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Abstract

For allocation problems with one or more items, the well-known Vickrey-
Clarke-Groves (VCG) mechanism (aka. Clarke mechanism, Generalized Vickrey
Auction) is efficient, strategy-proof, individually rational, and does notincur a
deficit. However, it is not (strongly) budget balanced: generally, the agents’ pay-
ments will sum to more than0. We study mechanisms thatredistributesome of
the VCG payments back to the agents, while maintaining the desirable properties
of the VCG mechanism. Our objective is to come as close to budget balanceas
possible in theworst case (so that we do not require a prior). For auctions with
multiple indistinguishable units in which marginal values are nonincreasing, we
derive a mechanism that is optimal in this sense. We also derive an optimalmech-
anism for the case where we drop the non-deficit requirement. Finally, we show
that if marginal values are not required to be nonincreasing, then the original VCG
mechanism is worst-case optimal.

1 Introduction

In resource allocation problems, we want to allocate the resources (oritems) to the
agents that value them the most. Unfortunately, agents’ valuations are private knowl-
edge, and self-interested agents will lie about their valuations if this is to their benefit.
One solution is toauction off the items, possibly in acombinatorialauction where
agents can bid on bundles of items. There exist ways of determining the payments
that the agents make in such an auction that incentivizes theagents to report their true
valuations—that is, the payments make the auctionstrategy-proof. One very general
way of doing so is to use the VCG mechanism [30, 6, 16]. (In thispaper, “the VCG
mechanism” refers to the Clarke mechanism, not to any other Groves mechanism. In
the specific context of auctions, the VCG mechanism is also known as the Generalized
Vickrey Auction.1)

1The phrase “VCG mechanisms” is sometimes used to refer to the class of all Groves mechanisms, which
includes the Clarke mechanism. The new mechanisms that we propose in this paper are in fact also Groves
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Besides strategy-proofness, the VCG mechanism has severalother nice properties
in the context of resource allocation problems. (Throughout, we assumefree disposal,
that is, not all items need to be allocated to the agents.) It is efficient: the chosen
allocation always maximizes the sum of the agents’ valuations. It is also(ex-post)
individually rational: participating in the mechanism never makes an agent worse off
than not participating. Finally, it has anon-deficitproperty: the sum of the agents’
payments is always nonnegative.

In many settings, another property that would be desirable is (strong) budget bal-
ance, meaning that the payments sum to exactly0. Suppose the agents are trying to
distribute some resources among themselves that do not havea previous owner. For
example, the agents may be trying to allocate the right to usea shared good on a given
day. Or, the agents may be trying to allocate a resource that they have collectively
constructed, discovered, or otherwise obtained. If the agents use an auction to allo-
cate these resources, and the sum of the agents’ payments in the auction is positive,
then this surplus payment must leave the system of the agents(for example, the agents
must give the money to an outside party, or burn it). Naı̈ve redistribution of the surplus
payment (e.g.each of then agents receives1/n of the surplus) will generally result in
a mechanism that is not strategy-proof (e.g. in a Vickrey auction, the second-highest
bidder would want to increase her bid to obtain a larger redistribution payment). Unfor-
tunately, the VCG mechanism is not budget balanced: typically, there is surplus pay-
ment. Unfortunately, in general settings, it is in fact impossible to design mechanisms
that satisfy budget balance in addition to the other desirable properties [21, 15, 14, 26].

In light of this impossibility result, several authors haveobtained budget balance by
sacrificing some of the other desirable properties [3, 9, 27,8]. Another approach that
is perhaps preferable is to use a mechanism that is “more” budget balanced than the
VCG mechanism, and maintains all the other desirable properties. One way of trying
to design such a mechanism is to redistribute some of the VCG payment back to the
agents in a way that will not affect the agents’ incentives (so that strategy-proofness is
maintained), and that will maintain the other properties. In 2006, Cavallo [4] pursued
exactly this idea, and designed a mechanism that redistributes a large amount of the
total VCG payment while maintaining all of the other desirable properties of the VCG
mechanism. For example, in a single-item auction (where theVCG mechanism coin-
cides with the second-price sealed-bid auction), the amount redistributed to bidderi by
Cavallo’s mechanism is1/n times the second-highest bid among bidsother thani’s
bid. The total redistributed is at most the second-highest bid overall, and the redistribu-
tion to agenti does not affecti’s incentives because it does not depend oni’s own bid.
For general settings, Cavallo’s mechanism considers how small an agent could make
the total VCG payment by changing her bid (the resulting minimal total VCG payment
is never greater than the actual total VCG payment), and redistributes1/n of that to the
agent (and therefore satisfies the non-deficit property).2

mechanisms.
2In this mechanism, as well as in the mechanisms introduced in thispaper, an agent may end up making

a negative payment (receiving a positive amount) overall. Forexample, an agent may not win anything and
still receive a positive redistribution payment. Under the restriction that payments must be nonnegative,
several authors have proposed mechanisms that maximize the agents’ combined utility after deducting the
payments, in expectation [20, 5].
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In this paper, we extend Cavallo’s technique in a limited setting. We study alloca-
tion settings where there are multiple indistinguishable units of a single good, and each
agent’s valuation function is concave—that is, agents have nonincreasing marginal val-
ues. For this setting, Cavallo’s mechanism coincides with amechanism proposed by
Bailey in 1997 [3]. (For the case of a single item, the same mechanism has also been
proposed by Porteret al. [28].) Cavallo’s mechanism and Bailey’s mechanism are in
fact the same in any setting under which VCG satisfiesrevenue monotonicity, for the
following reason. Bailey’s mechanism redistributes to each agent1/n of the total VCG
payment that would result if this agent were removed from theauction. If the total VCG
payment is nondecreasing in agents, then, when computing payments under Cavallo’s
mechanism, the bid that would minimize the total VCG paymentis the one that has a
valuation of0 for everything, which is equivalent to not participating inthe auction.
Hence, Cavallo’s mechanism results in the same redistribution payment as Bailey’s.
It is well-known that in general, the VCG mechanism doesnot satisfy this revenue
monotonicity criterion [2, 7, 31, 32, 33] (this is in fact true for a much wider class of
mechanisms [29]). However, in more restricted settings, such as the ones considered in
this paper, revenue monotonicity often holds.

From Section 2 to Section 9, we consider a slightly simpler setting where all agents
haveunit demand, i.e. they want only a single unit. We propose the family oflinear
VCG redistribution mechanisms. All mechanisms in this family are efficient, strategy-
proof, individually rational, and never incur a deficit. Thefamily includes the Bailey-
Cavallo mechanism as a special case (with the caveat that Bailey’s and Cavallo’s mech-
anisms can be applied in more general settings). We then provide an optimization
model for finding the optimal mechanism inside the family, based on worst-case anal-
ysis. We convert this optimization model into a linear program. Both numerical and
analytical solutions of this linear program are provided, and the resulting mechanism
shows significant improvement over the Bailey-Cavallo mechanism (in the worst case).
For example, for the problem of allocating a single unit, when the number of agents
is 10, the resulting mechanism always redistributes more than98% of the total VCG
payment back to the agents (whereas the Bailey-Cavallo mechanism redistributes only
80% in the worst case). Finally, we prove that this mechanism is in fact optimal among
all anonymous deterministic mechanisms (even nonlinear ones)that satisfy the desir-
able properties.

Around the same time, the same mechanism (in the unit demand setting only) has
been independently derived by Moulin [24].3 Moulin actually pursues a different ob-
jective (also based on worst-case analysis): whereas our objective is to maximize the
fraction of VCG payments that are redistributed, Moulin tries to minimize the overall
payments from agents as a fraction of efficiency. It turns outthat the resulting mech-
anisms are the same. However, for our objective, the optimalmechanism does not
change even if the individual rationality requirement is dropped, while for Moulin’s ob-
jective, dropping individual rationality does change the optimal mechanism (but only
if there are multiple units).

In Section 9, we drop the non-deficit requirement and solve for the mechanism that
is as close to budget balance as possible (in the worst case).This mechanism is in fact

3We thank Rakesh Vohra for pointing us to Moulin’s working paper.
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closer to budget balance than the best non-deficit mechanism.4

In Section 10, we consider the more general setting where theagents do not nec-
essarily have unit demand, but have nonincreasing marginalvalues. We generalize the
optimal redistribution mechanism to this setting (both with and without the individual
rationality constraint, and both with or without the non-deficit constraint). In each case,
the worst-case performance is the same as for the unit demandsetting.

Finally, in Section 11, we consider multi-unit auctions without restrictions on the
agents’ valuations—marginal values may increase. Here, we show a negative result:
when there are at least two units, no redistribution mechanism performs better (in the
worst case) than the original VCG mechanism (redistributing nothing).

2 Problem Description

From this section to Section 9, we consider only the unit demand setting. (Units are
indistinguishable throughout the paper.) Letn denote the number of agents, and let
m denote the number of units. We only consider the case wherem < n (otherwise
the problem becomes trivial in the unit demand setting). We also assume thatm and
n are always known. This assumption is not harmful: in environments where anyone
can join the auction, running a redistribution mechanism istypically not a good idea
anyway, because everyone would want to join to collect part of the redistribution.

In the unit demand setting, an agent’s marginal value for anyunit after the first is
zero. Hence, the agent’s valuation function corresponds toa single value, which is her
valuation for having at least one unit.

Let the set of agents be{a1, a2, . . . , an}, whereai is the agent withith highest
report valuêvi—that is, we havêv1 ≥ v̂2 ≥ . . . ≥ v̂n ≥ 0. Let vi denote the true value
of ai. Given that the mechanism is strategy-proof, we can assumevi = v̂i.

Under the VCG mechanism, each agent amonga1, . . . , am wins a unit, and pays
v̂m+1 for this unit. Thus, the total VCG payment equalsmv̂m+1. Whenm = 1, this is
the second-price or Vickrey auction.

We modify the mechanism as follows. After running the original VCG mechanism,
the center returns to each agentai some amountzi, agentai’s redistribution payment.
We do not allowzi to depend on̂vi; because of this,ai’s incentives are unaffected by
this redistribution payment, and the mechanism remains strategy-proof.

3 Linear VCG Redistribution Mechanisms

We are now ready to introduce the family of linear VCG redistribution mechanisms.
Such a mechanism is defined by a vector of constantsc0, c1, . . . , cn−1. The amount that
the mechanism returns to agentai is zi = c0 +c1v̂1 +c2v̂2 + . . .+ci−1v̂i−1 +civ̂i+1 +
. . . + cn−1v̂n. That is, an agent receivesc0, plusc1 times the highest bidother than
the agent’s own bid, plusc2 times the second-highest other bid,etc. The mechanism

4Moulin [24] also notes that dropping the non-deficit requirement can bring us closer to budget balance,
but does not solve for the optimal mechanism.
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is strategy-proof, because for alli, zi is independent of̂vi. Also, the mechanism is
anonymous and efficient.

It is helpful to see the entire list of redistribution payments:
z1 = c0 + c1v̂2 + c2v̂3 + c3v̂4 + . . . + cn−2v̂n−1 + cn−1v̂n

z2 = c0 + c1v̂1 + c2v̂3 + c3v̂4 + . . . + cn−2v̂n−1 + cn−1v̂n

z3 = c0 + c1v̂1 + c2v̂2 + c3v̂4 + . . . + cn−2v̂n−1 + cn−1v̂n

z4 = c0 + c1v̂1 + c2v̂2 + c3v̂3 + . . . + cn−2v̂n−1 + cn−1v̂n

...
zi = c0 + c1v̂1 + c2v̂2 + . . . + ci−1v̂i−1 + civ̂i+1 + . . . + cn−1v̂n

...
zn−2 = c0 + c1v̂1 + c2v̂2 + c3v̂3 + . . . + cn−2v̂n−1 + cn−1v̂n

zn−1 = c0 + c1v̂1 + c2v̂2 + c3v̂3 + . . . + cn−2v̂n−2 + cn−1v̂n

zn = c0 + c1v̂1 + c2v̂2 + c3v̂3 + . . . + cn−2v̂n−2 + cn−1v̂n−1

Not all choices of the constantsc0, . . . , cn−1 produce a mechanism that is individually
rational, and not all choices of the constants produce a mechanism that never incurs
a deficit. Hence, to obtain these properties, we need to placesome constraints on the
constants.

To satisfy the individual rationality criterion, each agent’s utility should always be
nonnegative. An agent that does not win a unit obtains a utility that is equal to the
agent’s redistribution payment. An agent that wins a unit obtains a utility that is equal
to the agent’s valuation for the unit, minus the VCG paymentv̂m+1, plus the agent’s
redistribution payment.

Consider agentan, the agent with the lowest bid. Since this agent does not win an
item (m < n), her utility is just her redistribution paymentzn. Hence, for the mech-
anism to be individually rational, theci must be such thatzn is always nonnegative.
If the ci have this property, then it actually follows thatzi is nonnegative foreveryi,
for the following reason. Suppose there exists somei < n and some vector of bids
v̂1 ≥ v̂2 ≥ . . . ≥ v̂n ≥ 0 such thatzi < 0. Then, consider the bid vector that results
from replacingv̂j by v̂j+1 for all j ≥ i, and lettingv̂n = 0. If we omit v̂n from this
vector, the same vector results that results from omittingv̂i from the original vector.
Therefore,an’s redistribution payment under the new vector should be thesame asai’s
redistribution payment under the old vector—but this payment is negative.

If all redistribution payments are always nonnegative, then the mechanism must
be individually rational (because the VCG mechanism is individually rational, and the
redistribution payment only increases an agent’s utility). Therefore, the mechanism is
individually rational if and only if for any bid vector,zn ≥ 0.

To satisfy the non-deficit criterion, the sum of the redistribution payments should
be less than or equal to the total VCG payment. So for any bid vector v̂1 ≥ v̂2 ≥ . . . ≥
v̂n ≥ 0, the constantsci should makez1 + z2 + . . . + zn ≤ mv̂m+1.

We define the family of linear VCG redistribution mechanismsto be the set of all
redistribution mechanisms corresponding to constantsci that satisfy the above con-
straints (so that the mechanisms will be individually rational and have the non-deficit
property). It turns out that some of theci always need to be set to0, as the following
claim demonstrates.

5



Claim 1 If c0, c1, . . . , cn−1 satisfy both the individual rationality and the non-deficit
constraints, thenci = 0 for i = 0, . . . ,m.

Proof: First, let us prove thatc0 = 0. Consider the bid vector in whicĥvi = 0
for all i. To obtain individual rationality, we must havec0 ≥ 0. To satisfy the non-
deficit constraint, we must havec0 ≤ 0. Thus we knowc0 = 0. Now, if ci = 0
for all i, there is nothing to prove. Otherwise, letj = min{i|ci 6= 0}. Assume that
j ≤ m. We recall that we can write the individual rationality constraint as follows:
zn = c0 + c1v̂1 + c2v̂2 + c3v̂3 + . . . + cn−2v̂n−2 + cn−1v̂n−1 ≥ 0 for any bid vector.
Let us consider the bid vector in whicĥvi = 1 for i ≤ j and v̂i = 0 for the rest. In
this casezn = cj , so we must havecj ≥ 0. The non-deficit constraint can be written
as follows:z1 + z2 + . . . + zn ≤ mv̂m+1 for any bid vector. Consider the same bid
vector as above. We havezi = 0 for i ≤ j, because for these bids, thejth highest other
bid has value0, so all theci that are nonzero are multiplied by0. For i > j, we have
zi = cj , because thejth highest other bid has value1, and all lower bids have value
0. So the non-deficit constraint tells us thatcj(n − j) ≤ mv̂m+1. Becausej ≤ m,
v̂m+1 = 0, so the right hand side is 0. We also haven − j > 0 becausej ≤ m < n.
Socj ≤ 0. Because we have already established thatcj ≥ 0, it follows thatcj = 0; but
this is contrary to assumption. Soj > m.

Incidentally, this claim also shows that ifm = n − 1, thenci = 0 for all i. Thus,
we are stuck with the VCG mechanism (more details in Claim 7).From here on, we
only consider the case wherem < n − 1.

We now give two examples of mechanisms in this family.
Example 1 (Bailey-Cavallo mechanism):Consider the mechanism corresponding
to cm+1 = m

n and ci = 0 for all other i. Under this mechanism, each agent re-
ceives a redistribution payment ofm

n times the(m + 1)th highest bid from another
agent. Hence,a1, . . . , am+1 receive a redistribution payment ofmn v̂m+2, and the
others receivem

n v̂m+1. Thus, the total redistribution payment is(m + 1)m
n v̂m+2 +

(n − m − 1)m
n v̂m+1. This redistribution mechanism is individually rational,because

all the redistribution payments are nonnegative, and neverincurs a deficit, because
(m + 1)m

n v̂m+2 + (n−m− 1)m
n v̂m+1 ≤ nm

n v̂m+1 = mv̂m+1. (We note that for this
mechanism to make sense, we needn ≥ m + 2.)
Example 2: Consider the mechanism corresponding tocm+1 = m

n−m−1 , cm+2 =

− m(m+1)
(n−m−1)(n−m−2) , andci = 0 for all otheri. In this mechanism, each agent receives a

redistribution payment of m
n−m−1 times the(m+1)th highest reported value from other

agents, minus m(m+1)
(n−m−1)(n−m−2) times the(m+2)th highest reported value from other

agents. Thus, the total redistribution payment ismv̂m+1 −
m(m+1)(m+2)

(n−m−1)(n−m−2) v̂m+3. If

n ≥ 2m + 3 (which is equivalent to m
n−m−1 ≥ m(m+1)

(n−m−1)(n−m−2) ), then each agent al-
ways receives a nonnegative redistribution payment, thus the mechanism is individually
rational. Also, the mechanism never incurs a deficit, because the total VCG payment
is mv̂m+1, which is greater than the amountmv̂m+1 −

m(m+1)(m+2)
(n−m−1)(n−m−2) v̂m+3 that is

redistributed.
Which of these two mechanisms is better? Is there another mechanism that is even

better? This is what we study in the next section.
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4 Optimal Redistribution Mechanisms

Among all linear VCG redistribution mechanisms, we would like to be able to identify
the one that redistributes the greatest fraction of the total VCG payment.5 This is not
a well-defined notion: it may be that one mechanism redistributes more on some bid
vectors, and another more on other bid vectors. We emphasizethat we do not assume
that a prior distribution over bidders’ valuations is available, so we cannot compare
them based on expected redistribution. Below, we study three well-defined ways of
comparing redistribution mechanisms: best-case performance, dominance, and worst-
case performance.

Best-case performance.One way of evaluating a mechanism is by considering
the highest redistribution fraction that it achieves. Consider the previous two exam-
ples. For the first example, the total redistribution payment is (m + 1)m

n v̂m+2 +
(n − m − 1)m

n v̂m+1. When v̂m+2 = v̂m+1, this is equal to the total VCG pay-
mentmv̂m+1. Thus, this mechanism redistributes100% of the total VCG payment
in the best case. For the second example, the total redistribution payment ismv̂m+1 −

m(m+1)(m+2)
(n−m−1)(n−m−2) v̂m+3. When v̂m+3 = 0, this is equal to the total VCG payment
mv̂m+1. Thus, this mechanism also redistributes100% of the total VCG payment in
the best case.

Moreover, there are actually infinitely many mechanisms that redistribute100% of
the total VCG payment in the best case—for example, any convexcombination of the
above two will redistribute100% if both v̂m+2 = v̂m+1 andv̂m+3 = 0.

Dominance. Inside the family of linear VCG redistribution mechanisms,we say
one mechanismdominatesanother mechanism if the first one redistributes at least as
much as the other foranybid vector. For the previous two examples, neither dominates
the other, because they each redistribute100% in different cases. It turns out that there
is no mechanism in the family that dominates all other mechanisms in the family. For
suppose such a mechanism exists. Then, it should dominate both examples above. Con-
sider theremainingVCG payment (the VCG payment failed to be redistributed). The
remaining VCG payment of the dominant mechanism should be0 whenever̂vm+2 =
v̂m+1 or v̂m+3 = 0. Now, the remaining VCG payment is a linear function of thev̂i

(linear redistribution), and therefore also a polynomial function. The above implies that
this function can be written as(v̂m+2 − v̂m+1)(v̂m+3)P (v̂1, v̂2, . . . , v̂n), whereP is a
polynomial function. But since the function must be linear (has degree at most1), it
follows thatP = 0. Thus, a dominant mechanism would always redistribute all of the
VCG payment, which is not possible. (If it were possible, then our worst-case optimal
redistribution mechanism would also always redistribute all of the VCG payment, and
we will see later that it does not.)

Worst-case performance.Finally, we can evaluate a mechanism by considering
the lowest redistribution fraction that it guarantees. Forthe first example, the total
redistribution payment is(m + 1)m

n v̂m+2 + (n − m − 1)m
n v̂m+1, which is greater

than or equal to(n − m − 1)m
n v̂m+1. In the worst case, which is when̂vm+2 = 0,

5The fraction redistributed seems a natural criterion to use.One good property of this criterion is that it
is scale-invariant: if we multiply all bids by the same positive constant (for example, if we change the units
by re-expressing the bids in euros instead of dollars), we would not want the behavior of our mechanism to
change.
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the fraction redistributed isn−m−1
n . For the second example, the total redistribu-

tion payment ismv̂m+1 − m(m+1)(m+2)
(n−m−1)(n−m−2) v̂m+3, which is greater than or equal to

mv̂m+1(1 − (m+1)(m+2)
(n−m−1)(n−m−2) ). In the worst case, which is when̂vm+3 = v̂m+1,

the fraction redistributed is1 − (m+1)(m+2)
(n−m−1)(n−m−2) . Since we assume that the number

of agentsn and the number of unitsm are known, we can determine which example
mechanism has better worst-case performance by comparing the two quantities. When
n = 6 andm = 1, for the first example (Bailey-Cavallo mechanism), the fraction re-
distributed in the worst case is23 , and for the second example, this fraction is1

2 , which
implies that for this pair ofn andm, the first mechanism has better worst-case perfor-
mance. On the other hand, whenn = 12 andm = 1, for the first example, the fraction
redistributed in the worst case is56 , and for the second example, this fraction is14

15 ,
which implies that this time the second mechanism has betterworst-case performance.

In this paper, we compare mechanisms by the fraction of the total VCG payment
that they redistribute in the worst case. This fraction is undefined when the total VCG
payment is0. To deal with this, technically, we define the worst-case redistribution
fraction as the largestk so that the total amount redistributed is at leastk times the total
VCG payment, for all bid vectors. (Hence, as long as the totalamount redistributed is
at least0 when the total VCG payment is0, these cases do not affect the worst-case
fraction.) This corresponds to the following optimizationproblem:

Maximize k (the fraction redistributed in the worst case)
Subject to:
For every bid vector̂v1 ≥ v̂2 ≥ . . . ≥ v̂n ≥ 0
zn ≥ 0 (individual rationality)
z1 + z2 + . . . + zn ≤ mv̂m+1 (non-deficit)
z1 + z2 + . . . + zn ≥ kmv̂m+1 (worst-case constraint)
We recall thatzi = c0 + c1v̂1 + c2v̂2 + . . . + ci−1v̂i−1 + civ̂i+1 + . . . + cn−1v̂n

5 Transformation to Linear Programming

The optimization problem given in the previous section can be rewritten as a linear
program, based on the following observations.

Claim 2 The individual rationality constraint can be written as follows:
∑j

i=m+1 ci ≥
0 for j = m + 1, . . . , n − 1.

Before proving this claim, we introduce the following lemma.

Lemma 1 Given a positive integerk and a set of real constantss1, s2, . . . , sk, (s1t1 +
s2t2 + . . . + sktk ≥ 0 for anyt1 ≥ t2 ≥ . . . ≥ tk ≥ 0) if and only if (

∑j
i=1 si ≥ 0 for

j = 1, 2, . . . , k).

Proof: Let di = ti − ti+1 for i = 1, 2, . . . , k − 1, anddk = tk. Then (s1t1 + s2t2 +
. . . + sktk ≥ 0 for any t1 ≥ t2 ≥ . . . ≥ tk ≥ 0) is equivalent to ((

∑1
i=1 si)d1 +

(
∑2

i=1 si)d2 + . . . + (
∑k

i=1 si)dk ≥ 0 for any set of arbitrary nonnegativedi). When
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∑j
i=1 si ≥ 0 for j = 1, 2, . . . , k, the above inequality is obviously true. If for some

j,
∑j

i=1 si < 0, if we setdj > 0 anddi = 0 for all i 6= j, then the above inequality
becomes false. So

∑j
i=1 si ≥ 0 for j = 1, 2, . . . , k is both necessary and sufficient.

We are now ready to present the proof of Claim 2.

Proof: The individual rationality constraint can be written aszn = c0 + c1v̂1 + c2v̂2 +
c3v̂3 + . . . + cn−2v̂n−2 + cn−1v̂n−1 ≥ 0 for any bid vector̂v1 ≥ v̂2 ≥ . . . ≥ v̂n−1 ≥
v̂n ≥ 0. We have already shown thatci = 0 for i ≤ m. Thus, the above can be
simplified to zn = cm+1v̂m+1 + cm+2v̂m+2 + . . . + cn−2v̂n−2 + cn−1v̂n−1 ≥ 0
for any bid vector. By the above lemma, this is equivalent to

∑j
i=m+1 ci ≥ 0 for

j = m + 1, . . . , n − 1.

Claim 3 The non-deficit constraint and the worst-case constraint can also be written
as linear inequalities involving only theci andk.

Proof: The non-deficit constraint requires that for any bid vector, z1 + z2 + . . .+ zn ≤
mv̂m+1, wherezi = c0 + c1v̂1 + c2v̂2 + . . . + ci−1v̂i−1 + civ̂i+1 + . . . + cn−1v̂n for
i = 1, 2, . . . , n. Becauseci = 0 for i ≤ m, we can simplify this inequality to

qm+1v̂m+1 + qm+2v̂m+2 + . . . + qnv̂n ≥ 0
qm+1 = m − (n − m − 1)cm+1

qi = −(i − 1)ci−1 − (n − i)ci, for i = m + 2, . . . , n − 1 (whenm + 2 > n − 1,
this set of equalities is empty)

qn = −(n − 1)cn−1

By the above lemma, this is equivalent to
∑j

i=m+1 qi ≥ 0 for j = m + 1, . . . , n.
So, we can simplify further as follows:

qm+1 ≥ 0 ⇐⇒ (n − m − 1)cm+1 ≤ m

qm+1 + . . . + qm+i ≥ 0 ⇐⇒ n
∑j=m+i−1

j=m+1 cj + (n − m − i)cm+i ≤ m for
i = 2, . . . , n − m − 1

qm+1 + . . . + qn ≥ 0 ⇐⇒ n
∑j=n−1

j=m+1 cj ≤ m

So, the non-deficit constraint can be written as a set of linear inequalities involving
only theci.

The worst-case constraint can be also written as a set of linear inequalities, by
the following reasoning. The worst-case constraint requires that for any bid input
z1 + z2 + . . . + zn ≥ kmv̂m+1, wherezi = c0 + c1v̂1 + c2v̂2 + . . . + ci−1v̂i−1 +
civ̂i+1 + . . . + cn−1v̂n for i = 1, 2, . . . , n. Becauseci = 0 for i ≤ m, we can simplify
this inequality to

Qm+1v̂m+1 + Qm+2v̂m+2 + . . . + Qnv̂n ≥ 0
Qm+1 = (n − m − 1)cm+1 − km
Qi = (i − 1)ci−1 + (n − i)ci, for i = m + 2, . . . , n − 1

9



Qn = (n − 1)cn−1

By the above lemma, this is equivalent to
∑j

i=m+1 Qi ≥ 0 for j = m + 1, . . . , n.
So, we can simplify further as follows:

Qm+1 ≥ 0 ⇐⇒ (n − m − 1)cm+1 ≥ km

Qm+1 + . . . + Qm+i ≥ 0 ⇐⇒ n
∑j=m+i−1

j=m+1 cj + (n − m − i)cm+i ≥ km for
i = 2, . . . , n − m − 1

Qm+1 + . . . + Qn ≥ 0 ⇐⇒ n
∑j=n−1

j=m+1 cj ≥ km

So, the worst-case constraint can also be written as a set of linear inequalities in-
volving only theci andk.

Combining all the claims, we see that the original optimization problem can be
transformed into the following linear program.

Variables: cm+1, cm+2, . . . , cn−1, k
Maximize k (the fraction redistributed in the worst case)
Subject to:
∑j

i=m+1 ci ≥ 0 for j = m + 1, . . . , n − 1
km ≤ (n − m − 1)cm+1 ≤ m

km ≤ n
∑j=m+i−1

j=m+1 cj + (n − m − i)cm+i ≤ m for i = 2, . . . , n − m − 1

km ≤ n
∑j=n−1

j=m+1 cj ≤ m

6 Numerical Results

For selected values ofn andm, we solved the linear program using Glpk (GNU Linear
Programming Kit). In this section, we compare the resultingmechanisms with the
Bailey-Cavallo mechanism.

6.1 Worst-case performance

In the table below, we present the results for a single unit (m = 1). The second
column displays the fraction of the total VCG payment that isnot redistributed in the
worst case by the worst-case optimal mechanism—that is, it displays the value1 − k.
(Displayingk would require too many significant digits.) Correspondingly, the third
column displays the fraction of the total VCG payment that isnot redistributed by the
Bailey-Cavallo mechanism in the worst case (which is equal to 2

n ).
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n Worst-Case Optimal Mechanism Bailey-Cavallo Mechanism
3 66.7% 66.7%
4 42.9% 50.0%
5 26.7% 40.0%
6 16.1% 33.3%
7 9.52% 28.6%
8 5.51% 25.0%
9 3.14% 22.2%
10 1.76% 20.0%
15 8.55e − 4 13.3%
20 3.62e − 5 10.0%
30 5.40e − 8 6.67e − 2
40 7.09e − 11 5.00e − 2

In the above table, we showed that whenm = 1, the worst-case optimal mechanism
significantly outperforms the Bailey-Cavallo mechanism inthe worst case. For larger
m (m = 1, 2, 3, 4, n = m + 2, . . . , 30), we compare the worst-case performance of
these two mechanisms in Figure 1. We see that for anym, whenn = m+2, the worst-
case optimal mechanism has the same worst-case performanceas the Bailey-Cavallo
mechanism (actually, in this case, the worst-case optimal mechanism is identical to the
Bailey-Cavallo mechanism). Whenn > m + 2, the worst-case optimal mechanism
outperforms the Bailey-Cavallo mechanism (in the worst case).
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Figure 1: A comparison of the worst-case performance of the worst-case optimal mech-
anism (WO) and the Bailey-Cavallo mechanism (BC).
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In Section 10, we will see that in the more general setting where agents have non-
increasing marginal values, the worst-case redistribution fraction for the (generalized)
worst-case optimal mechanism is the same as for the unit demand setting. The same is
true for the Bailey-Cavallo mechanism. Hence, Figure 1 doesnot change in this more
general setting.

6.2 Average-case performance

It is perhaps not surprising that the worst-case optimal mechanism significantly out-
performs the Bailey-Cavallo mechanism in the worst case, because that is, after all,
the case for which the former has been designed. We can also compare how much
the mechanisms redistribute on average (say, when the bids are drawn i.i.d. from a
uniform distribution over[0, 1]). In this case, the worst-case optimal mechanism does
not always outperform the Bailey-Cavallo mechanism. The following table compares
the expected amount of VCG payment that fails to be redistributed by the worst-case
optimal mechanism and by the Bailey-Cavallo mechanism (m = 1).

n Worst-Case Optimal Mechanism Bailey-Cavallo Mechanism
3 0.1667 0.1667
4 0.1714 0.1000
5 0.08889 0.06667
6 0.06912 0.04762
7 0.03571 0.03571
8 0.02450 0.02778
9 0.01255 0.02222
10 0.008006 0.01818
15 3.739e − 4 0.008333
20 1.726e − 5 0.004762
30 2.614e − 8 0.002151
40 3.461e − 11 0.001220

We see that whenn is small, the Bailey-Cavallo mechanism outperforms the worst-
case optimal redistribution mechanism in expectation (except for the casen = 3, for
which the two mechanisms are the same). Whenn is large (n ≥ 8), the worst-case
optimal redistribution mechanism outperforms the Bailey-Cavallo mechanism. The
results are similar for largerm. That is, whenn is small, the Bailey-Cavallo mechanism
outperforms the worst-case optimal redistribution mechanism in expectation (except
for the casen = m + 2, for which the two mechanisms are the same). Whenn is large
(e.g.n ≥ 10 for m = 2; n ≥ 13 for m = 3; n ≥ 16 for m = 4), the worst-case
optimal redistribution mechanism performs better than theBailey-Cavallo mechanism.
In fact, this is not surprising: the expected amount that fails to be redistributed by the
Bailey-Cavallo mechanism vanishes asΘ( 1

n2 ). This is slower than the convergence
rate of theworst-caseredistribution fraction for the worst-case optimal mechanism
(Corollary 1); and, of course, the average-case performance of the worst-case optimal
mechanism must be at least as good as its worst-case performance. This also shows
that the worst-case optimal mechanism asymptotically outperforms the Bailey-Cavallo
mechanism, even in the average case.
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6.3 A detailed example

Finally, let us present the result for the casen = 5,m = 1 in detail. By solving the
above linear program, we find that the optimal values for theci arec2 = 11

45 , c3 = − 1
9 ,

and c4 = 1
15 . That is, the redistribution payment received by each agentunder the

worst-case optimal mechanism is:11
45 times the second highest bid among the other

agents, minus19 times the third highest bid among the other agents, plus1
15 times the

fourth highest bid among the other agents.

agenta1 receives11
45 v̂3 −

1
9 v̂4 + 1

15 v̂5

agenta2 receives11
45 v̂3 −

1
9 v̂4 + 1

15 v̂5

agenta3 receives11
45 v̂2 −

1
9 v̂4 + 1

15 v̂5

agenta4 receives11
45 v̂2 −

1
9 v̂3 + 1

15 v̂5

agenta5 receives11
45 v̂2 −

1
9 v̂3 + 1

15 v̂4

The total amount redistributed by the worst-case optimal mechanism is11
15 v̂2 + 4

15 v̂3 −
4
15 v̂4 + 4

15 v̂5; in the worst case,1115 v̂2 is redistributed. Hence, the fraction of the total
VCG payment that is not redistributed is never more than4

15 = 26.7%.
As a specific example, for the bid vectorv̂1 = 4, v̂2 = 3, v̂3 = 2, v̂4 = 1, v̂5 = 1,

the total amount redistributed by the worst-case optimal redistribution mechanism is
11
15 v̂2 + 4

15 v̂3 − 4
15 v̂4 + 4

15 v̂5 = 11
153 + 4

152 − 4
151 + 4

151 = 41
15 . The total amount

redistributed by the Bailey-Cavallo mechanism is2
5 v̂3 + 3

5 v̂2 = 2
52+ 3

53 = 13
5 . Hence,

for this bid vector, the worst-case optimal redistributionmechanism redistributes more.
As another specific example, for the bid vectorv̂1 = 4, v̂2 = 3, v̂3 = 2, v̂4 =

2, v̂5 = 1, the total amount redistributed by the worst-case optimal redistribution mech-
anism is11

15 v̂2 + 4
15 v̂3−

4
15 v̂4 + 4

15 v̂5 = 11
153+ 4

152− 4
152+ 4

151 = 37
15 . The total amount

redistributed by the Bailey-Cavallo mechanism is still13
5 . Hence, for this bid vector,

the Bailey-Cavallo mechanism redistributes more.

7 Analytical Characterization of the Worst-Case
Optimal Mechanism

We recall that our linear program has the following form:

Variables: cm+1, cm+2, . . . , cn−1, k
Maximize k (the fraction redistributed in the worst case)
Subject to:
∑j

i=m+1 ci ≥ 0 for j = m + 1, . . . , n − 1
km ≤ (n − m − 1)cm+1 ≤ m

km ≤ n
∑j=m+i−1

j=m+1 cj + (n − m − i)cm+i ≤ m for i = 2, . . . , n − m − 1

km ≤ n
∑j=n−1

j=m+1 cj ≤ m

A linear program has no solution if and only if either the objective is unbounded, or
the constraints are contradictory (there is no feasible solution). It is easy to see thatk is
bounded above by 1 (redistributing more than100% violates the non-deficit constraint).
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Also, a feasible solution always exists, for example,k = 0 andci = 0 for all i. So an
optimal solution always exists. Observe that the linear program model depends only
on the number of agentsn and the number of unitsm. Hence the optimal solution
is a function ofn andm. It turns out that this optimal solution can be analytically
characterized as follows.

Theorem 1 For any m and n with n ≥ m + 2, the worst-case optimal mechanism
(among linear VCG redistribution mechanisms) is unique. For this mechanism, the
fraction redistributed in the worst case is

k∗ = 1 −

(
n−1
m

)

∑n−1
j=m

(
n−1

j

)

The worst-case optimal mechanism is characterized by the following values for theci:

c∗i =
(−1)i+m−1(n − m)

(
n−1
m−1

)

i
∑n−1

j=m

(
n−1

j

)
1

(
n−1

i

)

n−1∑

j=i

(
n − 1

j

)

for i = m + 1, . . . , n − 1.

It should be noted that we have provedci = 0 for i ≤ m in Claim 1.

Proof: We first rewrite the linear program as follows. We introducenew variables
xm+1, xm+2, . . . , xn−1, defined byxj =

∑j
i=m+1 ci for j = m + 1, . . . , n − 1. The

linear program then becomes:

Variables: xm+1, xm+2, . . . , xn−1, k
Maximize k
Subject to:
km ≤ (n − m − 1)xm+1 ≤ m
km ≤ (m + i)xm+i−1 + (n − m − i)xm+i ≤ m for i = 2, . . . , n − m − 1
km ≤ nxn−1 ≤ m
xi ≥ 0 for i = m + 1,m + 2, . . . , n − 1

We will prove that for any optimal solution to this linear program,k = k∗. More-
over, we will prove that whenk = k∗, xj =

∑j
i=m+1 c∗i for j = m + 1, . . . , n − 1.

This will prove the theorem.
We first make the following observations:

(n − m − 1)c∗m+1

= (n − m − 1)
(n−m)(n−1

m−1)
(m+1)

∑
n−1

j=m
(n−1

j )
1

(n−1

m+1)

∑n−1
j=m+1

(
n−1

j

)

= (n − m − 1)
(n−m)(n−1

m−1)
(m+1)

∑
n−1

j=m
(n−1

j )
1

(n−1

m+1)
(
∑n−1

j=m

(
n−1

j

)
−

(
n−1
m

)
)

= (n − m − 1) m
n−m−1 − (n − m − 1)

m(n−1

m )
(n−m−1)

∑
n−1

j=m
(n−1

j )
= m − (1 − k∗)m = k∗m
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For i = m + 1, . . . , n − 2,
ic∗i + (n − i − 1)c∗i+1

= i
(−1)i+m−1(n−m)(n−1

m−1)
i
∑

n−1

j=m
(n−1

j )
1

(n−1

i )

∑n−1
j=i

(
n−1

j

)

+ (n − i − 1)
(−1)i+m(n−m)(n−1

m−1)
(i+1)

∑
n−1

j=m
(n−1

j )
1

(n−1

i+1)

∑n−1
j=i+1

(
n−1

j

)

=
(−1)i+m−1(n−m)(n−1

m−1)∑
n−1

j=m
(n−1

j )
1

(n−1

i )

∑n−1
j=i

(
n−1

j

)

− (n − i − 1)
(−1)i+m−1(n−m)(n−1

m−1)
(i+1)

∑
n−1

j=m
(n−1

j )
i+1

(n−1

i )(n−i−1)

∑n−1
j=i+1

(
n−1

j

)

=
(−1)i+m−1(n−m)(n−1

m−1)∑
n−1

j=m
(n−1

j )

= (−1)i+m−1m(1 − k∗)

Finally,
(n − 1)c∗n−1

= (n − 1)
(−1)n+m(n−m)(n−1

m−1)
(n−1)

∑
n−1

j=m
(n−1

j )
1

(n−1

n−1)

∑n−1
j=n−1

(
n−1

j

)

= (−1)m+nm(1 − k∗)

Summarizing the above, we have:
(n − m − 1)c∗m+1 = k∗m
(m + 1)c∗m+1 + (n − m − 2)c∗m+2 = m(1 − k∗)
(m + 2)c∗m+2 + (n − m − 3)c∗m+3 = −m(1 − k∗)
(m + 3)c∗m+3 + (n − m − 4)c∗m+4 = m(1 − k∗)

...
(n − 3)c∗n−3 + 2c∗n−2 = (−1)m+n−2m(1 − k∗)
(n − 2)c∗n−2 + c∗n−1 = (−1)m+n−1m(1 − k∗)
(n − 1)c∗n−1 = (−1)m+nm(1 − k∗)

Let x∗
j =

∑j
i=m+1 c∗i for j = m + 1,m + 2, . . . , n − 1, the first equation in the

above tells us that(n − m − 1)x∗
m+1 = k∗m.

By adding the first two equations, we get(m+2)x∗
m+1 +(n−m− 2)x∗

m+2 = m.
By adding the first three equations, we get(m+3)x∗

m+2+(n−m−3)x∗
m+3 = k∗m.

By adding the firsti equations, wherei = 2, . . . , n−m−1, we get(m+i)x∗
m+i−1+

(n − m − i)x∗
m+i = m if i is even;(m + i)x∗

m+i−1 + (n − m − i)x∗
m+i = k∗m if i

is odd.
Finally by adding all the equations, we getnx∗

n−1 = m if n−m is even;nx∗
n−1 =

k∗m if n − m is odd.

Thus, for all of the constraints other than the nonnegativity constraints, we have
shown that they are satisfied by settingxj = x∗

j =
∑j

i=m+1 c∗i andk = k∗. We next
show that the nonnegativity constraints are satisfied by these settings as well.
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For m + 1 ≤ i, i + 1 ≤ n − 1, we have1
i

∑
n−1

j=i
(n−1

j )

(n−1

i )
= 1

i

∑n−1
j=i

i!(n−1−i)!
j!(n−1−j)! ≥

1
i+1

∑n−2
j=i

i!(n−1−i)!
j!(n−1−j)! ≥

1
i+1

∑n−2
j=i

(i+1)!(n−1−i−1)!
(j+1)!(n−1−j−1)! = 1

i+1

∑
n−1

j=i+1
(n−1

j )

(n−1

i+1)
This implies that the absolute value ofc∗i is decreasing asi increases (if thec∗i

contains more than one number). We further observe that the sign of c∗i alternates, with
the first elementc∗m+1 positive. Sox∗

j =
∑j

i=m+1 c∗i ≥ 0 for all j. Thus, we have
shown that thesexi = x∗

i together withk = k∗ form a feasible solution of the linear
program. We proceed to show that it is in fact the unique optimal solution.

First we prove the following claim:

Claim 4 If k̂, x̂i, i = m + 1,m + 2, . . . , n − 1 satisfy the following inequalities:

k̂m ≤ (n − m − 1)x̂m+1 ≤ m

k̂m ≤ (m + i)x̂m+i−1 + (n − m − i)x̂m+i ≤ m for i = 2, . . . , n − m − 1

k̂m ≤ nx̂n−1 ≤ m
k̂ ≥ k∗

then we must have thatx̂i = x∗
i and k̂ = k∗.

PROOF OF CLAIM. Consider the first inequality. We know that(n−m−1)x∗
m+1 =

k∗m, so (n − m − 1)x̂m+1 ≥ k̂m ≥ k∗m = (n − m − 1)x∗
m+1. It follows that

x̂m+1 ≥ x∗
m+1 (n − m − 1 6= 0).

Now, consider the next inequality fori = 2. We know that(m + 2)x∗
m+1 + (n −

m−2)x∗
m+2 = m. It follows that(n−m−2)x̂m+2 ≤ m−(m+2)x̂m+1 ≤ m−(m+

2)x∗
m+1 = (n−m−2)x∗

m+2, sox̂m+2 ≤ x∗
m+2 (i = 2 ≤ n−m−1 ⇒ n−m−2 6= 0).

Now consider the next inequality fori = 3. We know that(m+3)x∗
m+2+(n−m−

3)x∗
m+3 = m. It follows that(n−m−3)x̂m+3 ≥ k̂m−(m+3)x̂m+2 ≥ k∗m−(m+

3)x∗
m+2 = (n−m−3)x∗

m+3, sox̂m+3 ≥ x∗
m+3 (i = 3 ≤ n−m−1 ⇒ n−m−3 6= 0).

Proceeding like this all the way up toi = n − m − 1, we get that̂xm+i ≥ x∗
m+i

if i is odd and̂xm+i ≤ x∗
m+i if i is even. Moreover, if one inequality is strict, then all

subsequent inequalities are strict. Now, if we can provex̂n−1 = x∗
n−1, it would follow

that thex∗
i are equal to thêxi (which also implies that̂k = k∗).

We consider two cases:
Case 1: n − m is even. We have:n − m even⇒ n − m − 1 odd⇒ x̂n−1 ≥

x∗
n−1. We also have:n − m even⇒ nx∗

n−1 = m. Combining these two, we get
m = nx∗

n−1 ≤ nx̂n−1 ≤ m ⇒ x̂n−1 = x∗
n−1.

Case 2: n − m is odd. In this case, we havêxn−1 ≤ x∗
n−1, andnx∗

n−1 = k∗m.
Then, we have:k∗m ≤ k̂m ≤ nx̂n−1 ≤ nx∗

n−1 = k∗m ⇒ x̂n−1 = x∗
n−1.

This completes the proof of the claim.

It follows that if k̂, x̂i, i = m + 1,m + 2, . . . , n − 1 is a feasible solution and
k̂ ≥ k∗, then since all the inequalities in Claim 4 are satisfied, we must havêxi = x∗

i

and k̂ = k∗. Hence no other feasible solution is as good as the one described in the
theorem.
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Knowing the analytical characterization of the worst-caseoptimal mechanism pro-
vides us with at least two major benefits. First, using these formulas is computationally
more efficient than solving the linear program using a general-purpose solver. Second,
we can derive the following corollary.

Corollary 1 If the number of unitsm is fixed, then as the number of agentsn in-
creases, the worst-case fraction redistributed linearly converges to1, with a rate of

convergence12 . (That is,limn→∞
1−k∗

n+1

1−k∗

n
= 1

2 . That is, in the limit, the fraction that
is not redistributed halves for every additional agent.)

We note that this is consistent with the experimental data for the single-unit case,
where the worst-case remaining fraction roughly halves each time we add another
agent. The worst-case fraction that is redistributed underthe Bailey-Cavallo mech-
anism also converges to1 as the number of agents goes to infinity, but the conver-
gence is much slower—it does not converge linearly (that is, letting kC

n be the frac-
tion redistributed by the Bailey-Cavallo mechanism in the worst case forn agents,

limn→∞
1−kC

n+1

1−kC
n

= limn→∞
n

n+1 = 1). We now present the proof of the corollary.

Proof: When the number of agents isn, the worst-case fraction redistributed isk∗
n =

1 −
(n−1

m )
∑

n−1

j=m
(n−1

j )
. When the number of agents isn + 1, the fraction becomesk∗

n+1 =

1 −
(n

m)
∑

n

j=m
(n

j)
. For n sufficiently large, we will have2n − mnm−1 > 0, and hence

1−k∗

n+1

1−k∗

n
=

(n

m)
∑

n−1

j=m
(n−1

j )

(n−1

m )
∑

n

j=m
(n

j)
= n

n−m

2n−1−
∑

m−1

j=0
(n−1

j )

2n−
∑

m−1

j=0
(n

j)
, and n

n−m
2n−1−m(n−1)m−1

2n ≤

1−k∗

n+1

1−k∗

n
≤ n

n−m
2n−1

2n−mnm−1 (because
(
n
j

)
≤ ni if j ≤ i).

Since we havelimn→∞
n

n−m
2n−1−m(n−1)m−1

2n = 1
2 , andlimn→∞

n
n−m

2n−1

2n−mnm−1 =

1
2 , it follows thatlimn→∞

1−k∗

n+1

1−k∗

n
= 1

2 .

8 Worst-Case Optimality Outside the Family

In this section, we prove that the worst-case optimal redistribution mechanism among
linear VCG redistribution mechanisms is in fact optimal (inthe worst case) amongall
redistribution mechanisms that are deterministic, anonymous, strategy-proof, efficient
and satisfy the non-deficit constraint. Thus, restricting our attention to linear VCG
redistribution mechanisms did not come at a loss.

To prove this theorem, we need the following lemma. This lemma is not new: it was
informally stated by Cavallo [4]. For completeness, we present it here with a detailed
proof.

Lemma 2 A VCG redistribution mechanism is deterministic, anonymous and strategy-
proof if and only if there exists a functionf : R

n−1 → R, so that the redistribution
paymentzi received byai satisfies

zi = f(v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n)
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for all i and all bid vectors.

Proof: First, let us prove the “only if” direction, that is, if a VCGredistribution mech-
anism is deterministic, anonymous and strategy-proof thenthere exists a deterministic
functionf : Rn−1 → R, which makeszi = f(v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n) for all i
and all bid vectors.

If a VCG redistribution mechanism is deterministic and anonymous, then for any
bid vectorv̂1 ≥ v̂2 ≥ . . . ≥ v̂n, the mechanism outputs a unique redistribution pay-
ment list: z1, z2, . . . , zn. Let G : R

n → R
n be the function that mapŝv1, v̂2, . . . , v̂n

to z1, z2, . . . , zn for all bid vectors. LetH(i, x1, x2, . . . , xn) be theith element of
G(x1, x2, . . . , xn), so thatzi = H(i, v̂1, v̂2, . . . , v̂n) for all bid vectors and all1 ≤
i ≤ n. Because the mechanism is anonymous, two agents should receive the same
redistribution payment if their bids are the same. So, ifv̂i = v̂j , H(i, v̂1, v̂2, . . . , v̂n) =
H(j, v̂1, v̂2, . . . , v̂n). Hence, if we letj = min{t|v̂t = v̂i}, thenH(i, v̂1, v̂2, . . . , v̂n) =
H(j, v̂1, v̂2, . . . , v̂n).

Let us defineK : Rn → N × R
n as follows:K(y, x1, x2, . . . , xn−1) =

[j, w1, w2, . . . , wn], wherew1, w2, . . . , wn arey, x1, x2, . . . , xn−1 sorted in descend-
ing order, andj = min{t|wt = y}. ({t|wt = y} 6= ∅ becausey ∈ {w1, w2, . . . , wn}).

Also let us defineF : Rn → R by F (v̂i, v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n) =
H ◦ K(v̂i, v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n) = H(min{t|v̂t = v̂i}, v̂1, v̂2, . . . , v̂n)
= H(i, v̂1, v̂2, . . . , v̂n) = zi. That is,F is the redistribution payment to an agent that
bids v̂i when the other bids arêv1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n.

Since our mechanism is required to be strategy-proof, and the space of valua-
tions is unrestricted,zi should be independent of̂vi by Lemma 1 in Cavallo [4].
Hence, we can simply ignore the first variable input toF ; let f(x1, x2, . . . , xn−1) =
F (0, x1, x2, . . . , xn−1). So, we havezi = f(v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n) for all bid
vectors andi. This completes the proof for the “only if” direction.

For the “if” direction, if the redistribution payment received byai satisfieszi =
f(v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n) for all bid vectors andi, then this is clearly a de-
terministic and anonymous mechanism. To prove strategy-proofness, we observe that
because an agent’s redistribution payment is not affected by her own bid, her incentives
are the same as in the VCG mechanism, which is strategy-proof.

Now we are ready to introduce the next theorem:

Theorem 2 For any m and n with n ≥ m + 2, the worst-case optimal mechanism
among the family of linear VCG redistribution mechanisms isworst-case optimal among
all mechanisms that are deterministic, anonymous, strategy-proof, efficient and satisfy
the non-deficit constraint.

While we needed individual rationality earlier in the paper,this theorem does not
mention it, that is, we cannot find a mechanism with better worst-case performance
even if we sacrifice individual rationality. (The worst-case optimal linear VCG redis-
tribution mechanism is of course individually rational.)

Proof: Suppose there is a redistribution mechanism (when the number of units ism
and the number of agents isn) that satisfies all of the above properties and has a better
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worst-case performance than the worst-case optimal linearVCG redistribution mecha-
nism, that is, its worst-case redistribution fractionk̂ is strictly greater thank∗.

By Lemma 2, for this mechanism, there is a functionf : R
n−1 → R so that

zi = f(v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n) for all i and all bid vectors. We first prove that
f has the following properties.

Claim 5 f(1, 1, . . . , 1, 0, 0, . . . , 0) = 0 if the number of1s is less than or equal tom.

PROOF OF CLAIM. We assumed that for this mechanism, the worst-case redistribu-
tion fraction satisfieŝk > k∗ ≥ 0. If the total VCG payment isx, the total redistribution
payment should be in[k̂x, x] (non-deficit criterion). Consider the case where all agents
bid 0, so that the total VCG payment is also0. Hence, the total redistribution pay-
ment should be in[k̂ · 0, 0]—that is, it should be0. Hence every agent’s redistribution
paymentf(0, 0, . . . , 0) must be0.

Now, let ti = f(1, 1, . . . , 1, 0, 0, . . . , 0) where the number of1s equalsi. We
provedt0 = 0. If tn−1 = 0, consider the bid vector where everyone bids1. The total
VCG payment ism and the total redistribution payment isnf(1, 1, . . . , 1) = ntn−1 =
0. This corresponds to0% redistribution, which is contrary to our assumption that
k̂ > k∗ ≥ 0. Now, considerj = min{i|ti 6= 0} (which is well-defined because
tn−1 6= 0). If j > m, the property is satisfied. Ifj ≤ m, consider the bid vector where
v̂i = 1 for i ≤ j and v̂i = 0 for all otheri. Under this bid vector, the firstj agents
each get redistribution paymenttj−1 = 0, and the remainingn − j agents each gettj .
Thus, the total redistribution payment is(n− j)tj . Because the total VCG payment for
this bid vector is0, we must have(n − j)tj = 0. Sotj = 0 (j ≤ m < n). But this is
contrary to the definition ofj. Hencef(1, 1, . . . , 1, 0, 0, . . . , 0) = 0 if the number of
1s is less than or equal tom.

Claim 6 f satisfies the following inequalities:

k̂m ≤ (n − m − 1)tm+1 ≤ m

k̂m ≤ (m + i)tm+i−1 + (n − m − i)tm+i ≤ m for i = 2, 3, . . . , n − m − 1

k̂m ≤ ntn−1 ≤ m

Hereti is defined as in the proof of Claim 5.

PROOF OF CLAIM. For j = m + 1, . . . , n, consider the bid vectors wherêvi = 1
for i ≤ j and v̂i = 0 for all otheri. These bid vectors together with the non-deficit
constraint and worst-case constraint produce the above setof inequalities: for example,
whenj = m + 1, we consider the bid vector̂vi = 1 for i ≤ m + 1 andv̂i = 0 for all
otheri. The firstm+1 agents each receive a redistribution payment oftm = 0, and all
other agents each receivetm+1. Thus, the total VCG redistribution is(n−m−1)tm+1.
The non-deficit constraint gives(n−m−1)tm+1 ≤ m (because the total VCG payment
is m). The worst-case constraint gives(n−m−1)tm+1 ≥ k̂m. Combining these two,
we get the first inequality. The other inequalities can be obtained in the same way.

We now observe that the inequalities in Claim 6, together with k̂ ≥ k∗, are the same
as those in Claim 4 (where theti are replaced by thêxi). Thus, we can conclude that
k̂ = k∗, which is contrary to our assumption̂k > k∗. Hence no mechanism satisfying
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all the listed properties has a redistribution fraction greater thank∗ in the worst case.

So far we have only talked about the case wheren ≥ m + 2. For the purpose of
completeness, we provide the following claim for then = m + 1 case. (We assume
n > m in the unit demand setting.)

Claim 7 For anym andn with n = m + 1, the original VCG mechanism (that is, re-
distributing nothing) is (uniquely) worst-case optimal among all redistribution mecha-
nisms that are deterministic, anonymous, strategy-proof,efficient and satisfy the non-
deficit constraint.

We recall that whenn = m + 1, Claim 1 tells us that the only mechanism inside the
family of linear redistribution mechanisms is the originalVCG mechanism, so that this
mechanism is automatically worst-case optimal inside thisfamily. However, to prove
the above claim, we need to show that it is worst-case optimalamongall redistribution
mechanisms that have the desired properties.

Proof: Suppose a redistribution mechanism exists that satisfies all of the above prop-
erties and has a worst-case performance as good as the original VCG mechanism, that
is, its worst-case redistribution fraction is greater thanor equal to0. This implies that
the total redistribution payment of this mechanism is always nonnegative.

By Lemma 2, for this mechanism, there is a functionf : R
n−1 → R so that

zi = f(v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n) for all i and all bid vectors. We will prove that
f(x1, x2, . . . , xn−1) = 0 for all x1 ≥ x2 ≥ . . . ≥ xn−1 ≥ 0.

First, consider the bid vector wherêvi = 0 for all i. Here, each agent receives a
redistribution paymentf(0, 0, . . . , 0). The total redistribution payment is then
nf(0, 0, . . . , 0), which should be both greater than or equal to0 (by the above obser-
vation) as well less than or equal to0 (using the non-deficit criterion and the fact that
the total VCG payment is0). It follows thatf(0, 0, . . . , 0) = 0. Now, let us consider
the bid vector wherêv1 = x1 ≥ 0 andv̂i = 0 for all otheri. For this bid vector, the
agent with the highest bid receives a redistribution payment of f(0, 0, . . . , 0) = 0, and
the othern − 1 agents each receivef(x1, 0, . . . , 0). By the same reasoning as above,
the total redistribution payment should be both greater than or equal to0 and less than
or equal to0, hencef(x1, 0, . . . , 0) = 0 for all x1 ≥ 0.

Proceeding by induction, let us assumef(x1, x2, . . . , xk, 0, . . . , 0) = 0 for all x1 ≥
x2 ≥ . . . ≥ xk ≥ 0, for somek < n − 1. Consider the bid vector wherêvi = xi for
i ≤ k + 1, andv̂i = 0 for all other i, where thexi are arbitrary numbers satisfying
x1 ≥ x2 ≥ . . . ≥ xk ≥ xk+1 ≥ 0. For the agents with the highestk + 1 bids,
their redistribution payment is specified byf acting on an input with onlyk non-zero
variables. Hence they all receive0 by induction assumption. The othern − k − 1
agents each receivef(x1, x2, . . . , xk, xk+1, 0, . . . , 0). The total redistribution payment
is then(n − k − 1)f(x1, x2, . . . , xk, xk+1, 0, . . . , 0), which should be both greater
than or equal to0, and less than or equal to the total VCG payment. Now, in this
bid vector, the lowest bid is0 becausek + 1 < n. But sincen = m + 1, the total
VCG payment ismv̂n = 0. So we havef(x1, x2, . . . , xk, xk+1, 0, . . . , 0) = 0 for
all x1 ≥ x2 ≥ . . . ≥ xk ≥ xk+1 ≥ 0. By induction, this statement holds for all
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k < n − 1; whenk + 1 = n − 1, we havef(x1, x2, . . . , xn−2, xn−1) = 0 for all
x1 ≥ x2 ≥ . . . ≥ xn−2 ≥ xn−1 ≥ 0. Hence, in this mechanism, the redistribution
payment is always0; that is, the mechanism is just the original VCG mechanism.

Incidentally, we obtain the following corollary:

Corollary 2 No VCG redistribution mechanism satisfies all of the following: deter-
minism, anonymity, strategy-proofness, efficiency, and (strong) budget balance. This
holds for anyn ≥ m + 1.

Proof: For the casen ≥ m + 2: If such a mechanism exists, its worst-case perfor-
mance would be better than that of the worst-case optimal linear VCG redistribution
mechanism, which by Theorem 1 obtains a redistribution fraction strictly less than1.
But Theorem 2 shows that it is impossible to outperform this mechanism in the worst
case.

For the casen = m + 1: If such a mechanism exists, it would perform as well
as the original VCG mechanism in the worst case, which implies that it is identical to
the VCG mechanism by Claim 7. But the VCG mechanism is not (strongly) budget
balanced.

9 Worst-Case Optimal Mechanism When Deficits Are
Allowed

In the previous section, we showed that even if the individual rationality requirement
is dropped, the worst-case optimal redistribution mechanism remains the same. In this
section, we consider dropping the non-deficit requirement,and try to find the redistri-
bution mechanism that deviates the least from budget balance (in the worst case).

We define theimbalanceto be the absolute difference between the total redistri-
bution and the total VCG payment, and define theimbalance fractionto be the ratio
between the imbalance and the total VCG payment. Our goal is to minimize the worst-
case imbalance fraction. Finding the optimal linear mechanism corresponds to the
following optimization model:

Minimize kd (the imbalance fraction in the worst case)
Subject to:
For every bid vector̂v1 ≥ v̂2 ≥ . . . ≥ v̂n ≥ 0
zn ≥ 0 (individual rationality)
|z1 + z2 + . . . + zn − mv̂m+1| ≤ kdmv̂m+1 (imbalance constraint)
We recall thatzi = c0 + c1v̂1 + c2v̂2 + . . . + ci−1v̂i−1 + civ̂i+1 + . . . + cn−1v̂n

The imbalance constraint can also be written as
(1 − kd)mv̂m+1 ≤ z1 + z2 + . . . + zn ≤ (1 + kd)mv̂m+1

The above optimization model can be transformed into a linear program, based on
the following observations.
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Claim 8 If c0, c1, . . . , cn−1 satisfy both the individual rationality and the imbalance
constraints, thenci = 0 for i = 0, . . . ,m.

The proof is a slight modification of the proof of Claim 1.

Proof: First, let us prove thatc0 = 0. Consider the bid vector in whicĥvi = 0 for
all i. To obtain individual rationality, we must havec0 ≥ 0. To satisfy the imbalance
constraint, we must havec0 ≤ 0. Thus we knowc0 = 0. Now, if ci = 0 for all i,
there is nothing to prove. Otherwise, letj = min{i|ci 6= 0}. Assume thatj ≤ m.
We recall that we can write the individual rationality constraint as follows:zn = c0 +
c1v̂1 + c2v̂2 + c3v̂3 + . . . + cn−2v̂n−2 + cn−1v̂n−1 ≥ 0 for any bid vector. Let us
consider the bid vector in whicĥvi = 1 for i ≤ j and v̂i = 0 for the rest. In this
casezn = cj , so we must havecj ≥ 0. The imbalance constraint requires that :
z1 + z2 + . . .+ zn ≤ (1+ kd)mv̂m+1 for any bid vector. Consider the same bid vector
as above. We havezi = 0 for i ≤ j, because for these bids, thejth highest other bid
has value0, so all theci that are nonzero are multiplied by0. For i > j, we have
zi = cj , because thejth highest other bid has value1, and all lower bids have value0.
So the imbalance constraint tells us thatcj(n− j) ≤ (1+kd)mv̂m+1. Becausej ≤ m,
v̂m+1 = 0, so the right hand side is 0. We also haven − j > 0 becausej ≤ m < n.
Socj ≤ 0. Because we have already established thatcj ≥ 0, it follows thatcj = 0; but
this is contrary to assumption. Soj > m.

Claim 9 The imbalance constraint can be written as linear inequalities involving only
theci andkd.

The proof is a slight modification of the proof of Claim 3.

Proof: The imbalance constraint requires that for any bid vector,(1 − kd)mv̂m+1 ≤
z1 +z2 + . . .+zn ≤ (1+kd)mv̂m+1, wherezi = c0 +c1v̂1 +c2v̂2 + . . .+ci−1v̂i−1 +
civ̂i+1 + . . . + cn−1v̂n for i = 1, 2, . . . , n. Becauseci = 0 for i ≤ m, we can simplify
this inequality to

qm+1v̂m+1 + qm+2v̂m+2 + . . . + qnv̂n ≥ 0
qm+1 = (n − m − 1)cm+1 − (1 − kd)m
qi = (i − 1)ci−1 + (n − i)ci, for i = m + 2, . . . , n − 1
qn = (n − 1)cn−1

Qm+1v̂m+1 + Qm+2v̂m+2 + . . . + Qnv̂n ≤ 0
Qm+1 = (n − m − 1)cm+1 − (1 + kd)m
Qi = (i − 1)ci−1 + (n − i)ci, for i = m + 2, . . . , n − 1
Qn = (n − 1)cn−1

By Lemma 1, this is equivalent to
∑j

i=m+1 qi ≥ 0 for j = m + 1, . . . , n and
∑j

i=m+1 Qi ≤ 0 for j = m + 1, . . . , n. So, we can simplify further as follows:
(1 − kd)m ≤ (n − m − 1)cm+1 ≤ (1 + kd)m

(1−kd)m ≤ n
∑j=m+i−1

j=m+1 cj +(n−m− i)cm+i ≤ (1+kd)m for i = 2, . . . , n−
m − 1
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(1 − kd)m ≤ n
∑j=n−1

j=m+1 cj ≤ (1 + kd)m

So, the imbalance constraint can also be written as a set of linear inequalities in-
volving only theci andkd.

Combining all the claims (together with Claim 2), we see thatthe original opti-
mization problem can be transformed into the following linear program.

Variables: cm+1, cm+2, . . . , cn−1, kd

Minimize kd (the imbalance fraction in the worst case)
Subject to:
∑j

i=m+1 ci ≥ 0 for j = m + 1, . . . , n − 1
(1 − kd)m ≤ (n − m − 1)cm+1 ≤ (1 + kd)m

(1−kd)m ≤ n
∑j=m+i−1

j=m+1 cj +(n−m−i)cm+i ≤ (1+kd)m for i = 2, . . . , n−
m − 1
(1 − kd)m ≤ n

∑j=n−1
j=m+1 cj ≤ (1 + kd)m

For this model, it is easy to see thatkd is bounded below by0. Also, kd = 1
andci = 0 for all i form a feasible solution. So an optimal solution always exists.
As in the case where deficits are not allowed, the optimal solution can be analytically
characterized. The characterization is the following:

Theorem 3 For anym andn with n ≥ m+2, the worst-case optimal mechanism with
deficits (among linear VCG redistribution mechanisms) is unique. For this mechanism,
the imbalance fraction in the worst case is

k∗
d =

(
n−1
m

)

∑n
j=m+1

(
n
j

)

The worst-case optimal mechanism with deficits is characterized by the following val-
ues for theci:

c∗i =
2(−1)i+m−1(n − m)

(
n−1
m−1

)

i
∑n

j=m+1

(
n
j

)
1

(
n−1

i

)

n−1∑

j=i

(
n − 1

j

)

for i = m + 1, . . . , n − 1.

From Claim 8 it follows thatci = 0 for i ≤ m.

Proof: Let α = k∗
d/(1−k∗), wherek∗ is the worst-case optimal redistribution fraction

in Theorem 1. To avoid ambiguity, we refer to thec∗i in Theorem 1 ascw∗
i , and to

the c∗i here ascd∗
i . Inspection reveals thatcd∗

i = 2αcw∗
i for all i. We have shown in

Theorem 1 that
∑j

i=m+1 cw∗
i ≥ 0 for j = m + 1, . . . , n − 1

k∗m ≤ (n − m − 1)cw∗
m+1 ≤ m

k∗m ≤ n
∑j=m+i−1

j=m+1 cw∗
j + (n − m − i)cw∗

m+i ≤ m for i = 2, . . . , n − m − 1
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k∗m ≤ n
∑j=n−1

j=m+1 cw∗
j ≤ m

So we have
∑j

i=m+1 cd∗
i ≥ 0 for j = m + 1, . . . , n − 1 (α is positive)

2αk∗m ≤ (n − m − 1)cd∗
m+1 ≤ 2αm

2αk∗m ≤ n
∑j=m+i−1

j=m+1 cd∗
j + (n−m− i)cd∗

m+i ≤ 2αm for i = 2, . . . , n−m− 1

2αk∗m ≤ n
∑j=n−1

j=m+1 cd∗
j ≤ 2αm

A sequence of algebraic manipulations reveals that2αk∗ = (1 − k∗
d) and2α =

(1 + k∗
d). Hence,k∗

d and thecd∗
i form a feasible solution, because we have

∑j
i=m+1 cd∗

i ≥ 0 for j = m + 1, . . . , n − 1

(1 − k∗
d)m ≤ (n − m − 1)cd∗

m+1 ≤ (1 + k∗
d)m

(1−k∗
d)m ≤ n

∑j=m+i−1
j=m+1 cd∗

j +(n−m−i)cd∗
m+i ≤ (1+k∗

d)m for i = 2, . . . , n−
m − 1

(1 − k∗
d)m ≤ n

∑j=n−1
j=m+1 cd∗

j ≤ (1 + k∗
d)m

We proceed to show that it is in fact the unique optimal solution. Supposêci and
k̂d form a feasible solution, and̂kd ≤ k∗

d. We have
(1 − k∗

d)m ≤ (1 − k̂d)m ≤ (n − m − 1)ĉm+1 ≤ (1 + k̂d)m ≤ (1 + k∗
d)m

(1 − k∗
d)m ≤ (1 − k̂d)m ≤ n

∑j=m+i−1
j=m+1 ĉj + (n − m − i)ĉm+i ≤ (1 + k̂d)m ≤

(1 + k∗
d)m for i = 2, . . . , n − m − 1

(1 − k∗
d)m ≤ (1 − k̂d)m ≤ n

∑j=n−1
j=m+1 ĉj ≤ (1 + k̂d)m ≤ (1 + k∗

d)m

We introduce new variablesxm+1, xm+2, . . . , xn−1, defined byxj = 1
2α

∑j
i=m+1 ĉi

for j = m + 1, . . . , n − 1. The above inequalities can be rewritten in terms ofxi, we
have

k∗m ≤ (n − m − 1)xm+1 ≤ m
k∗m ≤ (m + i)xm+i−1 + (n − m − i)xm+i ≤ m for i = 2, . . . , n − m − 1
k∗m ≤ nxn−1 ≤ m

However, in Claim 4, we proved that these inequalities have aunique solution.
Therefore, there is only one value that each ofĉi andk̂d can have. This proves thatk∗

d

and thecd∗
i form the unique optimal solution.

α = k∗
d/(1 − k∗) can be interpreted as the ratio between the imbalance fraction

of the worst-case optimal mechanism with deficits (among linear VCG redistribution
mechanisms) and the imbalance fraction of the worst-case optimal mechanism without
deficits. This ratio can be expressed as follows:

α = k∗
d/(1 − k∗) =

∑
n−1

j=m
(n−1

j )
∑

n

j=m+1
(n

j)
=

∑
n

j=m+1
(n−1

j−1)
∑

n

j=m+1
(n

j)
=

∑
n

j=m+1
((j/n)(n

j))
∑

n

j=m+1
(n

j)
For fixedn, this ratio increases asm increases. (This is because as we decrease

m by 1, the ratio of the additional terms in the fraction decreases.) Whenm = 1,
α = 2n−1−1

2n−n−1 (for large n, roughly 1
2 ); whenm = n − 2, α = n

n+1 (for large n,
roughly 1). Hence, ifm is small (relative ton), the worst-case optimal linear VCG
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Figure 2: The value ofα from m = 1 to n − 2

redistribution mechanism with deficits is much closer to budget balance than the worst-
case optimal mechanism without deficits; ifm is large (relative ton), they are about
the same. On the other hand, whenm is small relative ton, then the worst-case optimal
redistribution fraction is large even with the non-deficit requirement. This means that
the non-deficit constraint does not come at a great cost. Figure 2 shows howα changes
as a function ofm andn.

Now we prove that the worst-case optimal linear VCG redistribution mechanism
with deficits is in fact optimal amongall redistribution mechanisms that are determin-
istic, anonymous, strategy-proof and efficient.

Theorem 4 For any m and n with n ≥ m + 2, the worst-case optimal mechanism
with deficits among linear VCG redistribution mechanisms has the smallest worst-case
imbalance fraction among all VCG redistribution mechanisms that are deterministic,
anonymous, strategy-proof and efficient.

As in the case of Theorem 2, there is no redistribution mechanism with a smaller
worst-case imbalance fraction even if we sacrifice individual rationality.

Proof: Suppose there is a redistribution mechanism (when the number of units ism
and the number of agents isn) that satisfies all of the above properties and has a smaller
worst-case imbalance fraction than that of the worst-case optimal linear VCG redistri-
bution mechanism with deficits—that is, its worst-case imbalance fraction̂kd is strictly
less thank∗

d.
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By Lemma 2, for this mechanism, there is a functionf : R
n−1 → R so that

zi = f(v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n) for all i and all bid vectors. The following
properties off follow from straightforward modifications of the proofs of Claim 5 and
Claim 6.

Claim 10 f(1, 1, . . . , 1, 0, 0, . . . , 0) = 0 if the number of1s is less than or equal tom.

Claim 11 f satisfies the following inequalities:

(1 − k̂d)m ≤ (n − m − 1)tm+1 ≤ (1 + k̂d)m

(1 − k̂d)m ≤ (m + i)tm+i−1 + (n − m − i)tm+i ≤ (1 + k̂d)m for
i = 2, 3, . . . , n − m − 1

(1 − k̂d)m ≤ ntn−1 ≤ (1 + k̂d)m

ti = f(1, 1, . . . , 1, 0, 0, . . . , 0) where the number of1s equalsi

Let xi = 1
2α ti for i = m + 1, . . . , n − 1. Sincek̂d < k∗

d, we have

k∗m < 1
2α (1 − k̂d)m ≤ (n − m − 1)xm+1 ≤ 1

2α (1 + k̂d)m < m

k∗m < 1
2α (1− k̂d)m ≤ (m+ i)xm+i−1 +(n−m− i)xm+i ≤

1
2α (1+ k̂d)m < m

for i = 2, 3, . . . , n − m − 1
k∗m < 1

2α (1 − k̂d)m ≤ nxn−1 ≤ 1
2α (1 + k̂d)m < m

By Claim 4, the above system of inequalities cannot hold. Hence no mechanism
satisfying all the listed properties has an imbalance fraction less thank∗

d in the worst
case.

For the purpose of completeness, we note the following claim, which follows from
a straightforward modification of the proof of Claim 7.

Claim 12 For any m and n with n = m + 1, the original VCG mechanism (that
is, redistributing nothing) is (uniquely) the worst-case optimal mechanism with deficits
among all redistribution mechanisms that are deterministic, anonymous, strategy-proof
and efficient.

Proof: Suppose a redistribution mechanism exists that satisfies all of the above prop-
erties and has a worst-case performance as good as the original VCG mechanism, that
is, its worst-case imbalance fraction is less than or equal to 100%.

By Lemma 2, for this mechanism, there is a functionf : R
n−1 → R so that

zi = f(v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n) for all i and all bid vectors. We will prove that
f(x1, x2, . . . , xn−1) = 0 for all x1 ≥ x2 ≥ . . . ≥ xn−1 ≥ 0.

First, consider the bid vector wherêvi = 0 for all i. Here, each agent receives a
redistribution paymentf(0, 0, . . . , 0). The total redistribution payment is then
nf(0, 0, . . . , 0), which should be0, because the total VCG payment is0 (under100%
imbalance fraction, the imbalance is still0). It follows thatf(0, 0, . . . , 0) = 0. Now,
let us consider the bid vector wherêv1 = x1 ≥ 0 and v̂i = 0 for all other i. For
this bid vector, the agent with the highest bid receives a redistribution payment of
f(0, 0, . . . , 0) = 0, and the othern−1 agents each receivef(x1, 0, . . . , 0). By the same
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reasoning as above, the total redistribution payment should be0, hencef(x1, 0, . . . , 0) =
0 for all x1 ≥ 0.

Proceeding by induction, let us assumef(x1, x2, . . . , xk, 0, . . . , 0) = 0 for all
x1 ≥ x2 ≥ . . . ≥ xk ≥ 0, for somek < n − 1. Consider the bid vector where
v̂i = xi for i ≤ k + 1, and v̂i = 0 for all other i, where thexi are arbitrary num-
bers satisfyingx1 ≥ x2 ≥ . . . ≥ xk ≥ xk+1 ≥ 0. For the agents with the highest
k + 1 bids, their redistribution payment is specified byf acting on an input with only
k non-zero variables. Hence they all receive0 by induction assumption. The other
n − k − 1 agents each receivef(x1, x2, . . . , xk, xk+1, 0, . . . , 0). The total redistribu-
tion payment is then(n − k − 1)f(x1, x2, . . . , xk, xk+1, 0, . . . , 0). Now, in this bid
vector, the lowest bid is0 becausek + 1 < n. But sincen = m + 1, the total VCG
payment ismv̂n = 0, which forces the total redistribution payment to be0. So we
havef(x1, x2, . . . , xk, xk+1, 0, . . . , 0) = 0 for all x1 ≥ x2 ≥ . . . ≥ xk ≥ xk+1 ≥ 0.
By induction, this statement holds for allk < n − 1; whenk + 1 = n − 1, we have
f(x1, x2, . . . , xn−2, xn−1) = 0 for all x1 ≥ x2 ≥ . . . ≥ xn−2 ≥ xn−1 ≥ 0. Hence, in
this mechanism, the redistribution payment is always0; that is, the mechanism is just
the original VCG mechanism.

10 Multi-Unit Auction with Nonincreasing Marginal
Values

In this section, we consider the more general setting where the agents have nonin-
creasing marginal values. (Units remain indistinguishable.) An agent’s bid is now a
vector ofm elements, with thejth element denoting this agent’s marginal value for
getting herjth unit (and the elements are nonincreasing inj). That is, the agent’s val-
uation for receivingj units is the sum of the firstj elements. Let the set of agents be
{a1, a2, . . . , an}, whereai is the agent with theith highest initial marginal value (the
marginal value for winning the first unit).

We still consider only the case wherem ≤ n − 2, because ifm ≥ n − 1, then
the original VCG mechanism is worst-case optimal, both withand without deficits (we
will show this in Claim 19).

The VCG mechanism requires us to find the efficient allocation. Because marginal
values are nonincreasing, this can be achieved by the following greedy algorithm. At
each step, we sort the agents according to their upcoming marginal values (their val-
ues for winning their next unit), and allocate one unit to theagent with the highest
such value. We continue until there are no units left, or the remaining agents all have
upcoming marginal values of zero (in this case, we simply throw away the remaining
units). Given that marginal values are nonincreasing, the following greedy algorithm
is effectively the same (in terms of the allocation process): sort all the marginal val-
ues (not just those for upcoming units), and accept them in decreasing order. Because
marginal values are nonincreasing, when we accept one of them, this marginal value
does in fact correspond to that agent’s utility for receiving another unit at that point.
In the proofs below, this greedy algorithm will provide a useful view of how units are
allocated.
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In the efficient allocation, only agentsa1, . . . , am can possibly win, and the VCG
payments are determined by the bids ofa1, . . . , am+1 (because when we remove an
agent, only the topm remaining agents can possibly win).

We will generalize the worst-case optimal mechanism (both with and without deficits)
to the current setting, and show in each case that the generalized mechanism has the
same worst-case performance. This implies that there does not exist another redistribu-
tion mechanism with better worst-case performance (because such a mechanism would
also have better worst-case performance in the more specificunit demand setting).

Let us useA to denote the set of all agents, andA−i to denote the set of agents
other thanai. Because the mechanisms under consideration are strategy-proof, agents
can be expected to report truthfully; hence, we do not make a sharp distinction between
an agent and her bid. We define the following functions:

• V CG : P(A) → R

For any subsetS of A, let V CG(S) be the total VCG payment when only the
agents inS participate in the auction.

• E : P(A) → R

For any subsetS of A, let E(S) be the total efficiency (that is, the total utility
not taking payments into account) when only the agents inS participate in the
auction.

• e : P(A) × A → R

For any subsetS of A and anya ∈ S, let e(S, a) be the utility (not taking
payments into account) of agenta, when only the agents inS participate in the
auction. We note thatE(S) =

∑

a∈S e(S, a).

• U : P(A) × N → P(A)

For any subsetS of A, any integeri (1 ≤ i ≤ |S|), let U(S, i) be the set that
results after removing the agent with theith highest initial marginal value in
S from S. (If there is a tie, this tie is broken according to the original order
a1, . . . , an.)

• R : P(A) × N → R

For any subsetS of A, any integeri (0 ≤ i ≤ |S| − m), let R(S, i) =
1

m+i

∑m+i
j=1 R(U(S, j), i− 1) if i > 0, andR(S, 0) = V CG(S). We emphasize

that this is a recursive definition: fori > 0, R(S, i) is obtained by computing, for
eachj with 1 ≤ j ≤ m + i, R(U(S, j), i − 1) (that is, the value of the function
R after removing thejth agent inS from S, and decreasingi by one), and taking
the average. Fori = 0, it is simply the total VCG payment if only the agents
from S are present. Shortly, we will prove some properties of this function that
clarify its usefulness to our mechanism.

Let Vi = R(A, i) for all i (0 ≤ i ≤ n − m). We first prove several claims.

Claim 13 If we haveS, Ŝ ∈ P(A), S ⊆ Ŝ, and|Ŝ| = |S| + 1, then for anya ∈ S, we
haveE(Ŝ) − E(Ŝ − {a}) ≤ E(S) − E(S − {a}). That is,E is submodular.
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Proof: Supposea wins k units when only agents in̂S participate in the auction. We
modify a’s bid by settinga’s marginal value for winning the(k + 1)th unit to0. This
modification does not change the value of the left-hand side of the inequality, and it will
never increase the value of the right-hand side of the inequality. Therefore, it suffices
to prove that the inequality holds after the modification.

After the modification,a still wins exactlyk units when only agents inS partici-
pate in the auction (as can be seen, for example, by considering the greedy allocation
algorithm that we presented previously). Now,E(Ŝ) − E(Ŝ − {a}) is the increase in
the total efficiency due toa winning k units (rather than other agents winning these
units). That is, it equals the utility ofa (not counting payments) minus the sum of the
k upcoming marginal values in the greedy allocation algorithm—that is, the marginal
values that rank(m − k + 1)th tomth among marginal values extracted from the bids
of the agents in̂S − {a}. Similarly, E(S) − E(S − {a}) equals the utility ofa mi-
nus the sum of thek upcoming marginal values—that is, the marginal values that rank
(m − k + 1)th tomth among marginal values extracted from the bids of the agents in
S − {a}. But thek upcoming values in the second case must be smaller than thosein
the first case, becauseS ⊆ Ŝ. Hence,E(Ŝ) − E(Ŝ − {a}) ≤ E(S) − E(S − {a}).

The next claim shows that in the setting that we are considering, revenue is nonde-
creasing in agents. (This is not true in more general settings [29, 2, 7, 31, 32, 33].)

Claim 14 For any S, Ŝ ∈ P(A), if S ⊆ Ŝ, thenV CG(S) ≤ V CG(Ŝ). That is,
revenue is nondecreasing in agents.

Proof: We will prove the following equivalent statement instead:for anyS, Ŝ ∈ P(A),
if S ⊆ Ŝ andŜ has exactly one more element thanS, we haveV CG(S) ≤ V CG(Ŝ).

SupposeS = {a′
1, a

′
2, . . . , a

′
|S|}, wherea′

i is the agent with theith-highest initial
marginal value inS. Since we know that only the agents froma′

1 to a′
m can possi-

bly win any units, we haveV CG(S) =
∑m

i=1(E(S − {a′
i}) −

∑

j 6=i e(S, a′
j)) =

∑m
i=1 E(S − {a′

i}) − (m − 1)E(S).
Let â be the additional agent in̂S (Ŝ − S = {â}). If â has a higher initial marginal

value thana′
m, then the agents with them highest initial marginal values in̂S are

a′
1, . . . , a

′
m−1 andâ. It follows thatV CG(Ŝ) =

∑m−1
i E(Ŝ −{a′

i})+E(Ŝ −{â})−

(m − 1)E(Ŝ) =
∑m−1

i E(Ŝ − {a′
i}) + E(S) − (m − 1)E(Ŝ). By Claim 13, for

i = 1, . . . ,m − 1, E(Ŝ − {a′
i}) − E(Ŝ) ≥ E(S − {a′

i}) − E(S). Hence, we have
V CG(Ŝ) =

∑m−1
i E(Ŝ − {a′

i}) + E(S) − (m − 1)E(Ŝ) ≥
∑m−1

i E(S − {a′
i}) −

(m−1)E(S)+E(S) ≥
∑m−1

i E(S−{a′
i})−(m−1)E(S)+E(S−a′

m) = V CG(S).
If â has a lower initial marginal value thana′

m, the agents with them highest initial
marginal values in̂S would still bea′

1, . . . , a
′
m. By Claim 13, we haveV CG(Ŝ) =

∑m
i E(Ŝ − {a′

i})− (m− 1)E(Ŝ) =
∑m−1

i E(Ŝ − {a′
i})− (m− 1)E(Ŝ) + E(Ŝ −

{a′
m}) ≥

∑m−1
i E(S − {a′

i}) − (m − 1)E(S) + E(Ŝ − {a′
m}) ≥

∑m−1
i E(S −

{a′
i}) − (m − 1)E(S) + E(S − {a′

m}) = V CG(S).

Claim 15 For anyS ∈ P(A), 0 ≤ i ≤ |S| − m − 2, andm + i + 2 ≤ j ≤ |S|, we
haveR(S, i) = R(U(S, j), i).
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Proof: We prove this claim by induction oni. For i = 0 andj ≥ m + 2, we have
R(S, i) = V CG(S) = V CG(U(S, j)) = R(U(S, j), i), because, as we noted ear-
lier, the total VCG payment depends only on the agents with the highestm + 1 ini-
tial marginal values inS, so removing thejth agent does not change the total VCG
payment. Let us assume that we have proven that fori = k, if j ≥ m + k + 2,
R(S, k) = R(U(S, j), k). Now let us consider the case wherei = k + 1. By def-
inition, R(S, k + 1) = 1

m+k+1

∑m+k+1
l=1 R(U(S, l), k). Whenj ≥ m + i + 2 =

m + k + 3, we can use the induction assumption (using the fact thatj − 1 ≥ m +
k + 2) to show thatR(U(S, l), k) = R(U(U(S, l), j − 1), k). Hence,R(S, k +

1) = 1
m+k+1

∑m+k+1
l=1 R(U(S, l), k) = 1

m+k+1

∑m+k+1
l=1 R(U(U(S, l), j − 1), k) =

1
m+k+1

∑m+k+1
l=1 R(U(U(S, j), l), k) = R(U(S, j), k+1). (In the second-to-last step,

the same agents are removed in a different order, although the agents’ indices change
as other agents are removed.) Hence the claim is also true fori = k + 1.

Claim 16 For anyS, Ŝ ∈ P(A), 0 ≤ i ≤ |S| − m, if S ⊆ Ŝ, thenR(S, i) ≤ R(Ŝ, i).
That is,R is nondecreasing in agents.

Proof: We prove this claim by induction oni. Wheni = 0, using Claim 14,R(S, i) =
V CG(S) ≤ V CG(Ŝ) = R(Ŝ, i). Let us assume that we have proven that the claim
is true fori = k, that is,R(S, k) ≤ R(Ŝ, k) if S ⊆ Ŝ. Now let us consider the case
wherei = k + 1. If Ŝ andS are the same, the claim is trivial. Now suppose that
Ŝ has one more agent thanS, and that this additional agent has theqth highest initial
marginal value inŜ. If q ≥ m + k + 2, U(S, j) ⊆ U(Ŝ, j) for all j ≤ m + k + 1. By
the induction assumption, we haveR(Ŝ, k + 1) = 1

m+k+1

∑m+k+1
j=1 R(U(Ŝ, j), k) ≥

1
m+k+1

∑m+k+1
j=1 R(U(S, j), k) = R(S, k + 1).

If q ≤ m + k + 1, U(S, j) ⊆ U(Ŝ, j) for j ≤ q − 1, and U(S, j − 1) ⊆
U(Ŝ, j) for q + 1 ≤ j ≤ m + k + 1. Using the induction assumption, we have
R(Ŝ, k + 1) = 1

m+k+1

∑m+k+1
j=1 R(U(Ŝ, j), k) = 1

m+k+1

∑q−1
j=1 R(U(Ŝ, j), k) +

1
m+k+1

∑m+k+1
j=q+1 R(U(Ŝ, j), k)+ 1

m+k+1R(U(Ŝ, q), k) ≥ 1
m+k+1

∑q−1
j=1 R(U(S, j), k)

+ 1
m+k+1

∑m+k+1
j=q+1 R(U(S, j−1), k)+ 1

m+k+1R(S, k) ≥ 1
m+k+1

∑m+k
j=1 R(U(S, j), k)

+ 1
m+k+1R(U(S,m + k + 1), k) = R(S, k + 1).

So, if Ŝ has one more element thanS, thenR(S, k +1) ≤ R(Ŝ, k +1). It naturally
follows that if Ŝ has even more elements, then we still haveR(S, k+1) ≤ R(Ŝ, k+1).

Claim 17 For any S ∈ P(A), R(S, i) is nonincreasing ini. In particular, setting
S = A, Vi is nonincreasing ini.

Proof: Using Claim 16,R(S, i + 1) = 1
m+i+1

∑m+i+1
j=1 R(U(S, j), i) ≤

1
m+i+1

∑m+i+1
j=1 R(S, i) = R(S, i).

Claim 18 For 0 ≤ i ≤ n − m − 1,
∑n

j=1 R(A−j , i) = (n − m − 1 − i)Vi + (m +
1 + i)Vi+1.
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Proof: Using Claim 15, we have
∑n

j=1 R(A−j , i) =
∑m+i+1

j=1 R(A−j , i) +
∑n

j=m+i+2 R(A−j , i) = (m + i + 1)R(A, i + 1) + (n − m − i − 1)R(A, i) =
(m + i + 1)Vi+1 + (n − m − i − 1)Vi.

Now that we have established these basic properties ofR, we are ready to introduce
the generalization of the worst-case optimal redistribution mechanism (both with or
without deficits) to the setting where agents have nonincreasing marginal values over
units.

Theorem 5 When agents have nonincreasing marginal values over units,for any m
andn with n ≥ m+2, the worst-case optimal redistribution fraction (withoutdeficits)
is

k∗ = 1 −

(
n−1
m

)

∑n−1
j=m

(
n−1

j

)

(the same as in Theorem 1), and the worst-case imbalance fraction (with deficits) is

k∗
d =

(
n−1
m

)

∑n
j=m+1

(
n
j

)

(the same as in Theorem 3).
In each case, the following is a worst-case optimal mechanism: to agentai, re-

distribute 1
m

∑n−1
j=m+1 c∗jR(A−i, j − m − 1). Here, thec∗j from Theorem 1 are used

to maximize the worst-case redistribution fraction without deficits, and thec∗j from
Theorem 3 are used to minimize the worst-case imbalance fraction when deficits are
allowed. The mechanisms obtained in this way in fact generalize the mechanisms from
Theorem 1 and Theorem 3.

Proof: In each case, the mechanism is strategy-proof because eachagent’s redistribu-
tion payment is independent of her own bid (A−i does not containai). It is determin-
istic, efficient and anonymous. BecauseR(A−i, j − m − 1) is nonincreasing inj, and
∑i

j=m+1 c∗j ≥ 0 for i = m + 1, . . . , n− 1, it follows by Lemma 1 that the mechanism
is also individually rational.

Now, we recall that in the unit demand setting, for any bid vector v̂1 ≥ v̂2 ≥ . . . ≥
v̂n, the total amount redistributed by the worst-case optimal mechanism is
∑n−1

j=m+1 c∗j ((n−j)v̂j+jv̂j+1), which is always at leastk∗mv̂m+1 and at mostmv̂m+1

when we use thec∗j from Theorem 1; and which is always at least(1− k∗
d)mv̂m+1 and

at most(1 + k∗
d)mv̂m+1 when we use thec∗j from Theorem 3. We next show that

analogous bounds apply to the more general mechanisms, which will complete the
proof.

For the more general mechanisms, the total redistribution payment is
1
m

∑n
i=1

∑n−1
j=m+1 c∗jR(A−i, j−m−1) = 1

m

∑n−1
j=m+1 c∗j

∑n
i=1 R(A−i, j−m−1) =

1
m

∑n−1
j=m+1 c∗j ((n − j)Vj−m−1 + jVj−m). This expression is very similar to the total

redistributed by the mechanisms in the unit demand setting:the only differences are
that eacĥvj has been replaced by theVj−m−1, and there is an additional factor1m .
Now, the bounds for the unit demand setting hold foranynonincreasing sequence ofv̂j ;
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and, by Claim 17, we haveV0 ≥ V1 ≥ . . . ≥ Vn−m−1. Hence, 1
m

∑n−1
j=m+1 c∗j ((n −

j)Vj−m−1 + jVj−m) is in [k∗V0, V0] when we use thec∗j from Theorem 1, and in
[(1−k∗

d)V0, (1+k∗
d)V0] when we use thec∗j from Theorem 3. BecauseV0 = R(A, 0) =

V CG(A) is the total VCG payment, this proves the result.

So far we have only talked about the case wheren ≥ m + 2. For the purpose of
completeness, we provide the following claim for then ≤ m + 1 case.

Claim 19 For any m and n with n ≤ m + 1, the original VCG mechanism (that
is, redistributing nothing) is worst-case optimal, both with or without deficits, among
all redistribution mechanisms that are deterministic, anonymous, strategy-proof and
efficient.

Proof: Suppose there is a mechanism that satisfies all the desirable properties and has
a worst-case performance that is at least as good as the VCG mechanism. Because the
mechanism is strategy-proof, the redistribution payment received by an agent should
be independent of her own bid. Also, if a bid profile results ina total VCG payment
of 0, then under this profile, the total redistribution payment must also be0. (If the
objective is to maximize redistribution without deficits, negative total redistribution
would result in worse performance than VCG, and positive redistribution would violate
the non-deficit constraint. If the objective is to minimize imbalance, either negative or
positive redistribution would result in worse performancethan VCG. These arguments
are analogous to those in the proofs of Claim 7 and Claim 12.)

For the purpose of this proof only, we introduce the following notations. If an agent
has marginal value1 for every unit among the firstk units, and0 for any further units,
we denote her bid byk. These are the only bids that we will use in this proof. For
bi ∈ N, let f(b1, b2, . . . , bn−1) be the redistribution payment received by an agent if
the other agents’ bids areb1, . . . , bn−1.

We will prove that for any set of nonnegative integersb1, b2, . . . , bn−1, if
∑n−1

i=1 bi ≤
m, we havef(b1, . . . , bn−1) = 0. We will do so by proving by induction onk (k ≤ m)
the claim that for any set of nonnegative integersb1, b2, . . . , bn−1, if

∑n−1
i=1 bi ≤ k, we

havef(b1, . . . , bn−1) = 0.
For the casek = 0, let us consider the case where all the agents bid0, so that the

total redistribution payment isnf(0, 0, . . . , 0). Because the total VCG payment is0,
the total redistribution must be0, thereforef(0, 0, . . . , 0) must be0.

Now let us assume that for any set of nonnegative integersb1, b2, . . . , bn−1, if
∑n−1

i=1 bi ≤ k, we havef(b1, . . . , bn−1) = 0. Let b′1, b
′
2, . . . , b

′
n−1 be any set of non-

negative integers that satisfies
∑n−1

i=1 b′i = k+1. Consider the bid profile (consisting of
n bids) formed by theb′i and one0. The redistribution payment received by the agent
that bids0 is thenf(b′1, b

′
2, . . . , b

′
n−1). We note that some of theb′i may equal0 as

well; by anonymity, the payment for these agents should be the same. The redistribu-
tion payment received by any agent that does not bid0 is0 by the induction assumption.
Hence, the total redistribution is a positive multiple off(b′1, b

′
2, . . . , b

′
n−1). Given that

k + 1 ≤ m, the total VCG payment is0, so it must be thatf(b′1, b
′
2, . . . , b

′
n−1) = 0,

completing the proof by induction.
Having proved this, we now find an example with positive totalVCG payment but

zero total redistribution, which will complete the proof. We recallm ≥ n − 1. Let
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us consider the bid profile where one agent bidsm − n + 2 and the other agents each
bid 1. Then, the total redistribution payment is(n − 1)f(m − n + 2, 1, . . . , 1

︸ ︷︷ ︸

n−2

) +

f(1, . . . , 1
︸ ︷︷ ︸

n−1

) = 0 (since the previous claim applies to bothf(m − n + 2, 1, . . . , 1
︸ ︷︷ ︸

n−2

) and

f(1, . . . , 1
︸ ︷︷ ︸

n−1

)). However, the total VCG payment is positive. Hence, the mechanism has

a redistribution fraction of0% and an imbalance fraction of100% on this instance.

11 General Multi-Unit Auctions

In Section 10, we showed how the results for the unit demand setting can be generalized
to the setting where agents have nonincreasing marginal values over the units. The
natural next question is whether they can be generalized even further. In this section,
we study multi-unit settings without any constraint on the bidders’ valuations—that
is, marginal values can be increasing (but they cannot be negative: units can always
be freely disposed of). We show that when there are at least two units, the original
VCG mechanism (that is, redistributing nothing) is worst-case optimal, both with and
without deficits. (When there is only a single unit, then the agents must have unit
demand, so the previous results do apply.)

Claim 20 In multi-unit auctions without any restrictions on agents’valuations, when
the number of unitsm is at least2, the original VCG mechanism (that is, redistributing
nothing) is worst-case optimal, both with or without deficits, among all redistribution
mechanisms that are deterministic, anonymous, individually rational, strategy-proof
and efficient.

We emphasize that unlike some of the earlier proofs in this paper, this proof does
require individual rationality.

Proof: Claim 19 already established that forn− 2 < m, the original VCG mechanism
is worst-case optimal even when we do assume nonincreasing marginal values, so it
suffices to consider only the case wheren−2 ≥ m. Suppose there is a mechanism that
satisfies all the desirable properties and has a worst-case performance that is at least as
good as the original VCG mechanism. Because the mechanism isstrategy-proof, the
redistribution payment received by an agent should be independent of her own bid.

Also, if a bid profile results in a total VCG payment of0, then under this profile,
the total redistribution payment must also be0 (otherwise, the performance is worse
than that of the original VCG mechanism).

For the purpose of this proof only, we introduce the following notations. If an
agent has marginal value0 for every unit among the firstm − 1 units, and marginal
value1 for the mth unit, we denote her bid byB1. If an agent has marginal value1
for the first unit, and0 for any further units, we denote her bid byB2. If an agent
has marginal value0 for all units, we denote her bid by0. These are the only bids
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that we will use in this proof. Forbi ∈ {B1, B2, 0}, let f(b1, b2, . . . , bn−1) be the
redistribution payment received by an agent if the other agents’ bids areb1, . . . , bn−1.
We needf(b1, b2, . . . , bn−1) ≥ 0 to ensure individual rationality.

We will prove the following:

• f(0, 0, . . . , 0) = 0

• f(B1, 0, . . . , 0) = 0

• f(B2, 0, . . . , 0) = 0

• f(B1, B2, 0, . . . , 0) = 0

For f(0, 0, . . . , 0), let us consider the case where all the agents bid0, so that the
total redistribution payment isnf(0, 0, . . . , 0). Because the total VCG payment is0,
the total redistribution must be0, thereforef(0, 0, . . . , 0) must be0.

For f(B1, 0, . . . , 0), let us consider the case where one agent bidsB1 and all the
other agents bid0, so that the total redistribution payment is(n− 1)f(B1, 0, . . . , 0) +
f(0, 0, . . . , 0) = (n−1)f(B1, 0, . . . , 0). Because the total VCG payment is0, the total
redistribution must be0, thereforef(B1, 0, . . . , 0) must be0. The same argument can
be used to show thatf(B2, 0, . . . , 0) = 0.

For f(B1, B2, 0, . . . , 0), let us consider the case where one agent bidsB1, two
agents bidB2 and all the other agents bid0, so that the total redistribution payment is
(n−3)f(B1, B2, B2, 0, . . . , 0)+2f(B1, B2, 0, . . . , 0)+f(B2, B2, 0, . . . , 0). However,
the total VCG payment is still0 for these bids (the agents that bidB2 win; if one of
them is removed, we can do no better than to still allocate oneunit to the otherB2

agent, and nothing to the other agents—hence eachB2 agent pays0). Hence, the
total redistribution must be0. Becausef is nonnegative everywhere, it follows that
f(B1, B2, 0, . . . , 0) must equal0.

Having proved this, we now find an example with positive totalVCG payment but
zero total redistribution, which will complete the proof. Let us consider the bid profile
where one agent bidsB1, one agent bidsB2, and the other agents all bid0. Then,
the total redistribution payment is(n − 2)f(B1, B2, 0, . . . , 0) + f(B1, 0, . . . , 0) +
f(B2, 0, . . . , 0) = 0. However, the total VCG payment is positive (because we can
accept at most one of theB1 bid and theB2 bid). Hence, the mechanism has a redis-
tribution fraction of0% and an imbalance fraction of100% on this instance.

12 Conclusions

For allocation problems with one or more items, the well-known Vickrey-Clarke-Groves
(VCG) mechanism (also known as the Clarke mechanism or the Generalized Vickrey
Auction) is efficient, strategy-proof, individually rational, and does not incur a deficit.
However, the VCG mechanism is not (strongly) budget balanced: generally, the agents’
payments will sum to more than0. If there is an auctioneer who is selling the items, this
may be desirable, because the surplus payment corresponds to revenue for the auction-
eer. However, if the items do not have an owner and the agents are merely interested
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in allocating the items efficiently among themselves, any surplus payment is undesir-
able, because it will have to flow out of the system of agents. In 2006, Cavallo [4]
proposed a mechanism that redistributes some of the VCG payment back to the agents,
while maintaining efficiency, strategy-proofness, individual rationality, and the non-
deficit property. In this paper, we extended Cavallo’s technique in a restricted setting.
We studied allocation settings where there are multiple indistinguishable units of a sin-
gle good, and the agents have nonincreasing marginal values. (For this specific setting,
Cavallo’s mechanism coincides with a mechanism proposed byBailey in 1997 [3].) We
first considered the simpler unit demand setting. We proposed a family of mechanisms
that redistribute some of the VCG payment back to the agents.All mechanisms in the
family are efficient, strategy-proof, individually rational, and never incur a deficit. The
family includes the Bailey-Cavallo mechanism as a special case. We then provided an
optimization model for finding the optimal mechanism—that is, the mechanism that
maximizes redistribution in the worst case—inside the family, and showed how to cast
this model as a linear program. We gave both numerical and analytical solutions of this
linear program, and the (unique) resulting mechanism showssignificant improvement
over the Bailey-Cavallo mechanism (in the worst case). We proved that the obtained
mechanism is worst-case optimal amongall anonymous deterministic mechanisms that
satisfy the above properties. Using similar techniques, wealso found the worst-case
optimal mechanism when deficits are allowed. We generalizedboth mechanisms to the
setting where the agents do not necessarily have unit demand, but do have nonincreas-
ing marginal values over units. In each case, the worst-caseperformance of the gener-
alized mechanism is the same as in the unit demand setting, and hence the generalized
mechanisms are also worst-case optimal. Finally, for multi-unit auctions without any
restriction on agents’ valuations, we showed a negative result: no mechanism is better
than the original VCG mechanism in the worst case.

Incidentally, all of our results can also be applied to multi-unit reverseauctions, in
which a single buyer needs to procurem units fromn potential sellers (agents). (We
can also view units as tasks that need to be performed by the agents.) For example,
consider the setting in which each agent has an obligation tosupply one unit (perform
one task), butm < n, that is, not every unit is actually needed. In this case, we can run
a forward auction for then−m rights not to supply a unit. Hence, all of our results hold
with m replaced byn − m. This example is analogous to the unit demand setting, but
our results can also be applied to more general valuation functions. We note, however,
that this prior-obligation view corresponds to a differentnotion of individual rationality
than the one typically used in reverse auctions.

One direction for future research is to extend these resultsto combinatorial auc-
tions (with distinguishable items). Another direction is to consider objectives that are
not worst-case. Yet another direction is to consider whether this mechanism has ap-
plications to collusion. For example, in a typical collusive scheme, there is abidding
ring consisting of a number of colluders, who submit only a singlebid [13, 22]. If
this bid wins, the colluders must allocate the item amongst themselves, perhaps using
payments—but of course they do not want payments to flow out of the ring.

This work is part of a growing literature on designing mechanisms that obtain good
results in the worst case. Traditionally, economists have mostly focused either on de-
signing mechanisms that always obtain certain properties (such as the VCG mecha-
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nism), or on designing mechanisms that are optimal with respect to some prior distri-
bution over the agents’ preferences (such as the Myerson auction [25] and the Maskin-
Riley auction [23] for maximizing expected revenue). Some more recent papers have
focused on designing mechanisms for profit maximization using worst-case competi-
tive analysis (e.g.[12, 1, 19, 11]). There has also been growing interest in the design of
onlinemechanisms [10] where the agents arrive over time and decisions must be taken
before all the agents have arrived. Such work often also takes a worst-case competitive
analysis approach [18, 17]. It does not appear that there aredirect connections between
our work and these other works that focus on designing mechanisms that perform well
in the worst case. Nevertheless, it seems likely that futureresearch will continue to
investigate mechanism design for the worst case, and hopefully a coherent framework
will emerge.
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