
Complexity of Mechanism Design with Signaling Costs

Andrew Kephart
Dept. of Computer Science

Duke University
kephart@cs.duke.edu

Vincent Conitzer
Dept. of Computer Science

Duke University
conitzer@cs.duke.edu

ABSTRACT
In mechanism design, it is generally assumed that an agent can sub-
mit any report at zero cost (with the occasional further restriction
that certain types can not submit certain reports). More generally,
however, an agent of type θ may be able to report θ′, but only at a
cost c(θ, θ′). This cost may reflect the effort the agent would have
to expend to be indistinguishable from an agent that truthfully re-
ports θ′. Even more generally, the possible reports (or signals) may
not directly correspond to types. In this paper, we consider the com-
plexity of determining whether particular social choice functions
can be implemented in this context.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
J.4 [Computer Applications]: Social and Behavioral Sciences -
Economics

General Terms
Algorithms, Economics, Theory

Keywords
automated mechanism design, signaling costs, partial verification,
revelation principle

1. INTRODUCTION
In settings with multiple self-interested agents, making a desir-

able collective decision is complicated by the fact that agents will
misrepresent their preferences if they perceive this to be in their
interest. In such settings, we must design mechanisms for making
decisions that result in good outcomes even when agents act strate-
gically. One topic of particular interest to the AI community has
been automated mechanism design [5, 6], where instead of ana-
lytically characterizing optimal mechanisms, we have a computer
intelligently search through the space of possible mechanisms to
find an optimal one.

In mechanism design, an agent’s private information is repre-
sented by his type. Generally the focus is on mechanisms in which
each agent’s action consists simply of reporting his type, justified
by the revelation principle which states that, under certain condi-
tions, this does not come at a loss. Usually, an agent can report any

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

type at zero cost. However, in some of the literature, which types
an agent can report depends on his type. For example, in the design
of online mechanisms [14], it is generally assumed that an agent
cannot report an earlier arrival time than his true arrival time. Set-
tings such as these are referred to as mechanism design with partial
verification [11].

In these settings, it can be computationally hard even to check
whether a given social choice function—the function mapping types
to outcomes—can be implemented [1, 4]. This is in contrast to reg-
ular (automated) mechanism design where this is easy to check
thanks to the revelation principle, which no longer holds with par-
tial verification.

In this paper, we consider a more general model, where for every
two types θ, θ′, an agent with true type θ can misreport θ′, but only
at a cost c(θ, θ′). Reporting truthfully is free: c(θ, θ) = 0. Mech-
anism design with partial verification is the special case where all
costs are 0 or ∞. We also consider the even more general case
where the space of signals that the agent can send does not corre-
spond naturally to the type space, so that there is a cost c(θ, s) for
an agent of type θ to send signal s, without restrictions on c. We
focus on determining, under various conditions, the complexity of
deciding whether a particular social choice function can be imple-
mented. Our positive results hold even in this most general case,
and our negative results even in the less general case where signals
are type reports and reporting truthfully is free (in which case we
will also refer to the signals as reports).

The motivation for our model is quite different from that of mech-
anism design with partial verification (even though it is a straight-
forward mathematical extension). In mechanism design with par-
tial verification, as the name suggests, the designer has access to
information (e.g., login time) that allows her to directly detect cer-
tain types of misreporting. This motivation has pushed existing ex-
tensions of the model in a somewhat different direction from ours,
such as mechanism design with probabilistic verification [4], where
an agent can misreport but is caught with a probability that depends
on the true and reported type, and if caught the agent can be pun-
ished.

The inspiration for our model primarily comes from settings where
a principal assesses an agent, perhaps based on information pro-
vided by that agent, and makes a decision. Examples include uni-
versity admission, dating, insurance rate-setting, taxation etc. In
each case, the agent, who knows he is being evaluated, may be
able to present himself more favorably (i.e., send a better signal) at
some amount of effort that depends on his true type.

In economics, such signaling games are often studied, with per-
haps the most famous example being Spence’s education model [15].
In this model, education serves as a useful signal of an agent’s abil-
ities to a potential employer, but is otherwise useless. In equilib-

rium, high types end up more educated than lower types, thereby
signaling their type to the employer – and it is not worth it to lower
types to “pool” with the higher types by obtaining education, be-
cause doing so comes at a much greater cost to the lower types. A
mechanism design model with signaling costs, similar to ours, has
also been proposed [9]. They show conditions for implementability
when the agent can send multiple signals and the cost of misrepre-
sentation increases with the magnitude of it.

We believe that these types of consideration will also be increas-
ingly important in machine learning. For example, consider an e-
commerce setting where an algorithm classifies visitors to a web-
site in order to determine whether to make them a special offer on
a product. When users get wind of this, they may, at some cost to
themselves, attempt to change their classification, for example by
erasing their cookies, using a different URL to reach the website,
etc. Indeed the problem of adversarial classification has already re-
ceived some attention in machine learning, motivated by detecting
spam, intrusions, fraud, etc. [7, 3]. Our contribution here is to make
the link to mechanism design and create the right machinery for
this on the mechanism design side. Another key difference is our
work is motivated by classifying agents while adversarial classifi-
cation emphasizes classifying actions taken by agents. This makes
it much easier to for us to create this link. We can abstract away the
classifier to the cost function, whereas, when classifying actions the
specific form of the classifier matters more.

2. MODEL
Throughout, we focus on the case of a single agent. The agent

draws a type θ from a set Θ. Subsequently, the agent chooses a sin-
gle signal s to emit from a set S (possibly but not necessarily, S =
Θ). The agent experiences a cost c(θ, s) (possibly infinite) from
doing so. The mechanism maps s to an outcome (e.g., allocation)
o ∈ O, as well as, if we allow for transfers, a transfer t to the agent.
The agent’s resulting utility is u(θ, s, o, p) = v(θ, o) + t− c(θ, s),
where v(θ, o) is the agent’s valuation for the outcome.

Let A : S → O denote the mapping of signals to outcomes, let
T : S → R denote the mapping of signals to transfers to the agent,
and let M = (A, T) be the entire mechanism. We will simply drop
t and T in cases where transfers are not possible. As always, the
designer commits to M first, after which the agent responds with
some s∗ ∈ arg maxs∈S u(θ, s, A(s), T (s)).

Let F : Θ → O be a social choice function (SCF) that we seek
to implement. We say that M implements F if for every θ ∈ Θ,
there exists some s∗ ∈ S with c(θ∗, s) < ∞ such that (1) s∗ ∈
arg maxs∈S u(θ, s, A(s), T (s)) and (2)A(s) = F (θ). In standard
mechanism design, where S = Θ and c(·, ·) = 0 everywhere,
the revelation principle holds, so that one can assume without loss
of generality that A(θ) = F (θ). However, as is well known, this
is already no longer true in the partial verification setting (where
c : Θ × Θ → {0,∞} with c(θ, θ) = 0), and therefore also not in
our more general setting.

2.1 Example: Car Insurance
We include an example to illustrate the model. Brad would like

to buy car insurance from Sally. Brad is either a safe driver or a
risky driver. Sally would like to sell to Brad if he is safe and not sell
to him if he is risky. In the language of our model this gives:
Θ = {safe, risky}
O = {sale,no sale}
F = {safe → sale, risky → no sale}

Sally requires that Brad take a driving test, the result of which
can be perfect, good, or bad. How much effort he needs to put into

the test depends on both his true type, and which result he wants to
achieve. This effort could take many forms (getting a good night’s
sleep before the test, bribing the test proctor, etc). Specifically:

perfect good bad

c =
safe 10 0 0
risky 30 15 0

Brad’s value for insurance also depends on his type: the worse
of a driver he really is, the more valuable insurance is to him. We
have:

sale no sale

v =
safe 12 0
risky 20 0

Now, Sally must choose a mechanism that maps the result of the
test to an outcome. In the case without transfers, the naïve mech-
anism, A = {perfect → sale, good → sale, bad → no sale}
wouldn’t implement F . This is because if Brad has the risky type,
it would then be optimal for him to put in the 15 units of effort cost
to a achieve a score of good and get the 20 units of value for being
insured.

A mechanism (still without transfers) that would succeed at im-
plementing F is A = {perfect → sale, good → no sale, bad →
no sale}. Under this mechanism, if Brad has type safe it would be
worth it to him to put in the effort to achieve a score of perfect on
the test and obtain insurance; but if he has type risky, it is not worth
the 30 units of effort cost to do so.1

With transfers, we could of course use the above mechanism
with transfers set to zero, but other possibilities emerge as well.
For example, the mechanism M(A, T) with A = {perfect →
sale, good → sale, bad → no sale} and transfers T = {perfect →
0, good → −6, bad → 0} would implement F , for the following
reasons. If Brad has the risky type then it is no longer worth it for
him to test as good (the effort cost of 15 plus the required transfer
of 6 would outweigh the 20 benefit from insurance), but if he has
the safe type he is happy to pay 6 for being insured (with no effort
cost).2

In the example above, there is a clear distinction between the
type space and the signal space; in fact, they do not even have the
same size. However, the example can be modified to make the type
space and the signal space the same, by introducing a new type
supersafe that can obtain a score of perfect (or any other score) at
no cost, which naturally Sally would like to insure. Then, we can
relabel perfect as a report of supersafe, good as safe, and bad as
risky. Hence, Brad would always be able to report his true type at
zero cost.

Because these modifications do not change the behavior of the
safe and risky types at all, the analysis above remains unchanged.
It follows that the revelation principle does not hold in this context
(as is the case in the partial verification model): without transfers,
F is not truthfully implementable but it is (nontruthfully) imple-
mentable. It also shows that we cannot solve the problem by reduc-
ing it to mechanism design without costly signaling by somehow
embedding the reporting costs into the valuations or transfers.

In the traditional setting without costs, it is straightforward to

1Note that if the effort that Brad had to expend as a safe driver to
achieve the perfect result were increased to anything greater than
12, then F would be no longer implementable (without transfers)
at all.
2Note that if we set c(safe, perfect) > 22 and c(safe, good) > 7,
then even with transfers, no mechanism could implement F . This
is because under these conditions, whenever it is worth it for a safe
type to obtain insurance, then it is also worth it for a risky type, no
matter the transfers.

Transfers (T) No Transfers (NT)
Two Outcomes (TO) Injective SCF (FI) Two Outcomes (TO) Injective SCF (FI)

Free Utilities (FU) Unrestricted Costs (U) NP-c NP-c NP-c NP-c
{0,∞} Costs (ZI) NP-c NP-c NP-c P

Targeted Utilities (TU) Unrestricted Costs (U) NP-c P NP-c P
{0,∞} Costs (ZI) NP-c P NP-c P

Figure 1: Complexity of implementation results with non-constant |Θ| and non-constant |S|. Bold font represents new results proven
in this paper; others were proven in, or follow immediately from, work by Auletta et al.

check whether a particular social choice function can be imple-
mented, precisely due to the revelation principle; but as we will
see, with general costs it is (in some cases) NP-hard.

3. COMPLEXITY OF IMPLEMENTATION
In this paper, we are interested in the complexity of the following

problem.

DEFINITION 1 (IMPLEMENTATION). We are given an in-
stance I consisting of a type set Θ, a signal set S, an outcome
set O, a cost function c : Θ × S → R, a valuation function
v : Θ × O → R, an SCF F : Θ → O, and potentially some
additional restrictions on the mechanism. We are asked whether F
can be implemented.

The restrictions correspond to (1) the case where transfers are not
allowed and (2) the case where for every type, we have a “target”
utility g(θ) ∈ R that it should obtain.

The IMPLEMENTATION problem is in NP: given the outcome
function A : S → O and a mapping E : Θ→ S with A(E(θ)) =
F (θ), we can check in polynomial time whether there is a transfer
function (possibly required to be 0) such that (1) the agent is best
off followingE and (2, if necessary) each type gets its target utility.
(One can write a linear program with the transfers as variables for
this problem.3) As we will see, in general, it is NP-complete. We
will be interested in special cases where the problem is tractable.

If |Θ| is constant, IMPLEMENTATION is in P, by the following
argument. We can do a brute-force search over all E as |E| =

|S||Θ|. This will restrictA on the signals that are in the image ofE.
For the remaining signals, if transfers are allowed, we can impose
a sufficiently negative transfer on such signals that the agent will
never choose them. If transfers are not allowed, we can check for
each such signal s separately whether we can set A(s) so that no
type will choose s. At this point, we have both A and E and can
check whether they can be made to work as above.

If |S| constant and we are in the setting without transfers, IM-
PLEMENTATION is in P, by the following argument. We can do a
brute-force search over all M = A as |A| = |O||S| (a mechanism
consists in assigning an outcome to each signal). It is easy to then
check whether each type can maximize utility by choosing a signal
that results in its assigned outcome.

We currently do not know the complexity of the case where
transfers are allowed, and |S| is constant but |Θ| is not. Of course,
this cannot happen in mechanisms where S = Θ.

In the remainder of the paper, we consider the following four
different dimensions of the problem. For each dimension, we only
3Note that this generalizes the observation that this problem is in P
when S = Θ and c(·, ·) = 0 everywhere, because by the revelation
principle in that case it is sufficient to consider the case where E is
the identity function and A = F .

consider its two extremes, leading to 24 = 16 cases. Figure 1 shows
our results.

Utilities We consider implementation with free utilities (FU) and
with targeted utilities (TU). In the latter case we are given a
function g : Θ → R, and restrict attention to implementa-
tions where type θ gets utility g(θ).

Transfers We consider implementation with transfers (T) and with-
out (NT).

Signaling Costs We consider instances where the signaling costs
are unrestricted (U) and instances where signaling costs lie
in {0,∞} (ZI).

Outcomes We consider SCFs with only two outcomes (TO) and
SCFs that are injective (FI) – i.e., for every outcome there is
at most one type that gets it.4

We refer to each of the 16 combinations with an acronym. For
instance, FU/NT/U/FI is the combination of free utilities, no trans-
fers, unrestricted signaling costs, and an SCF that is injective. Clearly,
ZI is a special case of U, but for the other dimensions, it is not im-
mediately clear which extreme point is easier. For example, one
might think that TO cases are easier than FI cases because the for-
mer have only two outcomes—but, perhaps surprisingly, this is not
the case: for example, we show that FU/NT/ZI/FI can be solved
in polynomial time, even though FU/NT/ZI/TO is NP-complete as
shown in [1].

3.1 Cases Implied by Earlier Work
For six of the two-outcome cases, NP-completeness results have

either been proven in or follow immediately from [1]. (As in our
paper, their hardness results hold in the setting where S = Θ and
c(θ, θ) = 0 for all θ ∈ Θ.)

THEOREM 1 ([1]). FU/T/ZI/TO is NP-complete.

The hardness of FU/T/U/TO immediately follows.

THEOREM 2 ([1]). FU/NT/ZI/TO is NP-complete.

The hardness of FU/NT/U/TO immediately follows.

THEOREM 3. TU/NT/ZI/TO is NP-complete.

The hardness of TU/NT/U/TO immediately follows.
4These two cases are the extremes, in the sense that two is the
smallest nontrivial number of outcomes and |Θ|, which corre-
sponds to the injective case, is the largest. Moreover, they both cor-
respond to natural settings, as our examples illustrate.

vs1 //

''

wo1
|S|=2

''
σ

>>

wo2
|S|=2 // h

|S|−|O∗|=1

��
vs2

77

// xo2 // τ

Figure 2: MAX-FLOW corresponding to instance whereO+
s1 =

{o1, o2}, O=
s1 = ∅, O+

s2 = {o2}, O=
s2 = {o2}, and O∗ = {o2}.

Edges without a label have capacity 1.

PROOF. If a FU/NT/ZI/TO instance has a solution, then in any
successful implementation, the agent’s final utility when it draws
type θ is v(θ, F (θ)). This is because in FU/NT/ZI/TO, there are
no transfers or signaling costs. As a result, the FU/NT/ZI/TO in-
stance is equivalent to the TU/NT/ZI/TO instance that has g(θ) =
v(θ, F (θ)) and is otherwise identical. Hence, TU/NT/ZI/TO is NP-
complete.

In the remainder of the paper, we prove our new results.

3.2 Easy Cases
We now turn to our cases where it is easy to find whether an im-

plementation exists. As it turns out, if we set things up correctly, we
can show all of them to be easy using the same algorithm. Say that a
version of our problem predetermines utilities if given the instance,
one can compute in polynomial time a utility for each type such
that, if the instance has a solution, then that is the utility that that
type has in all solutions. Any version of the problem with targeted
utilities predetermines utilities. Also, any version of the problem
with zero/infinity costs and no transfers predetermines utilities, be-
cause in this case, u(θ, s, f(θ), p) = v(θ, f(θ)) + p − c(θ, s) =
v(θ, f(θ)) in any solution. The main theorem we prove in this sec-
tion is the following.

THEOREM 4. If a variant of IMPLEMENTATION (1) predeter-
mines utilities and (2) has injective SCFs (FI) then we can solve it
in polynomial time by reduction to MAX-FLOW.5

Theorem 4 allows us to solve TU/T/U/FI (and thus TU/T/ZI/FI),
TU/NT/U/FI (and thus TU/NT/ZI/FI), and FU/NT/ZI/FI in polyno-
mial time. To prove it, we first need the following lemma.

LEMMA 1. Let u∗(θ) be the predetermined utility of θ. Then,
we can compute in polynomial time a function T ∗ : S × O → R
such that if I has a solution M = (A, T), and A(s) = o, then
T (s) = T ∗(s, o).

PROOF. In variants of the problem without transfers, the lemma
is trivially true by setting T ∗ = 0. In the remainder, we focus on
variants where transfers are allowed. Set

T ∗(s, o) = max{p : (∀θ)v(θ, o)− c(θ, s) + p ≤ u∗(θ)}

This is easy to compute by computing for every θ separately u∗(θ)−
v(θ, o) + c(θ, s), and taking the minimum of these.

We must prove this function has the desired property. To do so,
let M = (A, T) be a mechanism that solves I . If for some s,
5If, in addition, |S| = |Θ|, then we can reduce to the problem of
perfect bipartite matching. We omit the proof due to space con-
straint.

T (s) > T ∗(s,A(s)), then by the definition of T ∗ there exists some
type θ with T ∗(s,A(s)) = u∗(θ)−v(θ,A(s))+c(θ, s), or equiv-
alently, v(θ,A(s)) − c(θ, s) + T ∗(s,A(s)) = u∗(θ). The utility
that θ would get from sending s underM is therefore v(θ,A(s))−
c(θ, s) + T (s) > v(θ,A(s)) − c(θ, s) + T ∗(s,A(s)) = u∗(θ),
so it is able to (and therefore will) obtain a larger utility than it is
supposed to.

Now, define M∗ = (A, T ∗) (weakly increasing M ’s transfer
function to T ∗). If under M , it was optimal for θ to report s, then
this is also the case for M∗, for the following reason. Reporting
s will still give θ a utility of exactly u∗(θ) (it is at least this much
because transfers have only increased, and at most this much by the
definition of T ∗). On the other hand, reporting another s′ will give
θ a utility of at most u∗(θ) by the definition of T ∗. Because A is
unchanged, it follows that M∗ is also a solution to I .

We are now ready to prove Theorem 4.

PROOF OF THEOREM 4. We will use u∗ (which is available
due to utilities being predetermined) and T ∗ (which is available by
Lemma 1) to define, for every s and o, whether letting A(s) = o
is safe and whether it is satisfying. “Safe” means that no type will
obtain a strictly higher utility from sending s than it is supposed
to, and “satisfying” means that it is safe and allows the type that
is supposed to get o to send s to get o at the right utility. Let
O∗ = {o|(∃θ)F (θ) = o}. Then, a mechanism is a solution if
and only if (1) all outcome assignments are safe and (2) for each
o ∈ O∗ there is at least one satisfying assignment of it to a signal.
This is so because every type is able to get the correct outcome at
the correct utility, and is not able to do better by deviating.

Safe O+
s , {o|(∀θ) u∗(θ) ≥ v(θ, o)− c(θ, s) + T ∗(s, o)}.

Satisfying O=
s , {o ∈ O+

s ∩O∗ |U∗(F−1(o)) = v(F−1(o), o)−
c(F−1(o), s) + T ∗(s, o)}.

We use these definitions to create a MAX-FLOW instance G =
(V,E) as follows (an illustration is given in Figure 2). V consists
of: A start node σ; a signal node vs for each s ∈ S, an outcome
node wo; for each o ∈ O, another outcome node xo for each o in
O∗; a single helper node h; and a final node τ . E consists of: an
edge between σ and each vs; for each s, edges between vs and each
wo with o ∈ O+

s and each xo with o ∈ O=
s ; edges between eachwo

and h (with capacity |S|); an edge between h and τ (with capacity
|S| − |O∗|); and edges between each xo and τ . Unless otherwise
specified, edges have capacity 1. Our goal is to get a flow of |S|.

At a high level, solving MAX-FLOW on G tests whether a bi-
partite matching can be found between some subset of the signals
and O∗, while simultaneously assigning to each unmatched signal
an outcome that will not incentivise any type to deviate to it. We
now prove the equivalence formally.

I has a solution =⇒ G has a flow of |S|. LetM be a mechanism
which solves I with transfers T ∗; we will create a flow of size |S|.
Send one unit of flow from σ to each signal node vs. Then, for
each θ, there is a distinct s such that F (θ) ∈ O=

s ; send one unit
of flow from the corresponding vs to xF (θ) and then on to τ . For
each remaining s, A(s) must be a safe assignment; send one unit
of flow from vs to wA(s), and then via h on to τ . (Note there is at
most |S| − |O∗| such flow so that it does not exceed the capacity
on the edge (h, τ).) It is straightforward to check that this is a valid
flow of size |S|.

G has a flow of |S| =⇒ I has a solution. Given a flow of size
|S|, we will create a mechanism M = (A, T ∗) that is a solution
to I . Due to the capacity on (h, τ), each edge (xo, τ) must have

one unit of flow on it. Thus, for each xo, there exists some vs such
that (vs, xo) has a unit of flow on it (by flow integrality); moreover,
these vs are all distinct, because exactly one unit of flow passes
through each vs. If (vs, xo) has a unit of flow on it, set A(s) = o.
Thereby, for each o ∈ O∗, there is a satisfying assignment of o to
a signal s (Condition (2) above). For any remaining s, there must
be some wo such that there is a unit of flow on (vs, wo) (by flow
integrality); in this case, set A(s) = o. This is a safe assignment
(Condition (1) above). Thus, the mechanism meets the two condi-
tions for it to solve I .

3.2.1 Example: Identification
This easiness result shows that we can solve (at scale) several

special cases of mechanism design with signaling costs. In our
opinion, the most interesting of these is free utilities, no transfers,
{0,∞} signaling costs, and an injective SCF (FU/NT/ZI/FI).6 Con-
ceptually, the goal here is identification: the mechanism needs to
learn the type of the agent exactly. The following example illus-
trates this.

It is early Christmas Morning and Santa Claus has almost fin-
ished delivering gifts to the small children of the world. There are
only three left who have not received anything: Johnny, Molly, and
Timmy. In his sack, Santa Claus has a specific gift for each, as well
as a lump of coal. Each child should get its own gift and not anyone
else’s.7 Thus:

Θ = {Molly , Johnny , Timmy}
O = {GJohnny , GMolly , GTimmy , coal}
F = {∗ → G∗}

Upon arriving inside a house Santa Claus must decide which gift
to leave behind. Unfortunately, he does not know in which house
each child lives. All he can observe is what food has been left out
for him by whoever lives there. Luckily, Santa Claus knows which
foods each child is capable of preparing and setting out. We refer
to the set of foods that child can put out as Schild . We have:

S = {coffee, cookies, eggnog , gingerbread}

SJohnny = {cookies, gingerbread}
SMolly = {coffee, cookies}
STimmy = {coffee, eggnog, gingerbread}

Each child has preferences over the gifts. These only need to be
specified up to order, as we do not have transfers or complex costs.

vJohnny = GTimmy > GMolly > GJohnny > coal
vMolly = GTimmy > GMolly > GJohnny > coal
vTimmy = GJohnny > GTimmy > GMolly > coal

When Santa arrives inside a house and sees what food has been
put out for him, what gift should he leave? We can translate this
problem instance into the appropriate MAX-FLOW instance (or
work it out in our head) and solve for a mechanism that Santa can
use. As it turns out, the only way that works is:

M = {coffee → GMolly , cookies → GJohnny , eggnog →
GTimmy , gingerbread → coal}

Note the usefulness to Santa Claus of being able to give coal. With-
out coal, there is no mechanism that implementsF : no matter which
gift he gave for a signal of gingerbread, either Johnny or Timmy
6This setting restricts that of mechanism design with partial verifi-
cation by requiring an injective SCF, and generalizes it by allowing
S 6= Θ and c(θ, θ) 6= 0.
7Note that the fact that coal is a possible outcome does not pose a
problem for the injectivity of the SCF, which specifies that no child
should ever receive coal.

would want to set out gingerbread and receive a different gift than
he was supposed to.

3.3 Free Utilities / Transfers / Injective Social
Choice Function

We now move on to our cases where it is hard to find whether an
implementation exists.

THEOREM 5. FU/T/ZI/FI is NP-complete.

This immediately implies FU/T/U/FI is NP-complete.

PROOF. We reduce from the MINSAT problem, in which we
are given a Boolean formula in conjunctive normal form with m
clauses and a number n, and are asked whether there is an assign-
ment that satisfies at most n clauses. MINSAT is NP-complete [12].
Given an instance I of MINSAT, we construct the following in-
stance I∗ of FU/T/ZI/FI.

The types are:

• n “rescue” types r1, . . . , rn.

• m clause types k1, . . . , km. In a slight abuse of notation, we
will also refer to the corresponding clauses by k1, . . . , km.

• One variable gadget for each variable v in I . The gadget con-
sists of three types: two literal types l, one for each of v+ and
v−, and one “switch” type wv .

We let −l be the opposite literal of l (i.e., −l = v− if l = v+,
and−l = v+ if l = v−). We assume without loss of generality that
no clause contains a pair of opposite literals. We will usewl = w−l
to indicate the switch type in the same clause as l.

The reporting cost structure c is:

All costs are symmetrical, i.e. c(θ, θ′) = c(θ′, θ).

∀θ, c(θ, θ) = 0.

∀r∀k, c(r, k) = 0.

∀k∀l ∈ k, c(k, l) = 0.

∀l, c(wl, l) = 0. (And c(wl = w−l,−l) = 0).

All costs not defined above are infinite.

Figure 3 illustrates the reporting cost structure. The SCF is in-
jective, so for each type θ there is a unique outcome oθ = F (θ).

The valuation function v is:

v(θ, oθ) = 0.

∀k∀l ∈ k, v(k, ol) = 1 and v(l, ok) = 0.

∀l∀k, v(wl, ok) = 24|Θ|+ 12.

All valuations not defined above are −10.

I has a solution⇒ I∗ has a solution. Given a MINSAT solution,
we construct a mechanism M = (A, T) that is a solution to I∗ as
follows.

• No more than n clauses are satisfied. Thus, for each clause k
that is satisfied we can pick a different rescue node r and set
A(r) = ok, A(k) = or , and T (r) = 2.

• For each l,−l pair one literal will be true and the other will
be false. Assume without loss of generality that l is the true
literal. Let A(wl) = ol, A(l) = owl , and set T (wl) = 2.

• For all A(θ) and T (θ) not defined above, let A(θ) = oθ and
T (θ) = 0.

r1==

}}

OO

��

aa

!!

hh

((

r266

vv

==

}}

OO

��

aa

!!
k1>>

~~

k266

vv

k3>>

~~

OO

��

k4 ``

x+ oo // wx x−//oo y+ oo // wy oo // y−

Figure 3: Reporting cost structure of the FU/T/ZI/FI instance
corresponding to the MINSAT instance: (x+) ∧ (x+) ∧ (x− ∨
y+) ∧ (y−) with n = 2. A (θ, θ′) edge indicates that type θ can
report type θ′ at zero cost.

We will now show thatM = (A, T) solves I∗. Note that c(θ,A−1(oθ)) =
0 for all θ. Thus, each θ can report at zero cost the type that would
lead to its intended outcome oθ .

Because the largest transfer by the mechanism is 2, a switch or
rescue type θ will obtain a utility of no higher than −8 from any
outcome they could obtain other than oθ , and thus will prefer to
report A−1(oθ) for a utility of 0.

We now show that each literal type l will be best off reporting
A−1(ol). If l is false, then it will get a utility of 2 for reporting wv ,
which leads to ol. This is the maximum possible utility for a literal
type, so this is an optimal course of action. On the other hand, if
l is true, then each clause k that it is in must be satisfied. Thus,
for each such k, A(k) = or for some r. Thus l would get a utility
of −10 for reporting k, −8 for reporting wl (which would lead to
o−l), and 0 for reporting truthfully (which leads to ol). So l will
report truthfully and get the correct outcome.

Finally, we show that each clause type k is best off reporting
A−1(ok). If k is satisfied, k can get a utility of 2 by reporting the
r such that r = A−1(ok). Because 2 is the maximum transfer, k
could only hope to achieve a larger utility by reporting in a way that
results in some ol with l ∈ k and a transfer of 2; however, ol only
comes with a transfer when it results from reporting a switch type,
which k cannot do. So k will report A−1(ok). If k is not satisfied,
all the literals in it must be false. Thus, if k were to report a literal,
it would instead achieve some owv , leading to a utility of −10.
Reporting a rescue type would give a utility of at most −8. Hence,
k is best off reporting truthfully and achieving a utility of 0.

I∗ has a solution ⇒ I has a solution. Let M = (A, T) be the
mechanism that constitutes a solution to I∗. We first prove a lemma,
(a),: for any θ1 6= θ2, if A(θ2) = oθ1 , then T (θ2) − T (θ1) <
12|Θ|. This holds because of the following. First, because F is in-
jective, A must decompose the type space into cycles of the form
oθ1 = A(θ2), oθ2 = A(θ3), . . . , oθj = A(θ1), where 1 ≤ j ≤
|Θ|. Now suppose, for the sake of contradiction, that for some such
cycle, T (θ2) − T (θ1) ≥ 12|Θ|.We know that T (θ3) − T (θ2) >
−12, because for all o (including o = oθ1), v(θ2, oθ2)−v(θ2, o) ≤
11 < 12. Adding this inequality to the previous one, we obtain,
T (θ3)− T (θ1) > 12(|Θ| − 1). Similarly, T (θ4)− T (θ3) > −12,
and adding this, we obtain T (θ4)− T (θ1) > 12(|Θ| − 2). Contin-
uing this, we eventually find T (θj) − T (θ1) > 12(|Θ| − j + 2),
and subsequently T (θ1) − T (θ1) > 12(|Θ| − j + 1)—but this is
a contradiction, because the left-hand side is 0 and the right-hand
side is at least 12.

We use lemma (a) to prove another lemma, (b), which is that
there can be no literal l and clause k such that A(l) = ok. For
the sake of contradiction, suppose this were the case. There are

two possibilities. One is that A(wl) = ol. In this case, set θ1 =
l, θ2 = wl, θ3 = A−1(owl); these are part of a cycle. By two
applications of lemma (a), we obtain T (θ3) − T (θ1) < 24|Θ|.
But v(wl, A(θ1)) − v(wl, A(θ3)) = v(wl, ok) − v(wl, owl) =
24|Θ| + 12, so wl would prefer reporting θ1, and we have a con-
tradiction. The other possibility is thatA(wl) 6= ol. In this case, wl
and l belong to different cycles. For wl not to misreport l (to obtain
ok), it must be the case that T (A−1(owl)) − T (l) ≥ 24|Θ| +
12. By lemma (a), T (A−1(owl)) − T (wl) < 12|Θ|, and also
T (A−1(ol)− T (l) < 12|Θ|. If we subtract the latter two inequal-
ities from the one before it, we obtain T (wl) − T (A−1(ol) > 12.
But then l will prefer to report wl instead of A−1(ol), because
v(l, ol)− v(l, A(wl)) ≤ 11, and we again have a contradiction.

Next, we show that, for any literal l, eitherA(l) = ol orA(−l) =
o−l. This is because at least one of ol and o−l is not equal toA(wl);
without loss of generality, suppose it is ol. Two possibilities remain:
A(l) = ol or A(k) = ol for some k. We must rule out the latter. If
A(k) = ol, then somewhere in the corresponding cycle of misre-
ports there must be some l′ and k′ such that A(l′) = ok′—but this
contradicts lemma (b).

Then, create a truth value assignment such that l = true implies
that A(l) = ol. This assignment must solve the MINSAT instance.
For consider any clause k satisfied by this assignment. We show
thatA−1(ok) must be a rescue node. Since k is satisfied, there must
be some l ∈ k such that k can obtain ol by reporting l. Then, it
cannot be the case that A(k) = ok. For the sake of contradiction,
suppose this were so; then on the one hand, T (k) − T (l) ≤ 0 to
keep l from misreporting k, and on the other hand, T (k)−T (l) ≥ 1
to keep k from misreporting l—but this gives a contradiction. So
A−1(ok) cannot be k. It cannot be another clause node or a switch
node, because these cannot be reported by k. It cannot be a literal
by lemma (b). Hence, it must be a rescue node. Because there are
only n rescue nodes, it follows that there are at most n satisfied
clauses.

3.4 Free Utilities / No Transfers / Unrestricted
Edge Costs / Injective Social Choice Func-
tion

THEOREM 6. FU/NT/U/FI is NP-complete.

PROOF. We reduce from satisfiability. Given an instance I of
SAT, we construct the following instance I∗ of FU/NT/U/FI.

The types are:

• For each clause k in I , a clause gadget, which consists of one
clause type, k, and one “displacer” type, dk.

• For each variable v in I , a variable gadget which contains a
type (l, k) for every l ∈ {v+, v−} and every k 3 l. (From
here on, when we refer to (l, k), we implicitly assume l ∈ k.)

Let −l be the opposite literal of l (i.e., −l = v− if l = v+, and
−l = v+ if l = v−). We assume without loss of generality that no
clause contains a pair of opposite literals. The SCF is injective, so
for each type θ there is a unique outcome oθ = F (θ).

The reporting cost structure c is:

c(dk, k) = 0.

∀(l, k), c(k, (l, k)) = 0.

∀(l, k)∀(−l, k′), c((l, k), (−l, k′)) = 2.

∀(l, k), c((l, k), dk) = 2.

All other costs are infinite.

Figure 4 illustrates the reporting cost structure.
The valuation function v is:

dk1 // k1
// (x−, k1)

2

vv oo 2 // (x+, k3)
2 // dk3

yy
dk2 // k2

// (x−, k2)

2

vv yy 2

99

k3

OO

// (y−, k3)

2

OO

Figure 4: Reporting cost structure of the FU/NT/U/FI instance
corresponding to the SAT instance: (x−) ∧ (x−) ∧ (x+ ∨ y−).
Edges without a label have cost 0.

v(dk, ok) = 10.

v(dk, odk) = 5.

v(k, odk) = −10.

∀(l, k), v(k, o(l,k)) = −1.

∀(l, k)∀k′ 6= k, v((l, k), ok′) = 1.

∀(l, k), v((l, k), ok) = −10.

∀(l, k)∀(l′, k′) 6= (l, k), v((l, k), o(l′,k′)) = −10.

All other valuations are 0.

I has a solution =⇒ I∗ has a solution. Given an assignment
that solves I , we construct a mechanism M = (A, T) (where nec-
essarily T = 0) which solves I∗. For each clause k, choose some
literal l that satisfies it, and let A((l, k)) = ok, A(k) = odk , and
A(dk) = o(l,k). For all remaining types θ that do not yet haveA(θ)
set by this (which are all of the form (l, k)) let A(θ) = oθ . Note
that ifA((l, k)) = ok, thenA((−l, k′)) = o(−l,k′) for all k′ 3 −l,
because −l must be set to false.

We now show that M solves I∗. If A((l, k)) = o(l,k), then the
reporting options for (l, k) are (i) itself, for a utility of 0; (ii) dk,
for a utility of−10− 2 = −12; and (iii) some (−l, k′) for a utility
of at most 1 − 2 = −1. Thus it will report itself, resulting in the
appropriate outcome. If A((l, k)) = ok, then the reporting options
for (l, k) are (i) itself, for a utility of−10; (ii) dk, for a utility of 0−
2 = −2; and (iii) some (−l, k′), for a utility of −10− 8 (because
we know A((−l, k′)) = o(−l,k′)). Thus it will report dk, resulting
in the appropriate outcome. For each clause k, it can report (i) itself,
for a utility of −10; (ii) the (l, k) such that A((l, k)) = ok, for a
utility of 0−0 = 0; or (iii) some (l, k) such thatA((l, k)) = o(l,k),
for a utility of −1 − 0 = −1. Thus, it will report the (l, k) that
results in the outcome ok. Finally, a displacer type dk can report (i)
itself, for a utility of 0; or (ii) k, for a utility of 5 − 0 = 5. Thus
it will report k, resulting in the correct outcome. Hence, M solves
I∗.

I∗ has a solution =⇒ I has a solution. Let M = (A, T) (where
necessarily T = 0) be a mechanism that solves I∗. For each clause
k, its displacer type, dk, values ok more than odk . Thus, we must
have M(k) 6= ok. It follows that to obtain ok, k must report some
(l, k) instead, so that A((l, k)) = ok. For this l, we may then con-
clude for all (−l, k′) that A((−l, k′)) 6= ok′ This is because if
it were the case that A((−l, k′)) = ok′ , then (l, k) could report
(−l, k′) to obtain a utility of 1 − 2 = −1, and this would be
strictly higher than reporting the type A−1(o(l,k)) 6= (l, k) (be-
cause A((l, k)) = ok), which would give a utility of 0− 2 = −2.

It follows that the following assignment is well defined: set l to
true if and only if there exists some k such that A((l, k)) = ok
(unless this results in a pair of opposite literals both being set to
false, in which case arbitrarily choose one to set to true). Because

dk1

��

dk2

��

dk3

��
k1

}} !! **

k2

!!}}

k3

!!}}
w

��

x

��

y

��

z

��
w′ x′ y′ z′

Figure 5: Reporting cost structure of the TU/T/ZI/TO instance
corresponding to the Monotone SAT instance: (w+∨x+∨y+)∧
(x− ∨ y−) ∧ (y+ ∨ z+). Edges indicate a zero cost report.

for every k, there exists some l ∈ k such that A((l, k)) = ok, this
is a satisfying assignment.8

3.5 Target Utilities / Transfers / Two Outcomes

THEOREM 7. TU/T/ZI/TO is NP-complete.

This immediately implies that TU/T/U/TO is NP-complete as well.

PROOF. We reduce from the Monotone SAT problem (SAT where
within each clause all the literals have the same sign, which is NP-
complete [10]). Given an instance I of Monotone SAT we construct
the following instance I∗ of TU/T/ZI/TO.

The types are:

• For each clause k in I , a clause gadget which consists of one
clause type, k, and one “displacer” type, dk.

• For each variable w in I , a variable type w and slot type w′

The reporting cost structure c is:

∀θ, c(θ, θ) = 0

∀k, c(dk, k) = 0.

∀k∀w ∈ k, c(k,w) = 0.

∀w c(w,w′) = 0

All other costs are infinite.

Figure 5 illustrates the reporting cost structure.
The two outcomes are o+ and o−. Let ¬o+ = o− and ¬o− = o+.

The social choice function F is:

∀k s.t. k only contains positive literals, F (k) = o+.

∀k s.t. k only contains negative literals, F (k) = o−.

∀dk, (F (k) = o+) ⇒ F (dk) = o− and (F (k) = o−) ⇒
F (dk) = o+.

∀w, F (w) = F (w′) = o+.

The valuation function v is:

8Note that the mechanism could be quite different from the mech-
anism used in the first part of this proof; even so, our argument that
it produces a satisfying assignment still holds.

∀dk, v(dk, F (dk)) = 0 and v(dk,¬F (dk)) = 10.

∀k, v(k, F (k)) = 0 and v(k,¬F (k)) = −10.

∀w v(w, o+) = v(w′, o+) = 0.

∀w v(w, o−) = v(w′, o−) = −1.

The target utility function g is simply: ∀θ, g(θ) = 0.

I has a solution⇒ I∗ has a solution. We construct the mecha-
nism M = (A, T) as follows. Set all transfers to zero. For each dk
let A(dk) = F (dk). For each k, let A(k) = ¬F (k) = F (dk). For
each variable w that is positively instantiated in I , let A(w) = o+,
for each variable that is negatively instantiated, let A(w) = o−.
For each w′ let A(w′) = o+.

We argue thatM is a solution to I∗. Eachw′ recieves o+. Eachw
will reportw′ to achieve an outcome of o+. For each clause k which
includes only negative literals there will be at least one variable w
contained in k that is negatively instantiated in I . Thus, k can report
w and receive a utility maximizing outcome of o−. Similarly, each
clause which contains only positive literals will be able to receive
o+. Finally, for each dk, A(dk) = A(k) = F (dk), so dk has no
choice but to give a report which leads to the appropriate outcome.

I∗ has a solution⇒ I has a solution. Let M = A be the mech-
anism that solves I∗. For each k, since dk values ¬F (dk) more
than F (dk), it must be the case that: A(k) = F (dk), or, there
is large negative transfer for reporting k. Since F (dk) = ¬F (k)
and g(k) = 0, either way each k cannot report itself. Thus each k
must report a variable node to achieve the correct outcome—hence
∀k∃w s.t. A(w) = F (k).

Then, for each w in I , set w to true if A(w) = o+ and to false if
A(w) = o−. This represents a solution to I , because ∀k∃w s.t. A(w) =
F (k) implies that at least one of the variables in each clause will
be set in a way that satisfies the clause.

4. CONCLUSION
In this paper, we generalized the model of mechanism design

with partial verification—where not every type can report every
other type—to mechanism design with costly signaling, where there
is a cost c(θ, θ′) for type θ to report another type θ′ (or, more gener-
ally, a cost c(θ, s) for sending signal s). Building on earlier results
for the partial-verification case, we characterized the complexity of
determining whether a specific social choice function can be im-
plemented under various conditions.

Future research could be devoted to expanding our complexity
results, for example obtaining fixed-parameter tractability results.
It could also be devoted to the case where the social choice function
is not given, but rather has to be optimized as well with respect to
some objective function, as is often done in automated mechanism
design [5, 6]. Of course, insofar as any SCF may maximize the ob-
jective value, this problem can be no easier than the problem stud-
ied here, because the answer to the optimization version would tell
us whether the SCF that maximizes the objective value is feasible
or not. (In fact, in automated mechanism design with costless and
unlimited misreporting, checking whether a given SCF can be im-
plemented is easy, though the optimization problem is sometimes
hard.) However, the optimization version may still allow efficient
approximations. Other future research can be devoted to expanding
the connection to machine learning, as discussed in the introduc-
tion. The techniques discussed in this paper may allow us to tailor
classifiers to strategic agents based on our knowledge of the cost
structure.9 Also, in a companion (working) paper, we characterize

9Note that the resulting setup is quite different from previous work

when the revelation principle holds in the costly-signaling model
(citation suppressed for anonymity). This generalizes earlier results
for partial verification [1, 16].

Acknowledgments
We thank NSF and ARO for support under grants CCF-1101659,
IIS-0953756, CCF-1337215, W911NF-12-1-0550, and W911NF-
11-1-0332.

REFERENCES
[1] V. Auletta, P. Penna, G. Persiano, and C. Ventre. Alternatives

to truthfulness are hard to recognize. Autonomous Agents
and Multi-Agent Systems, 22(1):200–216, 2011.

[2] M. Balcan, A. Blum, J. D. Hartline, and Y. Mansour.
Reducing mechanism design to algorithm design via
machine learning. Journal of Computer and System Sciences,
74(8):1245–1270, 2008.

[3] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar. The
security of machine learning. Machine Learning,
81(2):121–148, 2010.

[4] I. Caragiannis, E. Elkind, M. Szegedy, and L. Yu.
Mechanism design: from partial to probabilistic verification.
In Proceedings of the ACM Conference on Electronic
Commerce (EC), pages 266–283, Valencia, Spain, 2012.

[5] V. Conitzer and T. Sandholm. Complexity of mechanism
design. In Proceedings of the 18th Annual Conference on
Uncertainty in Artificial Intelligence (UAI), pages 103–110,
Edmonton, Canada, 2002.

[6] V. Conitzer and T. Sandholm. Self-interested automated
mechanism design and implications for optimal
combinatorial auctions. In Proceedings of the ACM
Conference on Electronic Commerce (EC), pages 132–141,
New York, NY, USA, 2004.

[7] N. N. Dalvi, P. Domingos, Mausam, S. K. Sanghai, and
D. Verma. Adversarial classification. In Proceedings of the
Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 99–108,
Seattle, WA, USA, 2004.

[8] O. Dekel, F. Fischer, and A. D. Procaccia. Incentive
compatible regression learning. In Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 884–893, Philadelphia, PA, USA, 2008. Society for
Industrial and Applied Mathematics.

[9] R. Deneckere and S. Severinov. Optimal screening with
costly misrepresentation, 2007. Working paper available at
http://www.severinov.com/working_papers/
screening_costly_misrepresentation_jul07.pdf.

[10] M. Garey and D. Johnson. Computers and Intractability. W.
H. Freeman and Company, 1979.

[11] J. Green and J.-J. Laffont. Partially verifiable information
and mechanism design. Review of Economic Studies,
53:447–456, 1986.

[12] R. Kohli, R. Krishnamurti, and P. Mirchandani. The
minimum satisfiability problem. SIAM Journal on Discrete

on incentive compatible machine learning [8, 13] where an agent
is not attempting to be misclassified himself, but rather is aiming
to get a global classifier, constructed based on the data reported by
multiple agents, to be as accurate as possible on his own data. Both
this direction and ours are even more different from mechanism
design via machine learning [2], where the approach is to use one
set of bids to set prices for another set of bidders.

Mathematics, 7(2):275–283, 1994.
[13] R. Meir, A. D. Procaccia, and J. S. Rosenschein. Algorithms

for strategyproof classification. Artificial Intelligence,
186:123–156, 2012.

[14] D. Parkes. Online mechanisms. In N. Nisan, T. Roughgarden,
E. Tardos, and V. Vazirani, editors, Algorithmic Game
Theory, chapter 16. Cambridge University Press, 2007.

[15] M. Spence. Job market signaling. Quarterly Journal of
Economics, 87(3):355–374, 1973.

[16] L. Yu. Mechanism design with partial verification and
revelation principle. Autonomous Agents and Multi-Agent
Systems, 22(1):217–223, 2011.

