repre-
sent a sequential game in normal form, one simply lets each
normal-form action be a complete strategy (contingency
plan) accounting for every potential game decision.

3.2. Symmetry in game structure

We adopt the fairly general group-theoretic notions of sym-
metry introduced by von Neumann & Morgenstern (1944)
and Nash (1951), and we borrow notation from Plan (2017).
More recent work has analyzed narrower notions of symme-
try (Reny, 1999; Vester, 2012; Milchtaich, 2016). For exam-
ple, Daskalakis & Papadimitriou (2007) study “anonymous
games” and show that anonymity substantially reduces the
complexity of finding solutions. Additionally, Ham (2013)
generalizes the player-based notion of symmetry to include
further symmetries revealed by renamings of actions. We
conjecture our results extend to this more general case, at
some cost in notational complexity, but we leave this to
future work.

Our basic building block is a symmetry of a game:
Definition 3.2.1. Call a permutation of player
indices ρ : {1, 2, ..., n} → {1, 2, ..., n} a sym-
metry of a game G if, for all strategy profiles
(s1, s2, ..., sn), permuting the strategy profile per-
mutes the expected payoffs: EUρ(i)((s1, s2, ..., sn)) =
EUi((sρ(1), sρ(2), ..., sρ(n))), ∀i.
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Note that, when we speak of a symmetry of a game, we
implicitly assume Ai = Aj for all i, j with ρ(i) = j so that
permuting the strategy profile is well-defined.1

We characterize the symmetric structure of a game by its set
of game symmetries:

Definition 3.2.2. Denote the set of all
symmetries of a game G by: Γ(G) =
{ρ : {1, 2, ..., n} → {1, 2, ..., n} a symmetry of G}.

A spectrum of game symmetries is possible. On one end
of the spectrum, the identity permutation might be the only
symmetry for a given game. On the other end of the spec-
trum, all possible permutations might be symmetries for a
given game. Following the terminology of von Neumann &
Morgenstern (1944), we call the former case totally unsym-
metric and the latter case totally symmetric:

Definition 3.2.3. If Γ(G) = Sn, the full symmetric group,
we call the game Γ(G) totally symmetric. If Γ(G) contains
only the identity permutation, we call the game totally un-
symmetric.

Let P ⊆ Γ(G) be any subset of the game symmetries. Be-
cause Γ(G) is closed under composition, we can repeatedly
apply permutations in P to yield a group of game symme-
tries ⟨P⟩:
Definition 3.2.4. Let P ⊆ Γ(G) be a subset of the game
symmetries. The group generated by P , denoted ⟨P⟩, is
the set of all permutations that can result from (possibly
repeated) composition of permutations in P: ⟨P⟩ = {ρ1 ◦
ρ2 ◦ . . . ◦ ρm |m ∈ N, ρ1, ρ2, . . . , ρm ∈ P}.

Group theory tells us that ⟨P⟩ defines a closed binary oper-
ation (permutation composition) including an identity and
inverse maps, and ⟨P⟩ is the closure of P under function
composition.

With a subset of game symmetries P ⊆ Γ(G) in hand, we
can use the permutations in P to carry one player index to
another. For each player i, we give a name to the set of
player indices to which permutations in P can carry i: we
call it player i’s orbit.

Definition 3.2.5. Let P ⊆ Γ(G) be a subset of the game
symmetries Γ(G). The orbit of player i under P is the
set of all other player indices that ⟨P⟩ can assign to i:
P(i) = {ρ(i) | ρ ∈ ⟨P⟩}.

By standard group theory, the orbits of a group action on a
set partition the set’s elements, so:

Proposition 3.2.6. Let P ⊆ Γ(G). The orbits of P partition
the game’s players.

1 We make this choice to ease notational burden, but we con-
jecture that our results can be generalized to allow for mappings
between actions (Ham, 2013), which we leave for future work.

Proposition 3.2.6 tells us each P ⊆ Γ(G) yields an equiv-
alence relation among the players. To gain intuition for
this equivalence relation, consider two extreme cases. In a
totally unsymmetric game, Γ(G) contains only the identity
permutation, in which case each player is in its own orbit of
Γ(G); the equivalence relation induced by the orbit partition
shows that no players are equivalent. In a totally symmetric
game, by contrast, every permutation is an element of Γ(G),
i.e., Γ(G) = Sn, the full symmetric group; now, all the
players share the same orbit of Γ(G), and the equivalence
relation induced by the orbit partition shows that all the
players are equivalent.

We leverage the orbit structure of an arbitrary P ⊆ Γ(G)
to define an equivalence relation among players because it
adapts to however much or little symmetry is present in the
game. Between the extreme cases of no symmetry (n orbits)
and total symmetry (1 orbit) mentioned above, there could
be any intermediate number of orbits of P . Furthermore, it
might not be the case that players who share an orbit can
be swapped in arbitrary ways. For an example of this, see
Appendix C.

3.3. Symmetry in strategy profiles

Having formalized a symmetry of a game in the preceding
section, we follow Nash (1951) and define symmetry in
strategy profiles with respect to symmetry in game structure:

Definition 3.3.1. Let P ⊆ Γ(G) be a subset of the
game symmetries Γ(G). We call a strategy profile
s = (s1, s2, ..., sn) P-invariant if (s1, s2, ..., sn) =
(sρ(1), sρ(2), ..., sρ(n)) for all ρ ∈ ⟨P⟩.

The equivalence relation among players induced by the orbit
structure of P is fundamental to our definition of symmetry
in strategy profiles by the following proposition:

Proposition 3.3.2. A strategy profile s = (s1, s2, ..., sn) is
P-invariant if and only if si = sj for each pair of players i
and j with P(i) = P(j).

To state Proposition 3.3.2 another way, a strategy profile is
P-invariant if all pairs of players i and j that are equivalent
under the orbits of P play the same strategy.

3.4. Symmetry via the veil of ignorance

Sometimes strategies must be specified for all players before
knowing the players’ roles and initial conditions. Consider
writing laws or programming household robots; all players
are treated equally in specifying situation-dependent con-
tingency plans. When all players have equal likelihood of
ending up in any given situation (e.g., when all players have
the same initial state distribution), the game of choosing con-
tingency plans a priori is totally symmetric. (Appendix A
gives an example.) For its analog in the philosophy of Rawls
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(a) Symmetric agents & environment (b) Same initial conditions (c) Veil of ignorance

Figure 2: Various laundry / washing up grid-world games that satisfy our symmetry requirement. (a) Symmetric agents
in a symmetric environment. (b) Although the environment is asymmetric, the game is still symmetric because the robots
have the same initial condition. (c) When agents must be programmed before knowing their initial conditions (e.g. location,
morphology), symmetry holds behind the veil of ignorance (Section 3.4) even with asymmetric agents and environments.

(1971) and Harsanyi (1975), we call this situation the veil
of ignorance.

3.5. What do symmetric games look like?

To illustrate types of symmetry in games, Figure 2 presents
symmetric variants of a laundry / washing up grid-world
game inspired by the motivating example of Section 2. The
robots are on a team to do the laundry / washing up, and
their movement and interaction is restricted to adjacent grid
cells.

An idealized symmetric environment is shown in Figure 2a.
Here, the robots are identical, and the environment is per-
fectly symmetric; the symmetry of the game is clear. This
is the sort of symmetry that might be found in highly con-
trolled environments such as factories.

A commonplace, asymmetric environment is shown in Fig-
ure 2b. Because the robots are identical and have the same
initial condition, their action sequences can be swapped
without changing the outcome of the game. Thus, the game
is symmetric even though the environment is asymmetric.
While it is impossible for real-world robots to have the ex-
act same physical location, it suffices for them to have the
same distribution over initial conditions. Furthermore, we
expect that virtual agents (such as customer service chatbots
or nodes in a compute cluster) may have identical initial
conditions.

Asymmetric agents in an asymmetric environment are
shown in Figure 2c. If we assume that the morphology
and / or the initial location of each robot is equally random,
then the game of choosing contingency plans behind the

veil of ignorance (Section 3.4) is totally symmetric. We ex-
pect this case of symmetry to be common when AI uses the
same source code or the same learned parameters. In fact,
weight sharing is already common practice in multi-agent
RL (Foerster et al., 2016).

4. Local symmetric optima are (global) Nash
equilibria

After the formal definitions of symmetry in the previous
section, we are almost ready to formally state the first of our
main results. The only remaining definition is that of a local
symmetric optimum:

Definition 4.0.1. Call s a locally optimal P-invariant strat-
egy profile of a common-payoff game if: (i) s is P-invariant,
and (ii) for some ϵ > 0, no P-invariant strategy s′ with
EU(s′) > EU(s) can be formed by adding or subtract-
ing at most ϵ to the probability of taking any given action
ai ∈ Ai. If, furthermore, condition (ii) holds for all ϵ > 0,
we call s a globally optimal P-invariant strategy profile or
simply an optimal P-invariant strategy profile.

Now we can state our first main theorem, that local symmet-
ric optima are (global) Nash equilibria:

Theorem 4.0.2. Let G be a common-payoff normal-form
game, and let P ⊆ Γ(G) be a subset of the game symmetries
Γ(G). Any locally optimal P-invariant strategy profile is a
Nash equilibrium.

Proof. We provide a sketch here and full details in Ap-
pendix B. Suppose, for the sake of contradiction, that an
individual player i could beneficially deviate to action ai
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(if a beneficial deviation exists, then there is one to a pure
strategy). Then, consider instead a collective change to a
symmetric strategy profile in which all the players in i’s
orbit shift slightly more probability to ai. By making the
amount of probability shifted ever smaller, the probability
that this change affects exactly one agent’s realized action
(making it ai when it would not have been before) can be
arbitrarily larger than the probability that it affects multiple
agents’ realized actions. Moreover, if this causes exactly
one agent’s realized action to change, this must be in ex-
pectation beneficial, since the original unilateral deviation
was in expectation beneficial. Hence, the original strategy
profile cannot have been locally optimal.

4.1. Applications of the theorem

First, we provide an example of applying Theorem 4.0.2 to
multi-agent RL.

Example 4.1.1. Consider a cooperative multi-agent RL
environment where all agents have the same initial state
distribution. Suppose, as is typical practice (Foerster et al.,
2016), that we use a gradient method to train the param-
eters of a policy that all agents will share. Assume that
the gradient method reaches a symmetric local optimum
in mixed strategy space. If we wanted to improve upon
this symmetric local optimum, we might lift the symmetry
requirement and perform iterative best response, i.e., con-
tinue learning by updating the parameters of just one agent.
However, by Theorem 4.0.2, the symmetric local optimum
is a Nash equilibrium. Thus, updating the parameters of a
single agent cannot improve the common payoff; updating
the parameters of at least two agents is necessary.

The preceding example assumes that a gradient method in
multi-agent RL reaches a symmetric local optimum in mixed
strategy space. In practice, agents may employ behavioral
strategies, and it may not be possible to verify how close a
symmetric strategy profile is to a local optimum.

In Appendix C, we give another example that shows how
Theorem 4.0.2 is more general than the case of total symme-
try. The example illustrates the existence of rotational sym-
metry without total symmetry, and it illustrates how picking
different P ⊆ Γ(G) leads to different optimal P-invariant
strategies and thus different P-invariant Nash equilibria by
Theorem 4.0.2.

4.2. Robustness to payoff and strategy perturbations

Theorem 4.0.2 assumes that all players’ payoffs are exactly
the same, and it applies to strategy profiles that are exact
local optima. If we relax these assumptions, the theorem still
holds approximately. If all players’ payoffs are equal ±ϵ, or
if a strategy profile is ϵ distance away from a symmetric local
optimum, then a robust version of Theorem 4.0.2 guarantees

a kϵ-Nash equilibrium for some game-dependent constant k.
See Appendix D for a precise treatment of these robustness
results.

While the results of this section concern Nash equilibria, we
note that Nash equilibria, by definition, consider the possi-
bility of only a single agent deviating. In the next section,
we investigate when multiple agents might have an incen-
tive to simultaneously deviate by studying the optimality of
symmetric strategy profiles in possibly-asymmetric strategy
space.

5. When are local optima in symmetric
strategy space also local optima in
possibly-asymmetric strategy space?

Our preceding theory applies to locally optimal P-invariant,
i.e., symmetric, strategy profiles. This leaves open the
question of how well locally optimal symmetric strategy
profiles perform when considered in the broader, possibly-
asymmetric strategy space. When are locally optimal P-
invariant strategy profiles also locally optimal in possibly-
asymmetric strategy space? This question is important in
machine learning (ML) applications where users of sym-
metrically optimal ML systems might be motivated to make
modifications to the systems, even for purposes of a com-
mon payoff.

To address this precisely, we formally define a local opti-
mum in possibly-asymmetric strategy space:
Definition 5.0.1. A strategy profile s = (s1, s2, . . . , sn) of a
common-payoff normal-form game is locally optimal among
possibly-asymmetric strategy profiles, or, equivalently, a lo-
cal optimum in possibly-asymmetric strategy space, if for
some ϵ > 0, no strategy profile s′ with EU(s′) > EU(s)
can be formed by changing s in such a way that the prob-
ability of taking any given action ai ∈ Ai for any player i
changes by at most ϵ.

Definition 5.0.1 relates to notions of stability under dynam-
ics, such as those with perturbations or stochasticity, that
allow multiple players to make asymmetric deviations. In
particular, if s is not a local maximum in asymmetric strat-
egy space, this means that there is some set of players C
and strategy s′C arbitrarily close to s, such that if players
C were to play s′C (by mistake or due to stochasticity),
some Player i ∈ N − C would develop a strict preference
over the support of si. To illustrate this, we return to the
laundry/washing up game of the introduction.
Example 5.0.2. Consider again the game of Table 1b. As
Figure 1 illustrates, the symmetric optimum is for both Rob
and Bot to randomize uniformly between W and L. While
this is a Nash equilibrium, it is not a local optimum in
possibly-asymmetric strategy space. If one player deviates
from uniformly randomizing, the other player develops a
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strict preference for either W or L.

To generalize the phenomenon of Example 5.0.2, we use the
following degeneracy2 condition:

Definition 5.0.3. Let s be a Nash equilibrium of a game G:
(i) If s is deterministic, i.e., if every si is a Dirac delta func-
tion on some ai, then s is degenerate if at least two players
i are indifferent between ai and some other a′i ∈ Ai − {ai}.
(ii) Otherwise, if s is mixed, then s is degenerate if for all
players i and all a−i ⊆ supp(s−i), the term EUi(ai, a−i)
is constant across ai ∈ supp(si).

We call a game G degenerate if it has at least one degenerate
Nash equilibrium.

Intuitively, our definition says that a deterministic Nash equi-
librium is non-degenerate when it is strict or almost strict
(excepting of at most one player who may be indifferent
over available actions). A mixed Nash equilibrium, on the
other hand, is non-degenerate when mixing matters.

In non-degenerate games, our next theorem shows that a
local symmetric optimum is a local optimum in possibly-
asymmetric strategy space if and only if it is deterministic.
Formally:

Theorem 5.0.4. Let G be a non-degenerate common-payoff
normal-form game, and let P ⊆ Γ(G) be a subset of the
game symmetries Γ(G). A locally optimal P-invariant strat-
egy profile is locally optimal among possibly-asymmetric
strategy profiles if and only if it is deterministic.

a b c
a 1 1 1
b 1 -10 1 + ϵ
c 1 1 + ϵ -10

To see why the non-
degeneracy condition
is needed in Theo-
rem 5.0.4, we provide
an example of a de-
generate game:

Example 5.0.5. Consider the 3x3 symmetric game shown
above. Here, (a, a) is the unique global optimum in symmet-
ric strategy space. By Theorem 4.0.2, it is therefore also a
Nash equilibrium. However, it is a degenerate Nash equilib-
rium and not locally optimal in asymmetric strategic space.
The payoff can be improved by, e.g., the row player shifting
small probability to b, and the column player shifting small
probability to c.

We have already seen an example of a non-degenerate de-
terministic equilibrium. The symmetric optimum from Sec-
tion 2.1, even though it is not the global asymmetric opti-

2We note that “degnerate” is already an established term in
the game-theoretic literature where it is often applied only to two-
player games (see, e.g, von Stengel, 2007, Definition 3.2). While
similar to the established notion of degeneracy, our definition of
degeneracy is stronger, which makes our statements about non-
degenerate games more general. (See Appendix E for details.)

mum, is nevertheless locally optimal in possibly-asymmetric
strategy space by Theorem 5.0.4.

6. Learning symmetric strategies in GAMUT
Theorem 5.0.4 shows that, in non-degenerate games, a lo-
cally optimal symmetric strategy profile is stable in the
sense of Section 5 if and only if it is pure. For those con-
cerned about stability, this raises the question: how often
are optimal strategies pure, and how often are they mixed?

To answer this question, we present an empirical analysis of
learning symmetric strategy profiles in the GAMUT suite
of game generators (Nudelman et al., 2004). We are in-
terested both in how centralized optimization algorithms
(such as gradient methods) search for symmetric strategies
and in how decentralized populations of agents evolve sym-
metric strategies. To study the former, we run Sequential
Least SQuares Programming (SLSQP) (Kraft, 1988; Vir-
tanen et al., 2020), a local search method for constrained
optimization. To study the latter, we simulate the replicator
dynamics (Fudenberg & Levine, 1998), an update rule from
evolutionary game theory with connections to reinforcement
learning (Börgers & Sarin, 1997; Tuyls et al., 2003a;b). (See
Appendix F.3 for details.)

6.1. Experimental setup

We ran experiments in all three classes of symmetric
GAMUT games: RandomGame, CoordinationGame, and
CollaborationGame. (While other classes of GAMUT
games, such as the prisoner’s dilemma, exist, they cannot
be turned into a symmetric, common-payoff game without
losing their essential structure.) Intuitively, a RandomGame
draws all payoffs uniformly at random, whereas in a Coordi-
nationGame and a CollaborationGame, the highest payoffs
are always for outcomes where all players choose the same
action. (See Appendix F.1 for details.) Because Coordina-
tionGame and CollaborationGame have such similar game
structures, our experimental results in the two games are
nearly identical. To avoid redundancy, we only include
experimental results for CoordinationGame.

For each game class, we sweep the parameters of the
game from 2 to 5 players and 2 to 5 actions, i.e., with
(|N |, |Ai|) ∈ {2, 3, 4, 5} × {2, 3, 4, 5}. We sample 100
games at each parameter setting and then attempt to cal-
culate the global symmetric optimum using (i) 10 runs of
SLSQP and (ii) 10 runs of the replicator dynamic (each with
a different initialization drawn uniformly at random over
the simplex), resulting in 10 + 10 = 20 solution attempts per
game. Because we do not have ground truth for the globally
optimal solution of the game (which is NP-hard to compute),
we instead use the best of our 20 solution attempts, which
we call the “best solution.”
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6.2. How often are symmetric optima local optima
among possibly-asymmetric strategies?

Here, we try to get a sense for how often symmetric op-
tima are stable in the sense that they are also local optima
in possibly-asymmetric strategy space (see Section 5). In
Appendix Table 3b, we show in what fraction of games the
best solution of our 20 optimization attempts is mixed; by
Theorem 5.0.4 and Proposition F.2.1 from the Appendix,
this is the fraction of games whose symmetric optima are
not local optima in possibly-asymmetric strategy space. In
CoordinationGames, the symmetric optimum is always (by
construction) for all players to choose the same action, lead-
ing to stability. By contrast, we see that 36% to 60% of
RandomGames are unstable. We conclude that if real-
world games do not have the special structure of Coordina-
tionGames, then instability may be common.

6.3. How often do SLSQP and the replicator dynamic
find an optimal solution?

As sequential least squares programming and the replicator
dynamic are not guaranteed to converge to a global optimum,
we test empirically how often each run converges to the best
solution of our 20 optimization runs. In Appendix Table 4
/ Table 6, we show what fraction of the time any single
SLSQP / replicator dynamics run finds the best solution,
and in Appendix Table 5 / Table 7, we show what fraction
of the time at least 1 of 10 SLSQP / replicator dynamics
runs finds the best solution. First, we note that the tables
for SLSQP and the replicator dynamics are quite similar,
differing by no more than a few percentage points in all
cases. So the replicator dynamics, which are used as a
model for how populations evolve strategies, can also be
used as an effective optimization algorithm. Second, we see
that individual runs of each algorithm are up to 93% likely to
find the best solution in small RandomGames, but they are
less likely (as little as 24% likely) to find the best solution
in larger RandomGames and in CoordinationGames. The
best of 10 runs, however, finds the best solution ≥ 87% of
the time; so random algorithm restarts benefit symmetric
strategy optimization.

7. Conclusion
There are a variety of reasons we expect to see symmetric
games in machine learning systems. The first is mass hard-
ware production, which will proliferate identical robots such
as self-driving cars, that require ad-hoc cooperation (Stone
et al., 2010). The second is interaction over the internet,
where websites treat all users equally. The third is anony-
mous protocols, such as voting, which depend on symmetry.
As Figure 2 shows, symmetric games can still arise even
when agents and the environment are asymmetric.

Similarly, there are a variety of reasons we expect to see
symmetric strategies in practice. The first is software copies:
we expect many artificial agents will run the same source
code. The second is optimization - enforcing symmetric
strategies exponentially reduces the joint-strategy space.
The third is parameter sharing between different neural net-
works, which can be critical to success in multi-agent RL
(Foerster et al., 2016) and may occur as a result of pretrain-
ing on large datasets (Dasari et al., 2020). The fourth is
communication: symmetry (and symmetry breaking) is a
key component of zero-shot coordination with other agents
and humans (Hu et al., 2020; Treutlein et al., 2021). The
fifth is that a single-player game with imperfect recall can
be interpreted as a multi-agent game in symmetric strategies
(Aumann et al., 1997).

When cooperative AI is deployed in the world with symmet-
ric strategy profiles, it raises questions about the properties
of such profiles. Would individual agents (or the users they
serve) want to deviate from these profiles? Are they robust
to small changes in the game or in the executed strategies?
Could there be better asymmetric strategy profiles nearby?

Our results yield a mix of good and bad news. Theorems
4.0.2 and D.0.3 are good news for stability, showing that
even local optima in symmetric strategy space are (global)
Nash equilibria in a robust sense. So, with respect to uni-
lateral deviations among team members, symmetric optima
are relatively stable. On the other hand, this may be bad
news for optimization because unilateral deviation cannot
improve on a local symmetric optimum (Example 4.1.1).
Furthermore, Theorem 5.0.4 is perhaps bad news, showing
that a broad class of symmetric local optima are unstable
when considering joint deviations in asymmetric strategy
space (Section 5). Empirically, our results with learning
algorithms in GAMUT suggest that these unstable solutions
may not be uncommon in practice (Section 6.2).

Future work could build on our analysis in a couple ways.
First, we focus on mixed strategy space. However, future
work may wish to deal with behavioral strategy space. Sec-
ond, our experimental results focus on the normal-form rep-
resentation of games in GAMUT (Nudelman et al., 2004).
It would be interesting to see what experimental proper-
ties symmetric optima have in sequential decision making
benchmarks.
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A. Veil of ignorance example
Two robots arrive at a resource that can be used by only one of them. They can choose as their action either Cautious or
Aggressive. If both choose C, one of them gets the resource at random. If exactly one chooses A, that one gets the resource.
If both choose A, the resource is destroyed and neither gets it (utility 0).

Each robot privately knows whether it has High or Low need for the resource (each type occurs independently with
probability 1/2). A robot that has High need values the resource at 6; one that has Low need values it at 4. Robots are on the
same team and care about the sum of utilities.

From behind the veil of ignorance, the optimal symmetric strategy (contingency plan) is: when having type L, always play
C; when having type H, play A with probability p = 1/6 (and C otherwise). Note, as guaranteed by Theorem 4.0.2, that this
is a Nash equilibrium. To verify this, observe that from the perspective of a robot with type H, the expected team utility for
playing A (when the other follows the given strategy with p) is (1/2) · 6+ (1/2)(1− p) · 6 = 6− 3p, and for playing C it is
(1/2)((4 + 6)/2) + (1/2) · 6 = 5.5, and if p = 1/6 these are equal. In contrast, from the perspective of a robot with type L,
the expected team utility for playing A (when the other follows the given strategy) is (1/2) · 4 + (1/2)(1− p) · 4 = 4− 3p,
and for playing C it is (1/2) · 4 + (1/2)(p · 6 + (1− p) · (4 + 6)/2) = 4.5 + p/2, so C is strictly preferred.

Overall, this optimal symmetric strategy results in an expected team utility of (1/4) · 4 + (1/2) · ((5/6) · 4 + (1/6) · 6) +
(1/4) · ((5/6)(5/6) · 4 + 2(1/6)(5/6) · 6 + (1/36) · 0) = 77/18 ≈ 4.28. Compare this with an asymmetric strategy where
robot 1 plays A when it has type H but otherwise C is always played by both robots, which results in a team utility of
(4 + 5 + 6 + 6)/4 = 21/4 = 5.25. (If types were not private knowledge, 22/4 = 11/2 = 5.5 would be possible.)

In this example, we see how players can coordinate using symmetric strategies from behind the veil of ignorance. Although
it is possible to achieve a higher payoff using asymmetric strategies, the optimal symmetric strategy is nonetheless a Nash
equilibrium by Theorem 4.0.2.

B. Proofs of Section 4 results
Theorem 4.0.2. Let G be a common-payoff normal-form game, and let P ⊆ Γ(G) be a subset of the game symmetries
Γ(G). Any locally optimal P-invariant strategy profile is a Nash equilibrium.

Proof. We proceed by contradiction. Suppose s = (s1, s2, . . . , sn) is locally optimal among P-invariant strategy profiles
that is not a Nash equilibrium. We will construct an s′ arbitrarily close to s with EU(s′) > EU(s).

Without loss of generality, suppose s1 is not a best response to s−1 but that the pure strategy of always playing a1 is a best
response to s−1. For an arbitrary probability p > 0, consider the modified strategy s′1 that plays action a1 with probability p
and follows s1 with probability 1− p. Now, construct s′ = (s′1, s

′
2, . . . , s

′
n) as follows:

s′i =

{
s′i = s′1 if i ∈ P(1)

s′i = si otherwise.

In words, s′ modifies s by having the members of player 1’s orbit mix in a probability p of playing a1. We claim for all
sufficiently small p that EU(s′) > EU(s).

To establish this claim, we break up the expected utility of s′ according to cases of how many players in 1’s orbit play the
action a1 because of mixing in a1 with probability p. In particular, we observe

EU(s′) = B(m=0, p)EU(s)

+B(m=1, p)EU((s′1, s2, . . . , sn))

+B(m>1, p)EU(. . .),

where B(m, p) is the probability of m successes for a binomial random variable on m independent events that each have
success probability p and where EU(. . .) is arbitrary. Note that the crucial step in writing this expression is grouping the
terms with the coefficient B(m=1, p). We can do this because for any player j ∈ P(1), there exists a symmetry ρ ∈ Γ(G)
with ρ(j) = 1.
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Now, to achieve EU(s′) > EU(s), we require

EU(s) <
B(m = 1, p)

B(m > 0, p)
EU((s′1, s2, . . . , sn))

+
B(m > 1, p)

B(m > 0, p)
EU(...).

We know EU((s′1, s2, ..., sn)) > EU(s), but we must deal with the case when EU(...) is arbitrarily negative. Because
limp→0 B(m > 1, p)/B(m = 1, p) = 0, by making p sufficiently small, B(m = 1, p)/B(m > 0, p) can be made greater
than B(m > 1, p)/B(m > 0, p) by an arbitrarily large ratio. The result follows.

C. Example of general symmetry in Theorem 4.0.2
Example C.0.1. There are four groups of partygoers positioned in a square. We number these 1,2,3,4 clockwise, such that,
e.g., 1 neighbors 4 and 2. There is also a robot butler at each vertex of the square. The partygoers can fetch refreshments
from the robot butler at their vertex of the square and from the robot butler at adjacent vertices of the square, but it is too far
of a walk for them to fetch refreshments from the robot at the opposite vertex.

The game has each robot butler choose what refreshment to hold. For simplicity, suppose each robot butler can hold food or
drink. The common payoff of the game is the sum of the utilities of the four groups of partygoers. For each group, if the
group cannot fetch drink, the payoff for that group is 0. If the group can only fetch drink, the payoff is 1, and if the group
can fetch food and drink, the group’s payoff is 2.

The symmetries of the game Γ(G) include the set of permutations generated by rotating the robot butlers once clockwise. In
standard notation for permutations, {(1, 2, 3, 4), (2, 3, 4, 1), (3, 4, 1, 2), (4, 1, 2, 3)} ⊂ Γ(G).

First, consider applying the theorem to P = Γ(G). In this case, the constraint of P-invariance requires all the robot butlers
play the same strategy because all of them are in the same orbit. As we show in the proof below, the optimal P-invariant
strategy is then for each robot to hold food with probability

√
2− 1. Theorem 4.0.2 tells us that this optimal P-invariant

strategy profile is a Nash equilibrium. The proof below also shows how to verify this without the use of Theorem 4.0.2.

Second, consider applying the theorem to the case where P consists only of the rotation twice clockwise, i.e., the permutation
which maps each robot onto the robot on the opposite vertex of the square. In standard notation for permutations,
P = {(3, 4, 1, 2)}. Now, the constraint of P-invariance requires robot butlers at opposite vertices of the square to play the
same strategy. However, neighboring robots can hold different refreshments. The optimal P-invariant strategy is for one
pair of opposite-vertex robots, e.g., 1 and 3, to hold food and for the other pair of robots, 2 and 4, to hold drink. While
it turns out to be immediate that this optimal P-invariant strategy is a Nash equilibrium because it achieves the globally
optimal outcome, we could have applied Theorem 4.0.2 to know that this optimal P-invariant strategy profile is a Nash
equilibrium even without knowing what the optimal P-invariant strategy was.

Proof. We here calculate the optimal Γ(G)-invariant strategy profile for Example C.0.1. Let p be the probability of holding
drink. By symmetry of the game and linearity of expectation, the expected utility given p is simply four times the expected
utility of any one group of partygoers. The utility of one group of partygoers is 0 with probability (1 − p)3, is 1 with
probability p3 and is 2 with the remaining probability. Hence, the expected utility of a single group of partygoers is

p3 + (1− (1− p)3 − p3) · 2 = 2− 2(1− p)3 − p3.

The maximum of this term (and thus the maximum of the overall utility of all neighborhoods) can be found by any computer
algebra system to be p = 2−

√
2, which gives an expected utility of 4(

√
2− 1) ≈ 1.66.

To double-check, we can also calculate the symmetric Nash equilibrium of this game. It’s easy to see that that Nash
equilibrium must be mixed and therefore must make each robot butler indifferent about what to hold. So let p again be the
probability with which each robot butler holds drink. The expected utility of holding drink relative to holding nothing for
any of the three relevant neighborhoods is 2(1− p)2. (Holding drink lifts the utility of a group of partygoers from 0 to 2 if
they can not already fetch drink. Otherwise, it doesn’t help to hold drink.) The expected utility of holding food relative to
broadcasting nothing is simply p2. We can find the symmetric Nash equilibrium by setting

2(1− p)2 = p2,

which gives us the same solution for p as before.
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D. Robustness of Theorem 4.0.2 to payoff and strategy perturbations
The first type of robustness we consider is robustness to perturbations in the game’s payoff function. Formally, we define an
ϵ-perturbation of a game as follows:

Definition D.0.1. Let G be a normal-form game with utility function µ. For some ϵ > 0, we call G′ an ϵ-perturbation of G if
G′ has utility function µ′ satisfying maxi∈N,a∈A|u′

i(a)− ui(a)| ≤ ϵ.

There are a variety of reasons why ϵ-perturbations might arise in practice. Our game model may contain errors such as the
game not being perfectly symmetric; the players’ preferences might fluctuate over time; or we might have used function
approximation to learn the game’s payoffs. With Proposition D.0.2, we note a generic observation about Nash equilibria
showing that our main result, Theorem 4.0.2, is robust in the sense of degrading linearly in the payoff perturbation’s size:

Proposition D.0.2. Let G be a common-payoff normal-form game, and let s∗ be a locally-optimal P-invariant strategy
profile for some subset of game symmetries P ⊆ Γ(G). Suppose G′ is an ϵ-perturbation of G. Then s∗ is a 2ϵ-Nash
equilibrium in G′.

Proof. By Theorem 4.0.2, s∗ is a Nash equilibrium in G. After perturbing G by ϵ to form G′, payoffs have increased /
decreased at most ±ϵ, so the difference between any two actions’ expected payoffs has changed by at most 2ϵ.

The second type of robustness we consider is robustness to symmetric solutions that are only approximate. For example, we
might try to find a symmetric local optimum through an approximate optimization method, or the evolutionary dynamics
among players’ strategies might lead them to approximate local symmetric optima. Again, a generic result about Nash
equilibria shows that the guarantee of Theorem 4.0.2 degrades linearly in this case:

Theorem D.0.3. Let G be a common-payoff normal-form game, and let s∗ be a locally-optimal P-invariant strategy profile
for some subset of game symmetries P ⊆ Γ(G). Suppose s is a strategy profile with total variation distance TV (s, s∗) ≤ δ.
Then s is an ϵ-Nash equilibrium with ϵ = 4δmaxi∈N,a∈A|ui(a)|.

Proof. Consider the perspective of an arbitrary player i. The difference in expected utility of playing any action ai between
the opponent strategy profiles s−i and s∗−i is given by:

∣∣EUi(ai, s−i)− EUi(ai, s
∗
−i)
∣∣

=

∣∣∣∣∣∣
∑

a−i∈A−i

s−i(a−i)ui(ai, a−i)

−
∑

a−i∈A−i

s∗−i(a−i)ui(ai, a−i)

∣∣∣∣∣∣
≤

∑
a−i∈A−i

|ui(ai, a−i)|
∣∣s−i(a−i)− s∗−i(a−i)

∣∣
≤ 2TV (s, s∗) max

i∈N,a∈A
|ui(a)|

≤ 2δ max
i∈N,a∈A

|ui(a)|.
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In particular, let ai be an action in the support of s∗i , and let a′i be any other action. Then, using the above, we have:

EUi(a
′
i, s−i)− EUi(ai, s−i)

= EUi(a
′
i, s−i)− EUi(a

′
i, s

∗
−i) + EUi(a

′
i, s

∗
−i)

− EUi(ai, s
∗
−i) + EUi(ai, s

∗
−i)− EUi(ai, s−i)

≤ EUi(a
′
i, s−i)− EUi(a

′
i, s

∗
−i)

+ EUi(ai, s
∗
−i)− EUi(ai, s−i)

≤
∣∣EUi(a

′
i, s−i)− EUi(a

′
i, s

∗
−i)
∣∣

+
∣∣EUi(ai, s−i)− EUi(ai, s

∗
−i)
∣∣

≤ 4δ max
i∈N,a∈A

|ui(a)|,

where EUi(a
′
i, s

∗
−i)− EUi(ai, s

∗
−i) ≤ 0 because s∗i is a Nash equilibrium by Theorem 4.0.2.

By Theorem D.0.3, we have a robustness guarantee in terms of the total variation distance between an approximate local
symmetric optimum and a true local symmetric optimum. Without much difficulty, we can also convert this into a robustness
guarantee in terms of the Kullback-Leibler divergence:

Corollary D.0.4. Let G be a common-payoff normal-form game, and let s∗ be a locally-optimal P-invariant strategy profile
for some subset of game symmetries P ⊆ Γ(G). Suppose s is a strategy profile with Kullback-Leibler divergence satisfying
DKL(s||s∗) ≤ ν or DKL(s

∗||s) ≤ ν. Then s is an ϵ-Nash equilibrium with ϵ = 2
√
2νmaxi∈N,a∈A|ui(a)|.

Proof. By Pinsker’s inequality (Tsybakov, 2009), we have

TV (s, s∗) ≤
√

1

2
DKL(s||s∗).

As TV (s, s∗) = TV (s∗, s) and with a similar application of Pinsker’s inequality, we have by assumption that TV (s, s∗) ≤√
ν/2. Applying Theorem D.0.3 with δ =

√
ν/2 yields the result.

E. Proof of Section 5 results
First, we clarify how our notion of non-degeneracy compares to the existing literature. If a two-player game G is non-
degenerate in the usual sense from the literature, it is non-degenerate in the sense of Definition 5.0.3. Moreover, if G
is common-payoff, then for each player i, we can define a two-player game played by i and another single player who
controls the strategies of N − {i}. If for all i these two-player games are non-degenerate in the established sense, then G is
non-degenerate in the sense of Definition 5.0.3.

Now, we proceed with the proof of Section 5 results:

Theorem 5.0.4. Let G be a non-degenerate common-payoff normal-form game, and let P ⊆ Γ(G) be a subset of the game
symmetries Γ(G). A locally optimal P-invariant strategy profile is locally optimal among possibly-asymmetric strategy
profiles if and only if it is deterministic.

Proof. Let s be a locally optimal P-invariant strategy profile. By Theorem 4.0.2, s is a Nash equilibrium. Because G is
non-degenerate, so is s. We prove the claim by proving that (1) if s is deterministic, it is locally optimal in asymmetric
strategy space; and (2) if s is mixed then it is not locally optimal in asymmetric strategy space.

(1) The deterministic case: Let s be deterministic. Now consider a potentially asymmetric strategy profile s′. We must show
as s′ becomes sufficiently close to s that EU(s′) ≤ EU(s).

Let ϵ1, ϵ2, ..., ϵn and ŝ1, ..., ŝn be such that for i ∈ N , s′i can be interpreted as following si with probability 1 − ϵi and
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following ŝi with probability ϵi, where si /∈ supp(ŝi). Then (similar to the proof of Theorem 4.0.2), we can write

EU(s′)

=

(∏
i∈N

(1− ϵi)

)
EU(s)

+
∑
j∈N

ϵj

 ∏
i∈N−{j}

1− ϵi

 · EU(ŝj , s−j)

+
∑

j,l∈N :j ̸=l

ϵjϵi

 ∏
i∈N−{j,l}

1− ϵi

 · EU(ŝj , ŝl, s−j−l)

+ ...

The second line is the expected value if everyone plays s, the third line is the sum over the possibilities of one player j
deviating to ŝj , and so forth. We now make two observations. First, because s is a Nash equilibrium, the expected utilities
EU(ŝj , s−j) in the third line are all at most as big as EU(s). Now consider any later term corresponding to the deviation
of some set C, containing at least two players i, j. Note that it may be EU(ŝC , s−C) > EU(s). However, this term is
multiplied by ϵiϵj . Thus, as the ϵ go to 0, the significance of this term in the average vanishes in comparison to that of
both the terms corresponding to the deviation of just i and just j, which are multiplied only by ϵi and ϵj , respectively. By
non-degeneracy, it is EU(ŝi, s−i) < EU(s) or EU(ŝj , s−j) < EU(s). Thus, if the ϵi are small enough, the overall sum is
less than EU(s).

(2) The mixed case: Let s be mixed. We proceed by constructing a strategy profile s′ that is arbitrarily close to s with
EU(s′) > EU(s).

Let m be the largest integer where for all subsets of players C ⊆ N with |C| ≤ m, the expected payoff is constant across
all joint deviations to ai ∈ supp(si) for all i ∈ C, i.e., where EU(aC , s−C) = EU(s) for all aC ∈ supp(sC). As s is a
non-degenerate Nash equilibrium, 1 ≤ m < n.

By definition of m, there exists a subset of players C ⊂ N with |C| = m and choice of actions aC ∈ supp(sC) where
EU(aj , aC , s−j−C) is not constant across the available actions aj ∈ Aj for some player j ∈ N − C. Denote player
j’s best response to the joint deviation aC as a∗j ∈ argmaxaj

EU(aj , aC , s−j−C), and note EU(aj , aC , s−j−C) >
EU(aC , s−C) = EU(s).

To construct s′, modify s by letting player j mix according to sj with probability (1− ϵ) and play action aj with probability
ϵ. Similarly, let each player i ∈ C mix according to si with probability (1− ϵ) and play their action ai specified by aC with
probability ϵ. Because we allow ϵ > 0 to be arbitrarily small, all we have left to show is EU(s′) > EU(s).

Observe as before that we can break EU(s′) up into cases based on the number of players who deviate according to the
modified probability ϵ:

EU(s′)

=

 ∏
k∈C∪{j}

(1− ϵ)

EU(s)

+
∑

l∈C∪{j}

ϵ

 ∏
k∈C∪{j}:k ̸=l

1− ϵ

EU(al, s−l)

+ ...

+

 ∏
k∈C∪{j}

ϵ

EU(aj , aC , s−j−C).

By construction, every value in the expected value calculation EU(s′) is equal to EU(s) except for the last value
EU(aj , aC , s−j−C), which is greater than EU(s). We conclude EU(s′) > EU(s).
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Player 2
α β

Player 1 α uαα uαβ

β uαβ uββ

Table 2: A payoff matrix with |N | = 2 and A1 = A2 = {α, β} to illustrate GAMUT games. In a RandomGame,
uαα, uαβ , and uββ are i.i.d. draws from Unif (−100, 100). In a CoordinationGame, uαα and uββ are i.i.d. draws from
Unif (0, 100) while uαβ is a draw from Unif (−100, 0). In a CollaborationGame, uαα = uββ = 100, and uαβ is a draw
from Unif (−100, 99).

F. GAMUT details and additional experiments
F.1. GAMUT games

In Section 6.1, we analyzed all three classes of symmetric GAMUT games: RandomGame, CoordinationGame, and
CollaborationGame. Below, we give a formal definiton of these game classes:

Definition F.1.1. A RandomGame with |N | players and |A| actions assumes Ai = Aj for all i, j and draws a payoff from
Unif (−100, 100) for each unordered action profile a ∈ A.

Definition F.1.2. A CoordinationGame with |N | players and |A| actions assumes Ai = Aj for all i, j. For each unordered
action profile a ∈ A with ai = aj for all i, j, it draws a payoff from Unif (0, 100); for all other unordered action profiles, it
draws a payoff from Unif (−100, 0).

Definition F.1.3. A CollaborationGame with |N | players and |A| actions assumes Ai = Aj for all i, j. For each unordered
action profile a ∈ A with ai = aj for all i, j, the payoff is 100; for all other unordered action profiles, it draws a payoff
from Unif (−100, 99).

Note that these games define payoffs for each unordered action profile because the games are totally symmetric (Defini-
tion 3.2.3). Table 2 gives illustrative examples.

F.2. Proof of non-degeneracy in GAMUT

Proposition F.2.1. Drawing a degenerate game is a measure-zero event in RandomGames, CoordinationGames, and
CollaborationGames, i.e., these games are almost surely non-degenerate.

Proof. By Definition 5.0.3, in order for a game to be degenerate, there must exist a player i, a set of actions for the other
players a−i, and a pair of actions ai ̸= a′i with EU(ai, a−i) = EU(a′i, a−i). In RandomGames, CoordinationGames, and
CollaborationGames, EU(ai, a−i) = µ(ai, a−i) and EU(a′i, a−i) = µ(a′i, a−i) are continuous random variables that are
independent of each other. (Or, in the case of a CollaborationGame, µ(ai, a−i) may be a fixed value outside of the support
of µ(a′i, a−i).) So EU(ai, a−i) = EU(a′i, a−i) is a measure-zero event.

F.3. Replicator dynamics

Consider a game where all players share the same action set, i.e., with Ai = Aj for all i, j, and consider a totally symmetric
strategy profile s = (s1, s1, . . . , s1). In the replicator dynamic, each action can be viewed as a species, and s1 defines the
distribution of each individual species (action) in the overall population (of actions). At each iteration of the replicator
dynamic, the prevalence of an individual species (action) grows in proportion to its relative fitness in the overall population
(of actions). In particular, the replicator dynamic evolves s1(a) over time t for each a ∈ A1 as follows:

d

dt
s1(a) = s1(a) [EU(a, s−1)− EU(s)] .

To simulate the replicator dynamic with Euler’s method, we need to choose a stepsize and a total number of iterations.
Experimentally, we found the fastest convergence with a stepsize of 1, and we found that 100 iterations sufficed for
convergence; see Figure 3. For good measure, we ran 10,000 iterations of the replicator dynamic in all of our experiments.
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Figure 3: The magnitude of the replicator dynamics update step averaged over 10,000 RandomGames3 with 2 players and 2
actions. Although this plot indicates that the replicator dynamics converge by 100 iterations, we ran 10,000 iterations for
good measure in all of our experiments.

A 2 3 4 5
N

2 0.36 0.44 0.44 0.50
3 0.38 0.49 0.59 0.60
4 0.42 0.45 0.46 0.46
5 0.45 0.48 0.49 0.47

(a) RandomGame

A 2 3 4 5
N

2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0

(b) CoordinationGame

Table 3: The fraction of games whose symmetric optima are mixed. By Theorem 5.0.4, these symmetric equilibria are the
ones unstable in the sense of Section 5. Numbers in the table were empirically determined from 100 randomly sampled
games per GAMUT class.

We are interested in the replicator dynamic for two reasons. First, it is a model for how agents in the real world may
collectively arrive at a symmetric solution to a game (e.g., through evolutionary pressure). Second, it is a learning algorithm
that performs local search in the space of symmetric strategies. In our experiments of Appendix F.5, we find that using the
replicator dynamic as an optimization algorithm is competitive with Sequential Least SQuares Programming (SLSQP), a
local search method from the constrained optimization literature (Kraft, 1988; Virtanen et al., 2020).

F.4. What fraction of symmetric optima are local optima in possibly-asymmetric strategy space?

As discussed in Section 6.2, we would like to get a sense for how often symmetric optima are stable in the sense that they
are also local optima in possibly-asymmetric strategy space (see Section 5). Table 3 shows in what fraction of games the
best solution we found is unstable.

F.5. How often do SLSQP and the replicator dynamic find an optimal solution?

As discussed in Section 6.3, Table 4 and Table 5 show how often SLSQP finds an optimal solution, while Table 6 and Table 7
show how often the replicator dynamic finds an optimal solution.

3In this simulation only we rescaled the RandomGames so that each payoff is a draw from Unif (0, 1).
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A 2 3 4 5
N

2 0.92 0.81 0.70 0.64
3 0.80 0.69 0.57 0.48
4 0.75 0.57 0.40 0.35
5 0.70 0.45 0.36 0.31

(a) RandomGame

A 2 3 4 5
N

2 0.59 0.50 0.40 0.33
3 0.53 0.38 0.28 0.29
4 0.53 0.37 0.29 0.26
5 0.53 0.36 0.33 0.25

(b) CoordinationGame

Table 4: The fraction of single SLSQP runs that achieve the best solution found in our 20 total optimization attempts.
Numbers in the table were empirically determined from 100 randomly sampled games per GAMUT class.

A 2 3 4 5
N

2 1.00 0.99 0.99 0.98
3 1.00 0.99 1.00 0.96
4 1.00 0.96 0.94 0.88
5 0.98 0.90 0.88 0.91

(a) RandomGame

A 2 3 4 5
N

2 0.99 1.00 0.98 0.97
3 1.00 0.99 0.93 0.95
4 1.00 0.97 0.97 0.93
5 0.99 1.00 0.95 0.92

(b) CoordinationGame

Table 5: The fraction of games in which at least 1 of 10 SLSQP runs achieves the best solution found in our 20 total
optimization attempts. Numbers in the table were empirically determined from 100 randomly sampled games per GAMUT
class.

A 2 3 4 5
N

2 0.93 0.81 0.68 0.65
3 0.81 0.70 0.58 0.46
4 0.76 0.58 0.36 0.34
5 0.69 0.43 0.36 0.30

(a) RandomGame

A 2 3 4 5
N

2 0.58 0.45 0.40 0.33
3 0.57 0.35 0.29 0.27
4 0.53 0.37 0.28 0.25
5 0.51 0.33 0.33 0.24

(b) CoordinationGame

Table 6: The fraction of single replicator dynamics runs that achieve the best solution found in our 20 total optimization
attempts. Numbers in the table were empirically determined from 100 randomly sampled games per GAMUT class.

A 2 3 4 5
N

2 1.00 1.00 1.00 1.00
3 0.99 1.00 0.95 0.96
4 1.00 0.98 0.91 0.91
5 0.98 0.97 0.92 0.87

(a) RandomGame

A 2 3 4 5
N

2 1.00 1.00 0.99 0.94
3 1.00 0.97 0.93 0.96
4 0.99 1.00 0.93 0.92
5 1.00 0.98 0.96 0.90

(b) CoordinationGame

Table 7: The fraction games in which at least 1 of 10 replicator dynamics runs achieves the best solution found in our 20
total optimization attempts. Numbers in the table were empirically determined from 100 randomly sampled games per
GAMUT class.



990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

For Learning in Symmetric Teams, Local Optima are Global Nash Equilibria

A 2 3 4 5
N

2 58.9% 55.9% 61.8% 64.6%
3 73.7% 70.9% 73.4% 73.7%
4 74.1% 77.4% 78.4% 82.5%
5 77.4% 84.9% 89.9% 87.5%

(a) RandomGame

Table 8: The average decrease in expected utility that worst-case infinitesimal asymmetric payoff perturbations cause to
unstable symmetric optima. To get these numbers, we first perturb payoffs in the 100 RandomGames from Section 6.2
whose symmetric optima s are not local optima in possibly-asymmetric strategy space. Then, in each perturbed game, we
compute a simultaneous best-response update to s and record its decrease in expected utility.

F.6. How costly is payoff perturbation under the simultaneous best response dynamic?

When a game is not stable in the sense of Section 5, we would like to understand how costly the worst-case ϵ-perturbation of
the game can be. (See Definition D.0.1 for the definition of an ϵ-perturbation of a game.) In particular, we study the case
when individuals simultaneously update their strategies in possibly-asymmetric ways by defining the following simultaneous
best response dynamic:

Definition F.6.1. The simultaneous best response dynamic at s updates from strategy profile s = (s1, s2, . . . , sn) to strategy
profile s′ = (s′1, s

′
2, . . . , s

′
n) with every s′i a best response to s−i.

For each of the RandomGames in Section 6.2 whose symmetric optimum s is not a local optimum in possibly-asymmetric
strategy space, we compute the worst-case ϵ payoff perturbation for infinitesimal ϵ. Then, we update each player’s strategy
according to the simultaneous best response dynamic at s. This necessarily leads to a decrease in the original common
payoff because the players take simultaneous updates on an objective that, after payoff perturbation, is no longer common.
Table 8 reports the average percentage decrease in expected utility, which ranges from 55% to 89%. Our results indicate that
simultaneous best responses after payoff perturbation in RandomGames can be quite costly.

G. Code and computational resources
All of our code is available at [URL redacted for blind peer review; please find the code uploaded as supplementary material]
under the MIT License. With a reduced number of random seeds, we guess that it would be possible to reproduce the
experiments in this paper on a modern laptop. To test a large number of random seeds, we ran our experiments for a few
days on an Amazon Web Services c5.24xlarge instance.

Our code uses the following Python libraries:

• Matplotlib (Hunter, 2007), released under “a nonexclusive, royalty-free, world-wide license,”

• NumPy (Harris et al., 2020), released under the BSD 3-Clause “New” or “Revised” License,

• pandas (Reback et al., 2021; Wes McKinney, 2010), released under the BSD 3-Clause “New” or “Revised” License,

• SciPy (Virtanen et al., 2020), released under the BSD 3-Clause “New” or “Revised” License, and

• SymPy (Meurer et al., 2017), released under the New BSD License.


