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We consider a combinatorial variant of the classical ski rental problem — which we call combinatorial ski

rental — where multiple resources are available to purchase and to rent, and are demanded online. Moreover,

the costs of purchasing and renting are potentially combinatorial. The dual problem of combinatorial ski rental,

which we call combinatorial online bipartite matching, generalizes the classical online bipartite matching

problem into a form where constraints, induced by both offline and online vertices, can be combinatorial. We

give a 2-competitive (resp. e/(e − 1)-competitive) deterministic (resp. randomized) algorithm for combinatorial

ski rental, and an e/(e − 1)-competitive algorithm for combinatorial online bipartite matching. All these ratios

are optimal given simple lower bounds inherited from the respective well-studied special cases. We also

prove information-theoretic impossibility of constant-factor algorithms when any part of our assumptions is

considerably relaxed.

1 INTRODUCTION
Combinatorial ski rental. We started a company. At each time t , a job that needs to be done

arrives. We may have existing employees that can perform the job, in which case there is no cost to

us. If we do not, we may outsource the job at a one-time cost. More generally, our employees may

be able to perform part of the job, in which case we have to outsource the remainder of the job. If S
is the set of skills that our employees do not have, let дt (S) be the cost that we pay to outsource the

remainder of the job that arrives at time t . (Note that this cost depends on t , so that, for example, a

certain skill may not be needed at all at a given time t and therefore not contribute to the cost.)

We assume дt is submodular: the more skills we do not have available in house, the less it costs

to cover an additional skill at the margin — for example because the same company to which we

outsource has multiple of the needed skills and gives discounts.

Of course, our employees are not free either. Moreover, we operate in an environment where we

cannot lay off employees. We think of hiring an employee as paying a large one-time cost after

which the employee will work for free. (For example, we give the employee a one-time equity

share, or we just think of the present value of all the employee’s future salary.) Assume that every

employee has exactly one skill. Let f (S) be the cost of hiring a set of employees with skills S . We

again assume that f is submodular. (A natural special case would be where f is linear, but it is

possible that employees are excited to work with specific other employees and therefore willing to

be paid less if those employees are there.) Note that f is unchanging over time; the same types of

employees are always available at the same costs.

The question is now at what point we make the (irreversible) decision to add an employee / skill

to our company, without knowing which jobs show up in the future. Let St ⊆ [n] be the set of skills
that we have in the company at time t and let T be the final time at which we operate. Our goal is

to minimize f (ST ) +
∫ T
0
дt ([n] \ St ) dt . This problem is a combinatorial generalization of the ski

rental problem [30].

Combinatorial online bipartite matching. We run an organization that relies heavily on volunteer

effort — say, a homeless shelter. We have a set of tasks [n], known from the beginning, to accomplish

(e.g., preparing certain meals, making beds). At each time t , a set of volunteers shows up to help

us accomplish tasks; we can assign them to tasks. Let λt (i) denote the number of volunteers that

arrived at time t and were assigned to task i . However, there are constraints on how we assign

the volunteers: for example, some volunteers may not be able to do certain tasks, or prefer not

to work on only one task. For each subset S of tasks, let дt (S) denote the maximum number of
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volunteers that we can feasibly assign to this subset of tasks. Note that a fraction of a volunteer

may be assigned to a task. We assume дt is submodular: the more tasks that are already in the set,

the fewer additional volunteers we can place by adding another task to the set. We also have overall

constraints on how much of each task can be done: let f (S) denote the maximum amount of work

that can be usefully done on the set of tasks S . We assume f is submodular. (A natural special case

would be where f is linear, but there may be interactions: for example, if we make more of one

type of meal, that will reduce the number of another type of meal for which we would have a use.)

The question is now to which tasks to assign volunteers coming in, without knowing which volun-

teers will show up in the future. Our goal is to maximize the number of tasks done,

∫ T
0

∑
i ∈[n] λt (i) dt .

Note that the problem could also be phrased in terms of assigning crowdworkers to tasks. Our

problem is a generalization of the online bipartite matching problem [31]. That line of work is

usually motivated in terms of determining which ads to show to users, when there is a budget

for how often to show each ad and users appear over time. Our framework (as well as previous

work [37]) allows for the budget to be for combinations of ads, where f (S) is the combined budget.

Unlike previous work, our framework also allows for there to be complex constraints on which

combination of ads to show to a user, where дt (S) is the maximum number of ads from set S that

can be shown to the user.

1.1 Our Results
Our results are roughly twofold:

• We study combinatorial ski rental and combinatorial online bipartite matching in the on-

line primal-dual framework. Based on the observation that the LP formulations of the two

problems are the dual problem of each other, we construct a primal-dual update rule, which

maintains feasible primal and dual solutions over time, and keeps the primal / dual objective

values within an e/(e − 1) factor of each other. As a result, we give

– a deterministic (resp. randomized) 2-competitive (resp. e/(e − 1)-competitive) algorithm

for the combinatorial ski rental problem, and

– an e/(e −1)-competitive algorithm for the combinatorial online bipartite matching problem.

All these ratios are tight given simple lower bounds inherited from well-studied special cases

of the respective problems.

• We then argue that for combinatorial ski rental, the assumptions we make (and particularly

the class of cost functions we consider) are in fact necessary for a constant competitive ratio.

We give information-theoretic lower bounds, ruling out the possibility of

– o(
√
logn)-competitive algorithms when the cost of purchasing is allowed to be XOS,

– o(logn)-competitive algorithms when the cost of renting is allowed to be supermodular, or

– O(n1−ε )-competitive algorithms for any ε > 0 when upgrading is not allowed. (By “upgrad-

ing” being allowed, we mean that the total cost accrued from purchases depends only on

the final set of purchased resources, and not on the order in which they are purchased.)

To the best of our knowledge, we are the first to consider the ski rental problem with fully
combinatorial costs, whether offline or online. Going beyond the assumption that resources are inde-

pendent of each other, our model captures the possibility of complex interactions among resources,

which, as the examples illustrate, are ubiquitous in practice. The most general model considered

prior to our work [37] allows the offline cost, i.e., the cost of purchasing, to be combinatorial, but

requires the online cost, i.e., the cost of renting, to be a mild generalization of additive costs, to the

extent that such costs still admit succinct representations. Our main algorithmic contribution here

can be summarized as follows:
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Even when there is complex interaction between resources, the combinatorial
ski rental problem admits exactly the same (optimal) competitive ratios as the
well-studied special case of a single resource.

This does require that we formulate the combinatorial ski rental problem such that (1) the costs are

submodular (as opposed to general set functions), and (2) the cost of purchasing is for “upgrading,” as

opposed to separate purchase. One may naturally wonder whether these conditions are necessary.

We answer this question by proving a number of lower bounds, which can be summarized as

follows:

For the combinatorial ski rental problem, constant competitive ratios cannot be
achieved in environments where upgrading is not allowed, or where resources
exhibit complementarity, or even slight non-submodularity.

Our results give a relatively complete picture for the combinatorial ski rental problem.

As for online bipartite matching, our formulation replaces edges with combinatorial capacity

constraints, which can equivalently be viewed as polymatroid feasibility constraints. As illustrated

in the example, our formulation of the problem models the possibility of complex constraints

induced by both offline vertices and online vertices. Our contribution here can be summarized as

follows:

Even in the presence of two-sided combinatorial capacity constraints, the com-
binatorial online bipartite matching problem admits the same (1 − 1/e) com-
petitive ratio as the classical online bipartite matching problem.

Technically, en route to our algorithmic and hardness results, we develop, among other techniques,

(1) a systematic approach for combinatorial covering-packing problems in the online primal-dual

framework, and (2) a symmetrization technique tailored for lower bounds involving XOS functions,

which may be of independent interest.

1.2 Technical Overview
To construct our algorithms for combinatorial ski rental and online bipartite matching, we adopt the

celebrated online primal-dual framework, and generalize the standard primal-dual analysis of the

single-resource ski rental problem to combinatorial domains. Henceforth, we refer to combinatorial

ski rental as the primal problem, and combinatorial online bipartite matching as the dual problem.

Our goal is to update primal and dual variables over time, such that (1) all constraints are satisfied

at all times, and (2) the ratio between the primal and dual objectives is bounded by a constant.

By weak duality, this constant gives us precisely our desired competitive ratio for both problems,

which we set to be e/(e − 1). En route, we face the following key technical difficulties.

• There are exponentially many primal variables and exponentially many dual constraints. Our

first step is to enforce strong structures on the family of update rules that we consider, such

that the primal variables are always completely determined by the dual variables. As a result,

when designing our update rule, we only need to consider the n dual variables.

• The primal objective and some dual constraints are global, i.e., they involve integration over

time. These components of the LPs appear more challenging to deal with under the online

primal-dual framework. To handle these components, we show that they can be reduced to

the local components of the LPs, by imposing additional local conditions on the dual variables.

This allows us to effectively decouple the time-dependent aspect, and focus on the snapshot

of the problem at each time.

• Now the problem reduces to establishing the existence of a group of update rates, satisfying

all local constraints at any time. To this end, we observe that the update procedure can be
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interpreted as racing among the n dual variables. We prove that at any time, the dual variables

can be divided into groups according to their current location and speed, and moreover, the

update rule can be designed separately for each group. Within each group, we show that

the existence of feasible rates of updating is equivalent to the existence of a solution to a

carefully constructed LP which achieves objective value at least 1. We prove the existence

of the latter by considering the dual of the LP, i.e., we analyze the structure of any locally

minimal dual solution, and show any such solution must induce objective value at least 1.

As for the lower bounds, we heavily exploit Yao’s Minimax Lemma, and construct hard distribu-

tions for all three relaxations of the combinatorial ski rental problem. One particularly interesting

technical ingredient is a symmetrization argument for XOS functions. For the relaxation where the

purchasing cost can be XOS, we first give an idealized construction relying on the assumption that

we can hide future clauses, which is not possible in our model. We remove this assumption via a

symmetrization argument, which works by, roughly speaking, preparing all possible clauses from

the very beginning, where different realizations of the clause in the same phase impose costs on

different sets of resources. We then effectively add clauses by demanding resources appearing in

the right realization of the clause we wish to add. The above trick symmetrizes the purchasing cost

f , and implements the idealized construction.

1.3 Related Work
Most closely related to our results is the highly insightful work by Wang and Wong [37]. They

consider important special cases of both the primal and the dual problems that we consider, namely,

the matroid online vertex cover problem
1
and the matroid online bipartite matching problem. The

key difference between our results and theirs is that they do not consider online combinatorial

costs / constraints. Technically, the absence of such costs and constraints substantially simplifies

the problem, and in particular, makes the task of designing efficient investment strategies, which is

one of our key technical contributions, almost trivial.

Online optimization with combinatorial constraints or objectives has been studied in various

contexts. We name a few results related to ours. Hazan and Kale [24] consider submodular minimiza-

tion in the no-regret learning context, where the goal is to achieve sublinear regret. Kapralov et al.

[28] consider submodular welfare maximization when items arrive online, and show that greedy

gives the optimal competitive ratio of 2. Devanur et al. [16] consider submodular welfare maxi-

mization when bidders arrive online. Chan et al. [14] study an online generalization of submodular

maximization, which they call submodular online bipartite matching with matroid constraints and

free disposal. These results are incomparable with ours, in the sense that they modify or generalize

the submodular minimization / maximization problem in orthogonal directions.

Since the seminal work by Karlin et al. [30], numerous applications of the ski rental problem

(e.g., TCP acknowledgement) have been found [18, 29]. Variants of the problem have also been

considered. Madry and Panigrahi [33] consider the ski rental problem in a stochastic setting. Lotker

et al. [32] generalize the original problem to allow multiple options interpolating between renting

and buying to be available. Gollapudi and Panigrahi [23] consider a variant of the problem where

expert advice is available. These results are incomparable with ours, since none of them consider

combinatorial costs.

1
In the online vertex cover problem, there are some offline vertices, and other vertices arrive online. When an online vertex

arrives, a decision must be made whether to include it or not. In the latter case, all of its offline neighbors must be included.

This is the special case of our combinatorial ski rental problem where the offline vertices are the resources/skills, f is

additive, and дt is the weight of the corresponding online vertex if at least one of the needed resources for that task has not

yet been purchased, and 0 otherwise. The matroid version of the problem allows the cost of including offline vertices to be

combinatorial, which is still a special case of our model.
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Following the groundbreaking work by Karp et al. [31], variants of the online bipartite matching

problem have also been studied. Examples include the vertex-weighted version [1, 17], adwords

[11, 15, 22, 35], and display ads allocation [20, 21]. Recently, the problem has been generalized to

the two-sided [36] and fully online models [25, 27], where in both models all vertices may arrive

online, and in the latter model, the graph is not necessarily bipartite. For more on online matching

and advertisement, see the survey by Mehta [34].

The online primal-dual framework [11, 17] has proved useful in various problems, including

online set cover [2], paging [9, 10], k-server [7, 8], network design [3, 4], routing [12], load balancing
and machine scheduling [5, 26], and matching [17]. The framework has also been generalized

to handle convex costs [6]. See the survey by Buchbinder and Naor [13] for more on the online

primal-dual framework.

2 PRELIMINARIES
Throughout the paper, we use n to denote the number of resources in combinatorial ski rental,

as well as the number of offline vertices in combinatorial online bipartite matching. We use

[n] = {1, 2, . . . ,n} to denote the set of positive integers not exceeding n. For a set function f :

2
[n] → R+ = [0,∞) and two sets S,T ⊆ [n], let f (S | T ) = f (S ∪T ) − f (T ) be the marginal value of

S given T .

2.1 Classes of Set Functions
In this paper, we consider the following classes of set functions.

• Additive functions. A set function f : 2
[n] → R+ is additive if for any S,T ⊆ [n] where

S ∩T = ∅, f (S) + f (T ) = f (S ∪T ).
• Submodular functions. A set function f : 2

[n] → R+ is submodular if for any S ⊆ [n] and
T ′ ⊆ T ⊆ [n], f (S | T ) ≤ f (S | T ′).

• XOS functions. A set function f : 2
[n] → R+ is XOS if there exists k ∈ N and k additive

functions c1, . . . , ck : 2
[n] → R+ over the same domain, such that for any S ⊆ [n], f (S) =

maxj ∈[k ]{c j (S)}. We call {c j }j ∈[k ] the clauses of f .
• Supermodular functions. A set function f : 2

[n] → R+ is supermodular, if for any S ⊆ [n] and
T ′ ⊆ T ⊆ [n], f (S | T ) ≥ f (S | T ′).

It is known that all additive functions are submodular, and all submodular functions are XOS

(see, e.g., [19]). Intuitively, additive functions model values or costs of independent resources,

submodular functions capture the notion of diminishing marginal return / cost, and XOS functions

are considered “just beyond” submodular functions. Supermodular functions, in contrast, model

resources as complements to each other, and they are generally considered difficult to deal with.

We prove our upper bounds when all cost functions are submodular, and consider XOS and

supermodular functions in our lower bounds.

2.2 The Combinatorial Ski Rental Problem
We consider a continuous formulation of the problem, which not only generalizes discrete time

models, but is also allows for cleaner algorithms and analyses. Let N = [n] be the set of resources,
which can be purchased or rented, and are demanded online. Let f : 2

[n] → R+ denote the cost
of purchasing, and д : R+ × 2

[n] → R+ the time-dependent unit-time cost of renting. The cost of

renting S from time t1 to t2 is ∫ t2

t1
д(t , S) dt .
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For simplicity, we assume д(·, S) is piecewise constant for any S . Also we require f and дt for
any t ≥ 0 to be submodular, normalized (i.e., f (∅) = дt (∅) = 0) and monotone. For any t ≥ 0, let

дt (·) = д(t , ·). The set of resources demanded at time t is implicitly encoded in дt — if a resource

i is not demanded, then for all S ⊆ [n], дt ({i} | S) = 0. Equivalently, one may think of this as all

resources are demanded at any time, but for some items, the marginal renting cost is always 0, i.e.,

they are available for free.

The actions of the algorithm are reflected in a time-dependent set of purchased resources, St .
Before time 0 the set of purchased resources is S<0 = ∅. At each time t ≥ 0, suppose the set of

resources already purchased before t is S<t =
⋃

t ′<t St ′ . The algorithm observes дt (and remembers

дt ′ for any t
′ < t ), and must choose a (possibly empty) set ∆St to purchase. Formally, we require

St to be a function of f , {дt ′ | t
′ ≤ t} and the random bits if the algorithm is randomized, and for

any t1 < t2, St1 ⊆ St2 . The cost of purchasing ∆St is f (∆St | S<t ), and the new set of purchased

resources is St = S<t ∪ ∆St . We note that the cost paid is for “upgrading” from S<t to St , rather
than separate purchase — the problem with separate purchase is strictly harder, and as we show,

admits no constant factor algorithm. For the set of unpurchased resources, [n] \ St , the algorithm
incurs cost дt ([n] \ St ) dt for renting those resources. This continues until time T ≥ 0, which is

unobservable by the algorithm. At time T , all resources stop to be demanded, and the total cost of

the algorithm can then be calculated as

ALG(f ,д,T ) = f (ST ) +

∫ T

0

дt ([n] \ St ) dt .

The goal is to minimize this total cost. Note that the integral is well-defined, since St can change

(expand, in fact) at most n times. Also, the order of purchasing and renting at some particular

time does not matter — we could replace the renting cost at time t by дt ([n] \ S<t ) dt . The total
cost remains the same since дt ([n] \ St ) and дt ([n] \ S<t ) as functions of t are identical almost

everywhere.

2.3 The Combinatorial Online Bipartite Matching Problem
Again, we consider a continuous formulation. Let N = [n] be the set of offline vertices, which can

be (fractionally) matched to online “vertices” upon their arrival. Let f : 2
[n] → R+ denote the global

capacity constraint over the offline vertices, and дt : 2
[n] → R+ the local capacity constraint for

the online vertex arriving at time t . Intuitively, f describes how many online vertices overall can

be matched to each subset of the offline vertices, and дt describes how much of the online vertex /

supply arriving at time t can be matched to each subset of the offline vertices. Again, we require f
and дt to be submodular, normalized, and monotone.

The actions of the algorthm are reflected in the assignment of the online supply to the n offline

vertices. Let λt (i) ≥ 0 be the amount of supply at time t assigned to offline vertex i . The assignment

must satisfy the global and local capacity constraints, i.e., for any t ∈ R+ and S ⊆ [n],∫ t

0

∑
i ∈S

λτ (i) dτ ≤ f (S) and

∑
i ∈S

λt (i) ≤ дt (S).

Again, the online environment enforces that λt can only depend on f and {дτ }τ ≤t . At time T ,
online supply / vertices stop to arrive, and the total amount of supply matched can be calculated as

ALG(f ,д,T ) =
∫ T

0

∑
i ∈[n]

λt (i) dt .

The goal is to maximize this total amount of supply matched.
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2.4 The Offline Optimum and the Competitive Ratio
We define the competitive ratio for the combinatorial ski rental problem — the respective definitions

for the combinatorial online bipartite matching problem is totally similar.

Given f , T , and дt for 0 ≤ t ≤ T , the offline optimal cost is given by

OPT(f ,д,T ) = min

S

{
f (S) +

∫ T

0

дt ([n] \ S) dt

}
.

The competitive ratio of an algorithm is then defined to be

sup

f ,д,T

{
ALG(f ,д,T )
OPT(f ,д,T )

}
,

where the sup is taken over all submodular cost functions.

3 WARMUP: THE SINGLE-RESOURCE CASE
In this section, we review the primal-dual approach to the classical single-resource ski rental

problem, which provides important intuition for our results. The construction and ideas therein

are also present in previous work based on the online primal-dual framework (see, e.g., [13]). We

present and interpret them here in order to provide intuition for our algorithm and analysis in the

fully combinatorial case.

Notation. We consider the case where n = 1. Let f = f ({1}) be the cost of purchasing the only
resource, and дt = дt ({1}) be the time-dependent rate for renting the resource. One could w.l.o.g.

assume дt = 1. However, here we allow дt to vary to provide more intuition for the general case,

where no similar simplifying assumptions can be made.

The primal-dual formulation. Consider the following standard online LP formulation and its dual.

Although the formulation takes a differential form, it is easy to check that weak duality still holds.

The primal formulation is clearly a relaxation of the ski rental problem.

Primal: min x · f +

∫ T

0

yt · дt dt

s.t. x + yt ≥ 1 ∀t ∈ [0,T ]

x ,yt ≥ 0 ∀t ∈ [0,T ]

Dual: max

∫ T

0

λt dt

s.t.

∫ T

0

λt dt ≤ f

λt ≤ дt ∀t ∈ [0,T ]

Fig. 1. The online primal-dual formulation in the single-resource case.

Algorithms via primal-dual update. We now show how to construct a deterministic 2-competitive

algorithm and a randomized e/(e − 1)-competitive algorithm utilizing the above formulation. The

plan is to maintain feasible primal and dual solutions, while ensuring that the cumulative primal

cost is at most twice or e/(e − 1) times the dual cost at any time. In particular, we increase variable x
as the cost of renting дt arrives online. To this end, we make variable x time-dependent, and denote

its value at time t by xt . Observe that at any moment t , for optimality we may set yt = 1 − xt . This
ensures the primal solution to be feasible and minimizes the primal cost. Also, for reasons that will

be clear momentarily, we set λt = дt whenever xt < 1, and λt = 0 otherwise — this is our dual

update rule for both of our algorithms. The rule automatically satisfies the second dual constraint.
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We first give the deterministic primal update rule, where xt ∈ {0, 1}. The rule is simple, and its

corresponding algorithm is extremely well-known: set xt = 1 as soon as the cumulative renting

cost

∫ t
0
дτ dτ exceeds f . In order to establish the competitive ratio of 2, we need to show: (1) the

first dual constraint is satisfied, and (2) the primal cost is upper bounded by twice the dual cost

at any time t . For (1), observe that for any t ,
∫ t
0
λτ dτ ≤

∫ t
0
дτ dτ , and at the moment when the

cumulative renting cost reaches f , xt is set to 1 and no further update will be made to any of the

variables. Therefore the first dual constraint is satisfied. For the ratio of 2, observe that the primal

cost is

xt · f +

∫ t

0

(1 − xτ )дτ dτ = xt · f +

∫ t

0

(1 − xτ )λτ dτ .

When the cumulative renting cost is less than f , xt = 0, and the primal cost is precisely the dual

cost. Otherwise, xt = 1, the dual cost is f and the primal cost is

1 · f +

∫ t

0

1 · λτ dτ = 2f .

The ratio follows.

Now we turn to the randomized algorithm, where xt can take any value in [0, 1]. Suppose xt is
differentiable. At time t , the derivative of the primal cost is

d

dt

(
xt · f +

∫ t

0

yτ · дτ dτ

)
=

d

dt
xt · f + yt · дt =

d

dt
xt · f + (1 − xt ) · дt .

On the other hand, the derivative of the dual cost is simply λt . For reasons that will be clear

momentarily, we set λt = дt whenever xt < 1. To guarantee the desired ratio of e/(e − 1), we want

the primal derivative to be exactly e/(e − 1) times the dual derivative, i.e.,

d

dt
xt · f + (1 − xt ) · дt =

e

e − 1

дt =⇒ дtxt +
1

e − 1

дt = f
d

dt
xt .

Given boundary condition x0 = 0, the above equation is solved by

xt =
1

e − 1

(
exp

(∫ t

0

дτ dτ/f

)
− 1

)
.

In light of this, we replace дτ in the above equation with λτ , and set

xt =
1

e − 1

(
exp

(∫ t

0

λτ dτ/f

)
− 1

)
.

This is because whenever xt < 1, λt = дt , and when xt = 1, there is no need to update any of the

variables. It remains to show primal and dual feasibility at any moment t . The primal side is clearly

feasible. For the dual, we need to show that at time t , if
∫ t
0
дτ dτ ≥ f , then λt = 0, or equivalently,

xt = 1. This is again trivial, because assuming otherwise, i.e., xt < 1, we have

xt =
1

e − 1

(
exp

(∫ t

0

λτ dτ/f

)
− 1

)
=

1

e − 1

(
exp

(∫ t

0

дτ dτ/f

)
− 1

)
≥

1

e − 1

(exp(1) − 1)) = 1,

a contradiction.

We remark that xt in the above solution is indeed monotonically non-decreasing. A direct

corollary is that the above primal solution can be rounded online, preserving the cost in expectation.

The rounding scheme is simple: pick r from [0, 1] uniformly at random, maintain the primal and

dual variables, and purchase the resource as soon as xt ≥ r .
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Take-away messages. The most important insight to be gained from the above analysis is the

formula for xt in the randomized algorithm and its components. We now try to interpret this. First

we isolate a key component of the formula. Let qt =
1

f

∫ t
0
λτ dτ . Observe that there is a one-to-one

correspondence between xt and qt , i.e., xt =
1

e−1 (exp(qt ) − 1). Moreover, xt is monotone in qt ,
xt = 0 iff qt = 0, and xt = 1 iff qt = 1. We call qt the investment into the resource, which directly

determines to what extent the resource is available. For our purposes, it is much more convenient

to work with qt than with xt .
Now we interpret the cost rate of renting, дt . In the above construction, before the resource is

completely purchased, дt contributes its entire value to the dual cost (i.e., дt = λt ), which up to a

factor of e/(e − 1) upper bounds the primal cost. One may view this as a budget of amount дt dt at
time t , which can be invested into the resource immediately. The amount actually invested is λt dt .
Moreover, by considering qt instead of xt , investing has a linear interpretation: the unit cost of
investing in the resource is f ; by investing λt dt at time t , one gains λt dt/f shares of the resource.

This investment interpretation lies in the core of our algorithm in the combinatorial case.

With the investment interpretation inmind, we review the two algorithms. In both our algorithms,

the investment rule is essentially the same — invest immediately all incoming budget into the

resource, as long as the capacity of the resource allows. The only difference between the two

scenarios and the two ratios is the mapping from the investment qt to the actual fraction of the

resource owned, xt . In the deterministic case, the mapping takes 1 to 1, and anything smaller than 1

to 0. The extreme non-smoothness of this mapping enforces the competitive ratio to be as large as 2.

Intuitively, the investment pays back only upon maturity. As a result, the algorithm has completely

no access to the resource before maturity, and suffers from the entirety of the primal cost. In the

randomized case, however, the mapping is much more smooth, which in some sense resembles

continuous compounded interest. The investment then immediately turns into fractional ownership

of the resource, which can be used to reduce the renting cost on the fly, and allows for a better

competitive ratio.

4 HANDLING COMBINATORIAL OBJECTIVES AND CONSTRAINTS
In this section, we present and analyze our algorithm for combinatorial ski rental and online bipartite

matching (Algorithm 1), unified under the online primal-dual framework. In Section 4.1, we give the

LP formulations that we consider, and interpret its components. In Section 4.2, we elaborate on the

market interpretation of the LP formulation, and focus our attention to a structured class of update

rules, which relies in a blackbox manner on a order over resources to be defined later. In Section 4.3,

we define a class of update rules (or investment strategies given the market interpretation), namely

efficient investment strategies, and reduce the problem of designing competitive algorithms for

both our problems to the problem of designing efficient investment strategies. In Section 4.4, we

define and motivate the order used in our update rule, and prove its properties. In Section 4.5, we

construct an update rule, and show that it satisfies all requirements of efficient strategies, and

therefore implies competitive online solutions to the primal and dual LPs. Finally in Section 4.6, we

show how to round the primal solution online to give a randomized algorithm for the combinatorial

ski rental problem.

4.1 The Online Primal-dual Formulation
We start from a combinatorial point of view, and consider the following online primal-dual formula-

tion of both problems that we consider (Figure 2). Below we interpret the variables and constraints.

In the primal formulation, which corresponds to the combinatorial ski rental problem, x(S) is the
probability that set S is purchased, or the fraction of S owned. One may alternatively view x(S) as a
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ALGORITHM 1: the primal-dual update algorithm.

Input : the purchasing cost (or the offline capacity constraint) f and the renting cost (or the online

budget constraint) дt .
Output : the primal distribution of purchased set of resources {xt (S)}S , and the dual investment rates (or

fractions of online vertex matched) {λt (i)}i at any time t .
At time t = 0, initialize qt (i) = 0 for each resource i .

for any time t ≥ 0 do
Compute the order over the resources ≺t = ≺(f ,дt ,qt ), as defined in Section 4.4.

Let {λt (i)}i be the group of investment rates defined in Lemma 4.7.

for each resource i where qt (i) < 1 do
Let the unit price for resource i be ht (i) = f (S(∼t i) | S(≺t i)) · λt (i)/λt (S(∼t i)), as defined in

Section 4.2.

Update qt (i) such that
d

dt qt (i) = λt (i)/ht (i).

if deterministic then
Let pt (i) = I[qt (i) = 1].

end
else

Let pt (i) =
1

e−1 (exp(qt (i)) − 1).

end
end
Let {xt (S)}S be such that xt (S) = Prθ∼U(0,1)[S = {i | pt (i) ≥ θ }], as discussed in Section 4.2.

end

distribution over the set purchased, which is possibly empty. Although not explicitly required, we

always ensure

∑
S x(S) = 1 in our update rule. Similarly, yt (S) is the fraction of set S to be rented

at time t . The primal objective is simply the total fractional (or expected) cost of purchasing and

renting resources. Recall that we define the problem in such a way, that all resources are demanded

at all times. The first primal constraint says each resource must be available (in expectation) at

each time t , being owned, rented, or (fractionally) both. In the dual formulation, which corresponds

to the combinatorial online bipartite matching problem, λt (i) is the fraction of online vertex at time

t matched to the i-th offline vertex. To understand our update rule and its analysis, it is sometimes

more convenient to view λt (i) as the rate of investing into resource i . The objective is to maximize

the total amount matched (or the total investment, which can be interpreted as providing as much

budget for the primal as possible). The second dual constraint is a local budget constraint, controling

the possible investment rates into all resources at each time. The first dual constraint, on the other

hand, is a global capacity constraint on the offline vertices (or resources), which says one cannot

over-invest into any set of resources.

4.2 Understanding the Market
The combinatorial setting, while generalizing the single-resource case, is fundamentally more

complex than the latter in several ways. We discuss relevant aspects of the complexity here, which

help simplify the problem and better motivate the investment interpretation. Throughout our

discussion of the update rule, x(S) is again time-dependent. We use xt (S) to denote its value at time

t , as in the single-resource analysis.

Individual investments. First observe that despite the costs being combinatorial, the dual implicitly

allows / requires investing in individual resources, rather than combinations of them. In light of this

observation, we also separate individual resources in the primal formulation. Instead of xt (S), we



Hanrui Zhang and Vincent Conitzer 11

Primal: min

∑
S ⊆[n]

x(S) · f (S) +

∫ T

0

∑
S ⊆[n]

yt (S) · дt (S) dt

s.t.

∑
S ⊆[n]:i ∈S

x(S) + yt (S) ≥ 1 ∀i ∈ [n], t ∈ [0,T ]

x(S),yt (S) ≥ 0 ∀S ⊆ [n], t ∈ [0,T ]

Dual: max

∫ T

0

∑
i ∈[n]

λt (i) dt

s.t.

∫ T

0

∑
i ∈S

λt (i) dt ≤ f (S) ∀S ⊆ [n]∑
i ∈S

λt (i) ≤ дt (S) ∀S ⊆ [n], t ∈ [0,T ]

Fig. 2. The online primal-dual formulation in the general case.

consider pt (i) ∈ [0, 1] for each resource i , at any time t . {pt (i)}i determine {xt (S)}S in the following

way. For any set S ,

xt (S) = Pr

θ∼U(0,1)
[S = {i | pt (i) ≥ θ }],

where U(0, 1) is the uniform distribution over [0, 1]. In words, xt (S) is the probability that S is the

set of resources i whose pt (i) exceeds a uniformly random threshold θ from [0, 1]. pt (i) is then
the probability that resource i appears in such a random set. Clearly

∑
S xt (S) = 1 at any time t .

Given pt (i), for optimality we always set yt (S) in the following way throughout this section. Let

yt (S) = xt ([n] \ S). Or equivalently, for any S ⊆ [n],

yt (S) = Pr

θ∼U(0,1)
[S = {i | pt (i) < θ }].

pt (i) here in some sense plays the role of xt in the single-resource formulation. So, similarly we

define the investment qt (i) in resource i , which directly determines pt (i). The relation between pt (i)
and qt (i) are the same as in the single-resource setting, i.e., pt (i) = I[qt (i) = 1] in the deterministic

case, and pt (i) =
1

e−1 (exp(qt (i)) − 1) in the randomized case. As in the single-resource setting, it is

much easier to work with the investments qt (i) rather than the probabilities pt (i).

Unit prices in the combinatorial case. Nowwe consider the unit prices of investing in the resources.

The prices can be derived by opening up the analysis which we present later. Here we give only the

prices, and omit the reasoning behind them, which will be clear momentarily. In the combinatorial

case, the unit prices of investing generally are no longer fixed, but may depend on what resources

one already controls and the rates at which one is spending the budget. At any time t , we define a
weak order (where equality is allowed) ≺t = ≺(f ,qt , λt ) over the resources, which is determined

by the cost of purchasing f , the investments qt and the investment rates λt . For two resources i , j,
if qt (i) < qt (j) then i ≺t j. When qt (i) = qt (j), we need more delicate conditions involving f and

λt to determine the order between i and j. In such cases, it is possible that i ≺t j, j ≺t i , or i ⊀t j
and j ⊀t i , i.e., i is “equal” to j according to ≺t , denoted by i ∼t j . Given ≺t , let S(≻t i) be the suffix

defined by i , i.e., S(≻t i) = {j | j ≻t i}. Similarly we define S(≺t i) = {j | j ≺t i}. Let S(∼t i) be the
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set of resources equal to i , including i itself, i.e., S(∼t i) = {j | j ∼t i}. Given ≺t , S(≻t i) and S(∼t i),
the unit price of investing in i is then defined to be

ht (i) = f (S(∼t i) | S(≻t i)) ·
λt (i)

λt (S(∼t i))
= f (S(∼t i) | S(≻t i)) ·

λt (i)∑
j ∈S (∼t i) λt (j)

.

Here, we abuse notation to allow λt (S) =
∑

i ∈S λt (i). When S(∼t i) = {i}, ht (i) simplifies to

ht (i) = f ({i} | S(≻t i)).
Note that in certain cases, it is possible that ht (i) = 0. This happens when (1) f (S(∼t i) | S(≻t

i)) = 0, or (2) λt (i) = 0. To avoid the first case, we assume f (i | [n] \ i) > 0 for any i , by, for example,

replacing f with f ′ where f ′(S) = f (S) + ε · |S |. This is without loss of generality, since letting
ε → 0, f ′ approximates f up to any precision. When the second case happens, λt (i) = ht (i) = 0,

and we define

λt (i)

ht (i)
=

λt (S(∼t i))

f (S(∼t i) | S(≻t i))
.

We formally define ≺ later — details of ≺ are immaterial for our current discussion. Here, the

only properties of ≺ we need are as follows.

Lemma 4.1 (stability almost everywhere). When λt is piecewise constant in t , ≺t changes only
on a zero-measure subset of [0,T ]. As a result, for any i , ht (i) is constant in t almost everywhere.

As we shall see, λt being piecewise constant is not a trivial property as it appears to be. Our

construction of λt , as we show, is in fact piecewise constant given that дt is piecewise constant.

Lemma 4.2 (monotone rates). Fix f , some resource i , and two groups of investments and rates
(qt , λt ) and (q′t , λ

′
t ). Let S(>t i) = {j | qt (j) > qt (i)} and S(>′t i) = {j | q′t (j) > q′t (i)}, and similarly

S(≥t i) = {j | qt (j) ≥ qt (i)} and S(≥′
t i) = {j | q′t (j) ≥ q′t (i)}. Suppose (qt , λt ) and (q′t , λ

′
t ) satisfy

λt (j) ≥ λ′t (j) for all j and S(>t i) ⊇ S(>′t i) and S(≥t i) ⊇ S(≥′
t i). Let ≺t = ≺(f ,qt , λt ), and

≺′
t = ≺(f ,q′t , λ

′
t ). Let ht (i) and h

′
t (i) be the unit prices for i induced by ≺t and ≺′

t respectively. Then
λt (i)
ht (i)

≥
λ′t (i)
h′
t (i)

.

Lemma 4.2 crucially depends on f being submodular. We will prove these lemmas when we

formally define ≺.

To see why the unit prices are appropriately defined, suppose all resources have different

investments, i.e., for any i , j ,qt (i) , qt (j). Recall that the fractional / expected cost of the purchased
set of resources is

∑
S xt (S) · f (S), where xt (S) are determined by pt (i) in the way described above.

Consider investing in some resource i . For sufficiently small ε , when we increase the probability of

i , pt (i), by ε , we are intuitively upgrading an ε fraction of the set S(≻t i) to S(≻t i) ∪ {i}. That is,
we decrease xt (S(≻t i)) by ε and increase xt (S(≻t i) ∪ {i}) by ε , simultaneously. As a result, we

pay a marginal cost of

ε · f ({i} ∪ S(≻t i)) − ε · f (S(≻t i)) = ε · f ({i} | S(≻t i)) = ε · ht (i).

The effective unit price of resource i here is exactly ht (i).

Dynamics of the market. At time t , given the rates of investing λt , the cost of purchasing f and

the investments qt together define how the market evolves (i.e., the update rule), explicitly given by

d

dt
qt (i) =

λt (i)

ht (i)
.

We consider only update rules given by the above equation. Note that for i ∼t j,
d

dt qt (i) =
d

dt qt (j).
That is, the investments into incomparable resources always increase at the same rate. In certain

pathological cases, the above dynamics may be ill-defined. We therefore assume any regularity
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conditions on λt (and дt , which in our construction partly determines λt ) for the dynamics to make

sense. For simplicity, we consider these quantities to be piecewise constant functions of time.

Our task is to choose the investment rates λt subject to the budget and capacity constraints, and

show the induced update rule gives our desired competitive ratios. We break this into two parts.

Within this environment, we first (1) set our investment goals, which as we show, would imply the

desired competitive ratios, and then (2) present our investment strategy, i.e., construction of λt , to
achieve these goals. The next subsections are dedicated to these two tasks.

4.3 Setting Investment Goals
As in the single-resource case, we construct our algorithm by updating the primal and dual solutions,

keeping both of them feasible and within some factor of each other. In the above subsection, we

formulate this as an investment problem by enforcing certain structures of the update rule and

setting individual but time-dependent unit prices for all resources. Yet, it is not clear what our

objectives might be in this environment. The single-resource analysis suggests that one should

probably invest as much as possible at all times. However, in the combinatorial case, complex

correlation (encoded as constraints invloving multiple resources) may prevent us from investing in

a single-minded fashion — we must set reasonble goals and build our portfolio carefully to meet

them. We now describe our investment goals, and show how they imply the desired competitive

ratios. The investment strategy used to achieve the goals is postponed to the next subsections.

For notational simplicity, for any θ ∈ [0, 1], let S(<t θ ) = {i | qt (i) < θ }. Similarly, let S(>t θ ) =
{i | qt (i) < θ } and S(=t θ ) = {i | qt (i) = θ }. Consider the following requirements.

• Piecewise constant: ∀i ∈ [n], λt (i) is piecewise constant in t .
• Budget feasibility: ∀t ∈ R+, S ⊆ [n], λt (S) =

∑
i ∈S λt (i) ≤ дt (S). This is the second dual

constraint, which says the investment strategy must abide by the budget constraint at all

times.

• Group-wise full spending: ∀t ∈ R+,θ ∈ [0, 1),

λt (S(=t θ )) =
∑

i ∈S (=t θ )

λt (i) = дt (S(=t θ ) | S(<t θ )).

This requirement means for each group of resources partially owned to a same extent, we

must invest all incoming budget available in this group into resources in the same group.

• No wasting: ∀t ∈ R+, i ∈ [n], qt (i) = 1 =⇒ λt (i) = 0. In other words, we never invest in a

fully owned resource. This implies in particular that qt (i) is always no larger than 1.

If an investment strategy satisfies these requirements, we say the strategy is efficient. One
important property of the requirements is that they are all local — no integration is involved in any

of them, which makes constructing efficient strategies much easier. We now show that any efficient

investment strategy satisfying these conditions induces an update rule of the desired competitive

ratios. In particular, these requirements in combination ensure that the first dual constraint, the

capacity constraint, is automatically satisfied.

Theorem 4.1. Any efficient investment strategy λt induces primal variables xt and yt , such that all
primal and dual constraints are satisfied, and the ratio between the primal and dual costs is bounded
by 2 (resp. e/(e − 1)) in the deterministic (resp. randomized) environment.

To prove Theorem 4.1, we proceed by two steps. First we show the solutions are always feasible.

In particular, we show the offline capacity constraint, absent from the requirements for efficient

strategies, is always satisfied. This is captured by the following lemma.
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Lemma 4.3. Any efficient investment strategy λt satisfies for any t ∈ R+, S ⊆ [n],∫ t

0

λτ (S) dτ =

∫ t

0

∑
i ∈S

λτ (i) dτ ≤ f (S).

We postpone the proof of the lemma, as well as all other missing proofs, to the appendix.

Then we bound the ratio between the primal and dual costs. The first part of the argument is

exactly the same regardless of the environment being deterministic or randomized. The second

part, on the other hand, is slightly different for the two environments. This is captured by the

following lemma.

Lemma 4.4. Let λt be an efficient investment strategy, and xt and yt be the primal variables induced
in the deterministic (resp. randomized) environment. Then at any time t ∈ R+, the ratio between the
primal cost and the dual cost,(∑

S

xt (S) · f (S) +

∫ t

0

∑
S

yτ (S) · дτ (S) dτ

)
/

(∫ t

0

λτ (i) dτ

)
,

is no larger than 2 (resp. e/(e − 1)).

It may appear counterintuitive that the same update rule for qt may result in different ratios in the

deterministic and randomized environments. To see why this is possible, recall that xt andyt depend
only onpt . In the deterministic environment,pt is only allowed to be 0 or 1, and the relation between
pt and qt is given by pt (i) = I[qt (i) = 1]. On the other hand, in the randomized environment, pt
can be fractional, and the relation between pt and qt is pt (i) = (exp(qt (i)) − 1)/(e − 1). So even if qt
is the same, the primal variables xt and yt induced are different in the two environments, resulting

in different ratios.

Theorem 4.1 is a direct corollary of Lemmas 4.3 and 4.4. With Theorem 4.1, it only remains to

design an efficient investment strategy subject to local constraints.

4.4 The Order ≺
We now formally define the order ≺, and prove its properties, which enable Theorem 4.1 in a

blackbox manner. Details of ≺ are necessary for the construction of our investment strategy.

We define ≺ in a more general case. That is, instead of restricting the third parameter to be

additive (e.g., in ≺t = ≺(f ,qt , λt ), λt can be viewed as an additive set function for any t ), we allow
it to be any submodular function. Fix f , qt , and some submodular function д over the resources,

let ≺
д
t = ≺(f ,qt ,д). In particular, ≺t = ≺

λt
t . One may intuitively think of ≺ as induced by the

leaderboard of a race. As discussed in the previous subsections, at time t , qt (i) < qt (j) implies

i ≺
д
t j. That is to say, i is ordered before j if i is strictly behind j in the race. It remains to define

≺
д
t when qt (i) = qt (j), i.e., i and j are currently at the same place. In such cases, it is natural to

determine the order by the speeds of i and j , i.e., i is ordered before j if i is “slower” than j . We now

formalize this intuition.

For any θ ∈ [0, 1], consider S = S(=t θ ) induced by qt . Define S(>t θ ) = {i | qt (i) > θ }. We say

S is ahead of S(<t θ ), and behind S(>t θ ). In particular, the union of the three sets is [n]. For any
T ⊆ S , define the speed of T to be

vt (T ) =
д(T | S(<t θ ) ∪ (S \T ))

f (T | S(>t θ ))
.

Let the leading subgroup Lt (S) be the largest
2
subset T of S with the highest speed, i.e., vt (T ) =

maxU ⊆S vt (U ). Thenwe define ≺
д
t such that (1) for any i, j ∈ Lt (S), i ∼

д
t j , and (2) for any i ∈ S\Lt (S)

2
If there are multiple such subsets, let T be the lexicographically smallest one.
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and j ∈ Lt (S), i ≺
д
t j . That is, the leading subgroup is ordered after its complement in S , and within

the leading subgroup, resources are tied to each other.

It remains to define ≺
д
t within S \ Lt (S). We do this recursively. In general, suppose U , V and

W satisfy (1) ∀i, j ∈ V , qt (i) = qt (j), (2) ∀i ∈ U , j ∈ V , qt (i) ≤ qt (j), (3) ∀i ∈ V , j ∈W , qt (i) ≤ qt (j),
(4)U , V , andW are pairwise disjoint, and (5)U ∪V ∪W = [n]. For T ⊆ V , let the speed of T in V
betweenU andW be

vt (T ,U ,V ,W ) =
д(T | U ∪ (V \T ))

f (T |W )
.

Similarly, let the leading subgroup in V betweenU andW , Lt (U ,V ,W ), be the lexicographically

smallest subsetT ofV such that vt (T ,U ,V ,W ) = maxX ⊆S vt (X ,U ,V ,W ). LetU0 = S(<t θ ),V0 = S ,
W0 = S(>t θ ). For k ≥ 0, letTk = Lt (Uk ,Vk ,Wk ),Uk+1 = Uk ,Vk+1 = Vk \Tk ,Wk+1 =Wk ∪Tk . Then
clearly {T0,T1, . . . , } form a partition of V0. Moreover, Tk is non-empty as long as Vk is non-empty,

and as a result Tk = ∅ for any k > |V0 |. For i ∈ Tu and j ∈ Tv , (1) i ≺
д
t j if u > v , (2) j ≺

д
t i if u < v ,

and (3) i ∼
д
t j if u = v . This completes the definition of ≺.

Now we state useful properties of ≺. First we show that when д is the investment rates λt , within
each group Tk , all resources have the same speed

d

dt qt (i), which is equal to the speed of the group.

Lemma 4.5 (same speedwithin a group). Fix f ,qt andд = λt . Let S = S(=t θ ), {(Uk ,Vk ,Wk )}k be
the sequence of partitions, and {Tk }k the sequence of leading subgroups induced by (S(<t θ ), S, S(>t θ )).
For any k ≥ 0 and i ∈ Tk , d

dt qt (i) = vt (Tk ,Uk ,Vk ,Wk ), as long as Tk , ∅.

The following lemma shows that ≺ indeed breaks ties introduced by qt according to the speeds.

Lemma 4.6 (tie-breaking from speeds). Fix f , qt and д. Let S = S(=t θ ), {(Uk ,Vk ,Wk )}k be the
sequence of partitions, and {Tk }k the sequence of leading subgroups induced by (S(<t θ ), S, S(>t θ )).
For any k ≥ 0, vt (Tk ,Uk ,Vk ,Wk ) > vt (Tk+1,Uk+1,Vk+1,Wk+1) as long as Tk+1 , ∅.

Now we are ready to prove the properties given in Section 4.2, i.e., Lemmas 4.1 and 4.2. Again

we defer the proofs to the appendix.

4.5 The Investment Strategy
Now we construct the investment rates λt given f and дt , and show that the λt we construct satisfy
all requirements of efficient strategies.

At time t , let ≺
дt
t = ≺(f ,qt ,дt ). We construct λt for each group S = S(=t θ ) respectively. Fix

S = S(=t θ ). If θ = 1, then let λt (i) = 0 for all i ∈ S . Otherwise, consider sequence of partitions
{(Uk ,Vk ,Wk )}k and leading groups Tk = Lt (Uk ,Vk ,Wk ) induced by (f ,qt ,дt ) and (S(<t θ ), S, S(>t
θ )). For k such that Tk , ∅, let {λt (i)}i ∈Tk be such that∑

i ∈Tk

λt (i) = дt (Tk | Uk ∪ (Vk \Tk )),∑
i ∈S

λt (i) ≤ min{дt (S | Uk ∪ (Vk \Tk )), f (S |Wk ) · д(Tk | Uk ∪ (Vk \Tk ))}, ∀S ⊆ Tk .

Performing the above for each S(=t θ ) and all leading groups induced yields investment rates

{λt (i)}i ∈[n] for all resources. The existence of such {λt (i)}i ∈Tk within each Tk is guaranteed by the

following lemma.

Lemma 4.7. Fixm ∈ N. Suppose f1, f2 : 2[m] → R+ are monotone submodular functions satisfying
(1) f1(∅) = f2(∅) = 0, (2) f1([m]) = f2([m]) = 1, and (3) for any S ⊆ [m], f1(S) + f2([m] \ S) ≥ 1.
Then there exist nonnegative {λ(i)}i ∈[m] such that∑

i ∈[n]

λ(i) = 1 and
∑
i ∈S

λ(i) ≤ min{ f1(S), f2(S)},∀S ⊆ [m].
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To see why the lemma implies the existence of {λt (i)}i ∈Tk , letm = |Tk | and w.l.o.g. suppose Tk
is the domain of f1 and f2. For any S ⊆ Tk , let

f1(S) =
f (S |Wk )

f (Tk |Wk )
and f2(S) =

дt (S | Uk ∪ (Vk \Tk ))

дt (Tk | Uk ∪ (Vk \Tk ))
.

It is easy to check f1(∅) = f2(∅) = 0 and f1(Tk ) = f2(Tk ) = 1. By the definition ofTk , for any S ⊆ Tk ,

1 ≥
vt (S,Uk ,Vk ,Wk )

vt (Tk ,Uk ,Vk ,Wk )
=

1

f1(S)
−

f2(Tk \ S)

f1(S)
.

As a result, f1(S) + f2(Tk \ S) ≥ 1, which is exactly the third condition required by Lemma 4.7. Let

{λ(i)}i ∈Tk be as guaranteed by Lemma 4.7. It is then easy to check that

λt (i) = λ(i) · дt (Tk | Uk ∪ (Vk \Tk ))

gives {λt (i)}i ∈Tk with the desired properties.

Now we prove that λt is in fact an efficient investment strategy, as desired. Recall that ≺t =

≺(f ,qt , λt ). We first show that ≺
дt
t induced by дt is exactly the same as ≺t induced by λt .

Lemma 4.8. At any time t ≥ 0, for any i, j ∈ [n], i ≺t j ⇐⇒ i ≺
дt
t j.

The following lemma states that λt satisfies the piecewise constant condition.

Lemma 4.9. For any i ∈ [n], λt (i) is piecewise constant in t .

And finally, the following lemma states that λt satisfies the budget feasibility condition.

Lemma 4.10. For any t ∈ R+ and S ⊆ [n],
∑

i ∈S λt (i) ≤ дt (S).

Finally, observe that λt clearly satisfies the nowasting condition. Togetherwith Lemmas 4.9 and 4.10,

this implies that λt constructed in this section is in fact an efficient investment strategy.

Theorem 4.2. There exists an efficient investment strategy λt , satisfying the piecewise constant,
budget feasibility, and no wasting conditions.

Combined with Theorem 4.1, Theorem 4.2 directly implies the existence of competitive algorithms

for (fractional) combinatorial ski rental and combinatorial online bipartite matching.

Theorem 4.3. There exists

• a 2-competitive deterministic algorithm for combinatorial ski rental,
• an online e/(e − 1)-competitive solution to the LP formulation of combinatorial ski rental, and
• an e/(e − 1)-competitive algorithm for combinatorial online bipartite matching.

4.6 Rounding Scheme with Multiple Resources
In this section, we give a rounding scheme, which, given a fractional primal solution, yields an

integral primal solution preserving the cost of the fractional solution in expectation. Together

with Theorems 4.1 and 4.2, this implies an e/(e − 1)-competitive randomized algorithm for the

combinatorial ski rental problem.

The rounding scheme is simple and similar to the one presented in Section 3. Again, we draw a

number r uniformly at random from [0, 1], at the very beginning of the algorithm. We upgrade

the set purchased to include resource i as soon as qt (i) becomes at least r . We now show that this

rounding scheme preserves the cost in expectation.
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Theorem 4.4. Fix f , дt , qt , and xt induced by qt , and let St be the set purchased at time t , given
by the above rounding scheme. At any time t ∈ R+, we have

E

[
f (St ) +

∫ t

0

дτ ([n] \ Sτ ) dτ

]
=

∑
S

xt (S) · f (S) +

∫ t

0

∑
S

xτ (S) · дτ ([n] \ S) dτ .

As a result, there is an e/(e − 1)-competitive randomized algorithm for combinatorial ski rental.

5 HARDNESS RESULTS
We prove in this section that for combinatorial ski rental, the restrictions we put on the cost

functions, i.e., (1) the cost of purchasing f being submodular, (2) the cost of renting дt being
submodular, and (3) the cost of purchasing is for upgrading, rather than separate purchase, are all

necessary to allow for a constant competitive ratio.

Theorem 5.1. No (possibly randomized and / or inefficient) algorithm is o(
√
logn)-competitive for

combinatorial ski rental when the purchasing cost f is allowed to be XOS, even if the renting cost is
additive.

Theorem 5.2. No (possibly randomized and / or inefficient) algorithm is o(logn)-competitive for
combinatorial ski rental when the renting cost дt is allowed to be supermodular, even if the purchasing
cost is additive.

Theorem 5.3. No (possibly randomized and / or inefficient) algorithm is O(n1−ε )-competitive for
combinatorial ski rental when upgrading is not allowed, for any ε > 0, even if the purchasing cost is
submodular and the renting cost is additive.
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A OMITTED PROOFS IN SECTION 4.3
Proof of Lemma 4.3. Consider any set S ⊆ [n] of resources. We need to show that at any

moment t , ∫ t

0

∑
i ∈S

λτ (i) dτ ≤ f (S).

We prove the above by showing, if equality holds between the two sides of the above inequality,

then it must be the case that for any i ∈ S , qt (i) = 1, and therefore λt (i) = 0 by the no wasting

requirement. As we will show, this is a corollary of the following fact.

Lemma A.1 (monotonicity in investment rates). Let λt and λ′t be two piecewise constant
investment strategies, satisfying for any i ∈ [n], t ∈ R+, λt (i) ≥ λ′t (i). Let qt and q

′
t be the corre-

sponding investments induced by the two strategies respectively. Then for any i ∈ [n], t ∈ R+, we have
qt (i) ≥ q′t (i).

The lemma can be viewed as monotonicity of the mapping from an investment strategy to the

resulting group of investments. It essentially says, that if one investment strategy is pointwise

dominated by another strategy, then the corresponding group of investments is also pointwise

dominated by that induced by the other strategy. We now prove the lemma.

Proof of Lemma A.1. Observe that qt and q
′
t are continuous and piecewise linear. Therefore we

only need to show that, any time t , if i satisfies qt (i) − q′t (i) = minj (qt (j) − q′t (j)), then

λt (i)

ht (i)
≥

λ′t (i)

h′
t (i)
.

This is a direct corollary of the monotone rates property (Lemma 4.2), since for any j , qt (j) −qt (i) ≥
q′t (j) − q′t (i), so if q′t (j) − q′t (i) is positive (resp. nonnegative), then so is qt (j) − qt (i). To see why

this implies the lemma, suppose at time t1,

min

j
(qt (j) − q′t (j)) < 0.

Let

t0 = sup{t ≤ t1 | min

j
(qt (j) − q′t (j)) ≥ 0}.

By continuity we have

min

j
(qt0 (j) − q′t0 (j)) = 0.

Since qt and q
′
t are piecewise linear, there exists i and ε > 0, such that for any t ∈ (t0, t0 + ε],

qt (i) − q′t (i) = min

j
(qt (j) − q′t (j)) < 0.

But then on (t0, t0 + ε],

d

dt
(qt (i) − q′t (i)) =

λt (i)

ht (i)
−
λ′t (i)

h′
t (i)

≥ 0,

and in particular,

0 > qt0+ε (i) − q′t0+ε (i) = qt0 (i) − q′t0 (i) +

∫ t0+ε

t0

d

dt
(qt (i) − q′t (i)) dt ≥ 0,

a contradiction. □
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Given Lemma A.1, we relax the actual strategy λt to one dominated by λt . Formally, we define a

dominated strategy λ′t , such that

λ′t (i) =

{
λt (i), if i ∈ S

0, otherwise

.

Note that λ′t is piecewise constant if λt is piecewise constant. Let q
′
t be the investments induced by

λ′t . Now all we need to show is, whenever∫ t

0

∑
i ∈S

λ′τ (i) dτ = f (S),

we always have q′t (i) = 1 for all i ∈ S . To see why this is true, we define a investment distribution

z ′t over subsets of resources, which is determined by the investments q′t in the same way that xt is
determined by pt . That is, for any T ⊆ [n],

z ′t (T ) = Pr

θ∼U(0,1)
[T = {i | q′t (i) ≥ θ }].

Consider the cost of purchasing the investment distribution z ′t and the amount by which it increases

between time t and t + dt . Let ≺′
t = ≺(f ,q′t , λ

′
t ). Let S(≻

′
t i) = {j | j ≻′

t i}, and S(∼
′
t i) and S(≺

′
t i)

similarly defined. Recall that the unit price for i induced by (f ,q′t , λ
′
t ) is

h′
t (i) = f (S(∼′

t i) | S(≻
′
t i)) ·

λ′t (i)

λ′t (S(∼
′
t i))
.

Observe that at time t , the expected cost of purchasing a set of resources distributed according to

z ′t can be written as ∑
T ⊆[n]

z ′t (T ) · f (T ) =
∑
i ∈[n]

q′t (i) · h
′
t (i).

Suppose ≺′
t does not change at time t . The increase of the cost, calculated in a somewhat non-

rigorous but more informative way, is then

©­«
∑
T ⊆[n]

z ′t+ dt (T ) · f (T )
ª®¬ − ©­«

∑
T ⊆[n]

z ′t (T ) · f (T )
ª®¬

=
∑
i ∈[n]

(
q′t+ dt (i) · h

′
t+ dt (i) − q′t (i) · h

′
t (i)

)
(expanding the cost as a telescoping sum)

=
∑
i ∈[n]

(q′t+ dt (i) − q′t (i)) · h
′
t (i)

(≺′
t changes only on a zero-measure set, so h′

t (i) is constant in t almost everywhere)

=
∑
i ∈[n]

λ′t (i) dt

h′
t (i)

· h′
t (i) (dynamics of the market)

=
∑
i ∈[n]

λ′t (i) dt

=
∑
i ∈S

λt (i) dt . (definition of λ′)
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So the increase of the cost of z ′t is exactly the amount of budget invested in S . In other words,

almost everywhere,

d

dt

©­«
∑
T ⊆[n]

z ′t (T ) · f (T )
ª®¬ =

∑
i ∈S

λt (i).

As a result, we have ∑
T ⊆[n]

z ′t (T ) · f (T ) =

∫ t

0

∑
i ∈S

λτ (i) dτ = f (S).

Now since the cost of purchasing z ′t is clearly monotone in z ′t and q′t (i) = 0 for any i < S , the
only distribution that has cost f (S) is z ′t (S) = 1 and z ′t (T ) = 0 for any T , S . This investment

distribution corresponds uniquely to the group of investments where q′t (i) = 1 for all i ∈ S and

q′t (i) = 0 otherwise. By Lemma A.1, this implies for all i ∈ S , qt (i) = 1, which is exactly our desired

condition. This finishes the proof for feasibility. □

Proof of Lemma 4.4. We now bound the ratio between the primal and dual costs, in the deter-

ministic and randomized environments respectively.

The ratio in the deterministic case. Similar to the single-resource analysis, we decompose the

primal cost into two parts, the cumulative cost of purchasing and that of renting. We argue that

each part is no larger than the dual cost at any time t . Consider first the cost of purchasing,∑
S

xt (S) · f (S) =
∑
i

pt (i) · ht (i).

Again, let zt be the investment distribution induced by qt in the same way that xt is induced by pt .
As in the proof of Lemma A.1, the dual cost can be written as∫ t

0

∑
i

λτ (i) dτ =
∑
S

zt (S) · f (S) =
∑
i

qt (i) · ht (i).

Now recall that in the deterministic environment, pt (i) = I[qt (i) = 1] ≤ qt (i). It follows directly
that ∑

i

pt (i) · ht (i) ≤
∑
i

qt (i) · ht (i).

In other words, the primal cost of purchasing is upper bounded by the dual cost.

Now consider the primal cost of renting. We show that at any time t , the renting cost and the

dual cost increase at the same rate. We incur cost of rate дt (S(<t 1)) where S(<t 1) is the set of all
resources not yet fully purchased, i.e., S(<t 1) = {i | qt (i) < 1}. The rate can be written as

дt (S(<t 1)) =
∑

0≤θ<1:∃i,qt (i)=θ
дt (S(=t θ ) | S(<t θ )).

On the other hand, the increase of the dual cost satisfies the group-wise full spending property.

This implies that the rate at which the dual cost increases can be written as∑
i

λt (i) =
∑

0≤θ<1:∃i,qt (i)=θ

∑
j ∈S (=t θ )

λt (j) =
∑

0≤θ<1:∃i,qt (i)=θ
дt (S(=t θ ) | S(<t θ )).

This is precisely the primal rate of increase of the renting cost. We therefore conclude that the

primal cost is always no larger than twice the dual cost.
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The ratio in the randomized case. Recall that in the randomized case, pt (i) =
1

e−1 (exp(qt (i)) − 1).

We consider directly the rate at which the primal cost increases, which, given Lemma 4.1, can be

written as

d

dt

(∑
S

xt (S) · f (S)

)
+

∑
S

yt (S) · дt (S)

=
d

dt

(∑
S

xt (S) · f (S)

)
+

∑
S

xt ([n] \ S) · дt (S) (yt (S) = xt ([n] \ S))

=
∑
i

(
d

dt
pt (i)

)
· ht (i) +

∑
S

xt ([n] \ S) · дt (S) (ht (i) is constant almost everywhere)

=
∑
i

(
1

e − 1

exp(qt (i)) ·
d

dt
qt (i)

)
· ht (i) +

∑
i

дt ({i} | S(≺t i) ∪ (S(∼t i) ∩ [i − 1]))(1 − pt (i))

(expanding second term as a telescoping sum)

=
∑
i

(
1

e − 1

exp(qt (i)) ·
λt (i)

ht (i)

)
· ht (i) +

∑
0≤θ ≤1:∃i,1−pt (i)=θ

дt (S(=t θ ) | S(<t θ )) · θ

(grouping by pt (i))

=
∑
i

(
pt (i) +

1

e − 1

)
· λt (i) +

∑
0≤θ ≤1:∃i,1−pt (i)=θ

∑
j ∈S (=t θ )

λt (j) · (1 − pt (j))

(group-wise full spending)

=
∑
i

(
pt (i) +

1

e − 1

)
· λt (i) +

∑
i

λt (i) · (1 − pt (i))

=
e

e − 1

∑
i

λt (i).

On the other hand, the dual cost increases at rate exactly

∑
i λt (i). This establishes the desired ratio

of e/(e − 1). □

B OMITTED PROOFS IN SECTION 4.4
Proof of Lemma 4.5. Recall that by the market dynamics,

d

dt
qt (i) =

λt (i)

ht (i)
= λt (i) ·

(
f (Tk |Wk ) ·

λt (i)

λt (Wk )

)−1
=

λt (Wk )

f (Tk |Wk )
=

λt (Wk | Uk ∪ (Vk \Tk ))

f (Tk |Wk )
= vt (Tk ,Uk ,Vk ,Wk ). □

Proof of Lemma 4.6. Suppose otherwise, i.e.,

vt (Tk ,Uk ,Vk ,Wk ) ≤ vt (Tk+1,Uk+1,Vk+1,Wk+1).

We show that

vt (Tk ∪Tk+1,Uk ,Vk ,Wk ) ≥ vt (Tk ,Uk ,Vk ,Wk ),
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contradicting the definition of Tk , since Tk ∪Tk+1 is larger than Tk and has speed no smaller than

Tk . In fact,

vt (Tk ∪Tk+1,Uk ,Vk ,Wk ) =
д(Tk ∪Tk+1 | Uk ∪ (Vk \ (Tk ∪Tk+1)))

f (Tk ∪Tk+1 |Wk )

=
д(Tk | Uk ∪ (Vk \Tk )) + д(Tk+1 | Uk ∪ (Vk \ (Tk ∪Tk+1)))

f (Tk |Wk ) + f (Tk+1 |Wk ∪Tk )

=
д(Tk | Uk ∪ (Vk \Tk )) + д(Tk+1 | Uk+1 ∪ (Vk+1 \Tk+1))

f (Tk |Wk ) + f (Tk+1 |Wk+1)
.

(Uk+1 = Uk , Vk+1 = Vk \Tk ,Wk+1 =Wk ∪Tk )

Observe that

vt (Tk ,Uk ,Vk ,Wk ) =
д(Tk | Uk ∪ (Vk \Tk ))

f (Tk |Wk )
,

vt (Tk+1,Uk+1,Vk+1,Wk+1) =
д(Tk+1 | Uk+1 ∪ (Vk+1 \Tk+1))

f (Tk+1 |Wk+1)
.

As a result,

vt (Tk ∪Tk+1,Uk ,Vk ,Wk ) ≥ vt (Tk ,Uk ,Vk ,Wk ) = max

X
vt (X ,Uk ,Vk ,Wk ),

a contradition. This finishes the proof. □

Proof of Lemma 4.1. Fix f , and λt , which together determine qt . Let ≺t = ≺(f ,qt , λt ). Given
continuity of λt almost everywhere, we only need to show that for resources i and j where
qt (i) = qt (j),

i ≻t j =⇒
d

dt
qt (i) ≥

d

dt
qt (j),

and

i ∼t j =⇒
d

dt
qt (i) = qt (j),

if λt (i) and λt (j) are both constant at t . The lemma then follows from a standard ε-δ argument,

which implies at any time t when λt (i) is constant for all i , there exists ε > 0 such that ≺t = ≺t ′ for

any t ′ ∈ [t , t + ε).
Again, consider S = S(=t θ ) which contains i and j, and let {(Uk ,Vk ,Wk )}k and {Tk }k be the

sequences of partitions and leading subgroups. Suppose i ∈ Tu and j ∈ Tv . When i ≻t j, by the

definition of ≺t , u < v . By Lemmas 4.5 and 4.6, we have

d

dt
qt (i) = vt (Tu ,Uu ,Vu ,Wu ) ≥ vt (Tv ,Uv ,Vv ,Wv ) =

d

dt
qt (j).

When i ∼t j, by the definition of ≺t , u = v . By Lemma 4.5, we have

d

dt
qt (i) = vt (Tu ,Uu ,Vu ,Wu ) = vt (Tv ,Uv ,Vv ,Wv ) =

d

dt
qt (j). □

Proof of Lemma 4.2. Fix i , f , qt , q
′
t , λt , λ

′
t as in the lemma. Let (U0,V0,W0) = (S(<t qt (i)), S(=t

qt (i)), S(>t qt (i)) induced by qt and (U ′
0
,V ′

0
,W ′

0
) = (S(<′t q

′
t (i)), S(=

′
t q

′
t (i)), S(>

′
t q

′
t (i)) induced by

q′t , whereW0 ⊇W ′
0
and V0 ∪W0 ⊇ V ′

0
∪W ′

0
. Moreover, let {(Uk ,Vk ,Wk )}k and {(U ′

k ,V
′
k ,W

′
k )}k be

the sequences of partitions generated by (U0,V0,W0) and λt , and (U ′
0
,V ′

0
,W ′

0
) and λ′t , respectively.

Let {Tk }k and {T ′
k }k be the respective sequences of leading groups.

Suppose i ∈ Tu and i ∈ T ′
v . Let w be the smallest integer such that T ′

w ∩Vu , ∅. Observe that

w ≤ v , since i ∈ T ′
v ∩Tu ⊆ T ′

v ∩Vu . We now show that

vt (T
′
w ∩Vu ,Uu ,Vu ,Wu ) ≥ v ′

t (T
′
w ,U

′
w ,V

′
w ,W

′
w ).
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Observe first thatWu ⊇W ′
w . This is becauseW

′
w consists of two parts:W ′

0
⊆W0, and

⋃
ℓ<w T ′

ℓ
⊆

V ′
0
⊆ V0 ∪W0. Also, the latter part does not intersectVu by the choice ofw , which means it must be

contained inWu = V0 ∪W0 \Vu . As a result,Wu ⊇W ′
w . Now observe thatT ′

w \Vu = T
′
w ∩Wu ⊆Wu .

This is simply because T ′
w ⊆ V ′

0
⊆ V0 ∪W0. Now by optimality of T ′

w , it must be the case that

λ′t (T
′
w ∩Vu )

f (T ′
w ∩Vu |W ′

w ∪ (T ′
w \Vu ))

≥
λ′t (T

′
w ∩Vu ) + λ

′
t (T

′
w \Vu )

f (T ′
w ∩Vu |W ′

w ∪ (T ′
w \Vu )) + f (T ′

w \Vu |W ′
w )

= v ′
t (T

′
w ,U

′
w ,V

′
w ,W

′
w ),

since otherwise v ′
t (T

′
w \Vu ,U

′
w ,V

′
w ,W

′
w ) would be strictly larger than v ′

t (T
′
w ,U

′
w ,V

′
w ,W

′
w ). On the

other hand, by submodularity of f and sinceWu ⊇W ′
w and T ′

w \Vu ⊆Wu ,

vt (T
′
w ∩Vu ,Uu ,Vu ,Wu ) =

λt (T
′
w ∩Vu )

f (T ′
w ∩Vu |Wu )

≥
λ′t (T

′
w ∩Vu )

f (T ′
w ∩Vu |W ′

w ∪ (T ′
w \Vu ))

≥ v ′
t (T

′
w ,U

′
w ,V

′
w ,W

′
w ).

Given the above inequality, we have

λt (i)

ht (i)
= vt (Tu ,Uu ,Vu ,Wu ) (Lemma 4.5)

≥ vt (T
′
w ∩Vu ,Uu ,Vu ,Wu ) (definiton of Tu )

≥ v ′
t (T

′
w ,U

′
w ,V

′
w ,W

′
w )

≥ v ′
t (T

′
v ,U

′
v ,V

′
v ,W

′
v ) (Lemma 4.6 andw ≤ v)

=
λ′t (i)

h′
t (i)
. (Lemma 4.5)

This concludes the proof of the lemma. □

C OMITTED PROOFS IN SECTION 4.5
Proof of Lemma 4.7. Consider the following LP,

max

∑
i ∈[m]

λ(i)

s.t.

∑
i ∈S

λ(i) ≤ f1(S) ∀S ⊆ [m]∑
i ∈S

λ(i) ≤ f2(S) ∀S ⊆ [m]

λ(i) ≥ 0 ∀i ∈ [m]

and its dual,

min

∑
S ⊆[m]

(αS f1(S) + βS f2(S))

s.t.

∑
S ∋i

(αS + βS ) ≥ 1 ∀i ∈ [m]

αS , βS ≥ 0 ∀S ⊆ [m]

The plan is to show that the optimal value for the primal LP is at least (and in fact, precisely) 1, and

the λ(i) which induce this value then satisfy the conditions of the lemma. In order to establish this,

we lower bound by 1 the value of the dual objective induced by any feasible solution.

Let ({αS }, {βS }) be any feasible dual solution. We first show that we can modify the solution into

a hierarchical form, while not increasing the objective. Letu(i) =
∑

S ∋i αS ,u(0) = 1 andu(m+1) = 0.

W.l.o.g., suppose u(i) ≤ u(i − 1) for i ∈ [m]. Define {α ′
S }S such that α ′

[i] = u(i) −u(i + 1) for i ∈ [m]
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and α ′
S = 0 otherwise. We argue that replacing {αS }S with {α ′

S }S keeps the solution feasible and

does not increase the objective. In fact, let ri = f ({i} | [i − 1]). We have∑
S

α ′
S f1(S) =

∑
i ∈[m]

α ′
[i] f1([i]) =

∑
i ∈[m]

(u(i) − u(i + 1))
∑
j≤i

r j

=
∑
j ∈[m]

r j
∑
i≥j

(u(i) − u(i + 1)) =
∑
j ∈[m]

r j · u(j).

On the other hand, for any S , by submodularity of f1,

f1(S) =
∑
i ∈S

f ({i} | S ∩ [i − 1]) ≤
∑
i ∈S

f ({i} | [i − 1]) =
∑
i ∈S

ri .

So, ∑
S

αS f1(S) ≥
∑
S

αS
∑
i ∈S

ri =
∑
i ∈[m]

ri
∑
S ∋i

αS =
∑
i ∈[m]

ri · u(i) =
∑
S

α ′
S f1(S),

as desired. So we may assume w.l.o.g. that {αS }S are induced by u(i). Similarly, let v(i) =
∑

S ∋i βS .
We may assume that {βS }S are induced by v(i). Moreover, we may assume u(i) +v(i) = 1 for any

i ∈ [m] for optimality.

Now consider the objective. Again, w.l.o.g., suppose u(0) = 1, u(m + 1) = 0, and u(i) ≤ u(i − 1)

for i ∈ [m]. As a result, v(i) ≥ v(i − 1) for i ∈ [m]. And for any i ∈ [m],

α[i] = β[m]\[i] = u(i) − u(i + 1).

The objective then can be written as∑
S

(αS f1(S) + βS f2(S)) =
∑
i

(α[i] f1([i]) + β[m]\[i] f2([m] \ [i]))

=
∑

0≤i≤m

(u(i) − u(i + 1))(f1([i]) + f2([m] \ [i]))

≥
∑

0≤i≤m

(u(i) − u(i + 1)) (f1(S) + f2([m] \ S) ≥ 1 for all S)

= u(0) − u(m + 1)

= 1.

In other words, for any feasible dual solution, the objective value is at least 1. This concludes the

proof of the lemma. □

Proof of Lemma 4.8. Consider group S = S(=t θ ). Let {(Uk ,Vk ,Wk )}k be the sequence of parti-

tions, and {Tk }k the sequence of leading subgroups induced by (f ,qt ,дt ) and (S(<t θ ), S, S(>t θ )).
We show that (f ,qt , λt ) and (S(<t θ ), S, S(>t θ )) induce exactly the same sequence of partitions.

Let vt and Lt be the speeds and leading groups induced by дt , and v
′
t and L′t those induced by

λt . Fix some k . For any T ⊆ Vk , we show that (1) v ′
t (T ,Uk ,Vk ,Wk ) ≤ vt (Tk ,Uk ,Vk ,Wk ), and (2)

Tk ⊊ T =⇒ v ′
t (T ,Uk ,Vk ,Wk ) < vt (Tk ,Uk ,Vk ,Wk ). Let Xℓ = T ∩Tℓ for ℓ ≥ k . ClearlyT =

⋃
ℓ≥k Xℓ .

For each ℓ where Xℓ , ∅, by the construction of λt ,

vt (Tℓ,Uℓ,Vℓ,Wℓ) ≥ vt (Xℓ,Uℓ,Vℓ,Wℓ) =
λt (Xℓ)

f (Xℓ |Wℓ)
.

And by submodularity of f ,

vt (Tℓ,Uℓ,Vℓ,Wℓ) ≥
λt (Xℓ)

f (Xℓ |Wℓ)
≥

λt (Xℓ)

f (Xℓ | (T ∩Wℓ) ∪Wk )
.
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Now consider v ′
t (T | Uk ∪ (Vk \T )). We have

v ′
t (T | Uk ∪ (Vk \T )) =

λt (T )

f (T |Wk )
=

∑
ℓ≥k λt (Xℓ)∑

ℓ≥k f (Xℓ | (T ∩Wℓ) ∪Wk )
.

On the other hand, we know that,

λt (Xk )

f (Xk |Wk )
≤ vt (Tk ,Uk ,Vk ,Wk ),

and for any ℓ > k where Xℓ , ∅, by Lemma 4.6,

λt (Xℓ)

f (Xℓ | (T ∩Wℓ) ∪Wk )
≤ vt (Tℓ,Uℓ,Vℓ,Wℓ) < vt (Tk ,Uk ,Vk ,Wk ).

So we have

v ′
t (T ,Uk ,Vk ,Wk ) ≤ vt (Tk ,Uk ,Vk ,Wk ),

where equality holds only when T ⊆ Tk .
And for Tk = Lt (Uk ,Vk ,Wk ), we have

λt (Tk ) = дt (Tk | Uk ∪ (Vk \T )).

So

vt (Tk ,Uk ,Vk ,Wk ) = v
′
t (Tk ,Uk ,Vk ,Wk ).

Now we know the new highest speed is previsely the old highest speed, which is again achieved

by Tk , or possibly its subsets. By the definition of the leading group, Tk is still the leading group

induced by λt , i.e.,

Lt (Uk ,Vk ,Wk ) = Tk = L′t (Uk ,Vk ,Wk ).

A simple induction then implies (f ,qt , λt ) generate exactly the same sequence of partitions, and

≺t and ≺
дt
t are in fact the same order. □

Proof of Lemma 4.9. We only need to show that ≺
дt
t is constant almost everywhere. By Lem-

mas 4.5, 4.6 and 4.8, whenever дt is constant, for i and j where qt (i) = qt (j),

i ≺
дt
t j =⇒

d

dt
qt (i) ≤

d

dt
qt (j),

and

i ∼
дt
t j =⇒

d

dt
qt (i) =

d

dt
qt (j).

Now by the same argument as in the proof of Lemma 4.1, ≺
дt
t is constant almost everywhere, and

the lemma follows. □

Proof of Lemma 4.10. We first show that

λt (S ∩ S(=t θ )) ≤ дt (S ∩ S(=t θ ) | S(>t θ ))

for any θ ∈ [0, 1].
If θ = 1, then clearly λt (S ∩S(=t θ )) = 0 ≤ дt (S ∩S(=t θ ) | S(>t θ )). Otherwise, fix θ ∈ [0, 1). Let

(U0,V0,W0) = ((S(<t θ ), S(=t θ ), S(>t θ )), {(Uk ,Vk ,Wk )}k be the sequence of partitions induced by

(U0,V0,W0), and {Tk }k the corresponding sequence of leading groups. Recall that by the choice of

λt , we have for each k ,

λt (S ∩Tk ) ≤ дt (S ∩Tk | Uk ∪ (Vk \Tk )).
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Now by submodularity of дt ,

λt (S ∩ S(=t θ )) =
∑
k

λt (S ∩Tk )

≤
∑
k

дt (S ∩Tk | Uk ∪ (Vk \Tk ))

≤
∑
k

дt (S ∩Tk | S(>t θ ) ∪ (Uk ∩ S(=t θ ) ∩ S))

= дt (S ∩ S(=t θ ) | S(>t θ )).

Given the above inequality, we have

λt (S) =
∑

θ :S (=t θ ),∅

λt (S ∩ S(=t θ )) ≤
∑

θ :S (=t θ ),∅

дt (S ∩ S(=t θ ) | S(>t θ )) = дt (S). □

D OMITTED PROOFS IN SECTION 4.6
Proof of Theorem 4.4. We first show that

E[f (St )] =
∑
S

xt (S) · f (S).

W.l.o.g., assume qt (i) ≥ qt (i + 1) for i ∈ [n − 1], and let qt (n + 1) = 0. Then

E[f (St )] = E [f ({i} | [i − 1]) · I[i ∈ St ]] =
∑
i

f ({i} | [i − 1]) · qt (i).

On the other hand,∑
S

xt (S) · f (S) =
∑
i

(qt (i + 1) − qt (i)) · f ([i]) =
∑
i

(qt (i + 1) − qt (i))
∑
j≤i

f ({j} | [j − 1])

=
∑
j

f ({j} | [j − 1])
∑
i≥j

(qt (i + 1) − qt (i)) =
∑
j

f ({j} | [j − 1]) · qt (j) = E[f (St )].

Now through a similar argument, one may show that for any τ ∈ [0, t],

E[дτ ([n] \ Sτ )] =
∑
S

xt (S) · дτ ([n] \ S) =⇒

∫ t

0

E[дτ ([n] \ Sτ )] dτ =

∫ t

0

∑
S

xτ (S) · дτ ([n] \ S) dτ .

The theorem follows. □

E OMITTED PROOFS IN SECTION 5
Proof of Theorem 5.1. Fix n to be a large enough number, and ε > 0 to be determined later. For

i ∈ [n], let ei : 2
[n] → R+ be such that ei (S) = I[i ∈ S]. We construct дt such that for any positive

integer k and t ∈ [k − 1,k), дt = α · ei for some i ∈ [n] and α ≥ 0. Recall that an XOS function is

the maximum of a number of additive clauses. We first construct a random hard instance where

clauses of f arrive online, which is relatively intuitive and easy to reason about. Then we present a

symmetrization argument to turn the construction with online clauses of f into one with online

resources, substantiated by moving all randomness to дt . To be specific, we first make a simplifying

assumption, that clauses of f are added online in each phase, and before a clause is added, it is

not observable by the algorithm. Under this assuption, we construct f and дt such that the gap

between any algorithm and the offline optimal strategy cannot be bounded by a constant. We will

show how to effectively implement this when the algorithm actually has access to the entire f
from time 0.
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We construct the instance in phases, in an inductive manner. In the first phase, we fix r1 = 0, let

c1 = e1, and дt = ∞ · e1 for t ∈ [0, 1). We add c1 to f and finish the first phase. In the k-th phase

where k > 1, we construct a new clause ck of f . We flip a biased coin rk , which is 0 w.p. 1 − ε
and 1 w.p. ε . If rk = 0, then the phase consists of 1 resource, and if rk = 1, the phase consists of 2

resources. Let sk =
∑

0<ℓ<k rℓ . Observe that the number of resources appearing in phases before

k is exacly k − 1 + rk . For each phase k , let дt = ε · ek+sk for t ∈ [k − 1 + sk ,k + sk ). That is, the
renting cost of the first resource in phase k is ε . If rk = 0, let

ck = ek+sk +
∑
ℓ<k

rℓ · eℓ+sℓ .

We add clause ck to f and finish phase k . Otherwise, let дt = ∞ · ek+sk+1 for t ∈ [k + sk ,k + 1 + sk ).
That is, the renting cost of the second resource in phase k is ∞. In other words, the algorithm has

to purchase this resource. Let

ck = ek+sk + ek+sk+1 +
∑
ℓ<k

rℓ · eℓ+sℓ .

We then add ck to f and finish the phase. See Table 1 for an example of the construction.

resource 1 2 3 4 5 6 7 8 9 10 11 12
c1 (r1 = 0) 1
c2 (r2 = 1) 1 1
c3 (r3 = 1) 1 1 1
c4 (r4 = 0) 1 1 1
c5 (r5 = 1) 1 1 1 1
c6 (r6 = 1) 1 1 1 1 1
c7 (r7 = 0) 1 1 1 1 1
c8 (r8 = 0) 1 1 1 1 1

дt ∞ ε ∞ ε ∞ ε ε ∞ ε ∞ ε ε

Table 1. An example realization of the construction. Items purchased in the offline optimal strategy and costs
incurred in дt and each clause ck are highlighted in boldface. Observe that the cost incurred in each clause is
exactly 1, so the max is also 1. The corresponding total cost is 1 + 4ε .

Now fix an algorithm. We condition on the random bits of the algorithm and consider its behavior

on the above random instance. Observe that the instance is constructed, such that after the first

phase, the algorithm can purchase one resource “for free” per phase. As a result, the algorithm has

to make exactly one decision per phase, i.e., whether to purchase the first (and possibly the only)

resource in the phase. In fact, if the algorithm knew beforehand that rk = 0, then the better choice

would be to purchase the first (and only) resource in the phase, and the cost in the phase would be

0. Otherwise, the algorithm would be better off by purchasing not the first, but the second resource

in the phase, at a cost of ε for renting the first resource. This is because in such cases, the algorithm

has to purchase the second resource to avoid the∞ renting cost. Then purchasing the first resource

costs 1 and renting costs only ε .
Now since the clause is not added to f before the phase ends, the algorithm cannot observe rk

before making the decision. At phase k > 1, there are then two cases depending on the choice of

the algorithm.

• The algorithm chooses not to purchase the first resource. This is in some sense a safer option,

since if rk = 1 and the second resource shows up, then the algorithm can always purchase it

at no cost. The cost incurred in the phase is then deterministically ε .
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• The algorithm chooses to purchase the first resource. This means the algorithm decides to

take some risk. If, with probability 1−ε , rk = 0 and the second resource does not show up, the

cost incurred by the algorithm is 0. But if, with probability ε , rk = 1 and the second resource

shows up, then the algorithm has to purchase the second resource, paying another 1. The

expected cost of the algorithm is therefore again ε .

So, no matter what the algorithm chooses, the expected cost in each phase is always ε , and after K
phases, the total expected cost is 1 + K · ε .
On the other hand, the expected cost of the offline optimal strategy is much smaller.

• With probability 1 − ε , rk = 0, and the offline strategy incurs cost 0 by purchasing the first

resource.

• With probability ε , rk = 1, and the offline strategy incurs cost ε by purchasing the second

resource.

So, after K phases, the expected cost of the offline optimal strategy is 1 + K · ε2. As K → ∞, the

ratio between the two costs, (1 + K · ε)/(1 + K · ε2), tends to ε−1, which can be arbitrarily large by

taking ε to be small. Note that this crucially depends on n being large too, since in each phase we

need at least 1 new resource. Taking expectation over the random bits of the algorithm (or by Yao’s

Minimax Lemma), this implies a gap of ω(1) between the algorithm and the offline benchmark.

The above lower bound works under the assumption that the algorithm cannot observe furture

clauses not yet added to f . This is not true in our model. For instance, in Table 1, the algorithm

can infer that r2 = 1 by only looking at the first 2 columns. This is because the second column has

value 1 in each row below c2. Even if the algorithm has only value oracle access to дt , it can still

obtain information about r2 by querying д1({2, 4}). We now show how to remove this assumption.

The idea is to symmetrize the construction, and confuse the algorithm by creating all possible

future clauses. At the very beginning, we create 2
k−1

clauses for each phase k ,{
cb1=0,b2, ...,bkk

}
(b2, ...,bk )∈2k−1

.

Intuitively, cb1,b2, ...,bkk is the right k-th clause given realization (b2, . . . ,bk ) of k − 1 random bits. To

single out this clause, we prepare 2
k−1

resources as candidates of the “first resource” in the k-th
clause, one for each candidate clause. We choose the right realization by letting the corresponding

resource show up at the beginning of the k-th phase, so the right clause dominates other candidates

in terms of the cost. Also we prepare a common candidate of the second reource in each phase,

which may or may not effectively show up depending on rk . Let b1b2 . . .bk be the integer whose

binary representation is “b1b2 . . .bk ”. The clauses are then constructed recursively (but all presented
at the beginning) as follows. For any (b2, . . . ,bk ) ∈ 2

k−1
,

cb1, ...,bkk = cb1, ...,bk−1k−1 − e(2k−2−1)+(k−2)+2k−2 + e(2k−1−1)+(k−1)+2k−1 + e(2k−1−1)+(k−1)+b1 ...bk .

For the k-th phase, we now draw an additional random bit, νk , which is 0 with probability 0.5 and
1 with probability 0.5. Again we fix ν1 = 0. We use νk as a noise to make the rk = 0 and rk = 1

cases appear symmetric. When the k-th phase begins, we draw rk and νk , and let bk = νk ⊕ rk ⊕ 1

be the XOR of νk , rk and 1. That is, bk is νk if rk = 1, and (1 − νk ) if rk = 0. We demand the

ν1ν2 . . . νk−1bk -th candidate resource in phase k (i.e., resource (2k−1 − 1) + (k − 1) + ν1ν2 . . . νk−1bk ).
In other words, for t ∈ [k − 1 + sk ,k + sk ), we let дt = ε · e

(2k−1−1)+(k−1)+ν1ν2 ...νk−1bk
. Then if rk = 0,

we finish the phase. Otherwise, we demand the common candidate for the phase, i.e., resource

(2k−1 − 1) + (k − 1) + 2k−1. That is, for t ∈ [k + sk ,k + sk + 1), we let дt = ∞ · e(2k−1−1)+(k−1)+2k−1 .
See Table 2 for the initial part of the construction.
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resource 1

2
1 − 1

+1+

00

2
1 − 1

+1+

01

2
1 − 1

+1+

2
1

2
2 − 1

+2+

000

2
2 − 1

+2+

001

2
2 − 1

+2+

010

2
2 − 1

+2+

011

2
2 − 1

+2+

2
2

c0
1

1

c0,0
2

1 1

c0,1
2

1 1

c0,0,0
3

1 1 1

c0,0,1
3

1 1 1

c0,1,0
3

1 1 1

c0,1,1
3

1 1 1

дt ∞ ε ε ∞ ε ε ε ε ∞

Table 2. Initial part of the symmetrized construction.

Now observe that the clauses of f are totally symmetric and deterministic. Moreover, the

distribution of the first resource demanded in each phase is identical regardless of {rk }k . The
algorithm therefore cannot obtain any information by observing the costs and / or the resource

presented. Nevertheless, the structure of the extended construction is exactly the same as the intial

construction. As a result, the expected cost of the offline optimal strategy after K phases is again

1 + K · ε2, and that of the algorithm is at least 1 + K · ε . The gap again goes to ε−1, except that we

now need Θ(2K ) resources to create K phases. Taking K = Θ(logn) and ε = ω(1/
√
logn), the above

argument implies that no algorithm is o(
√
logn)-competitive. □

Proof of Theorem 5.2. Fix n. Let the cost of purchasing f be such that f (S) = |S |, i.e., each
resources costs 1. Let σ : [n] → [n] be a uniformly random permutation of [n]. As a shorthand,
denote {σ (i) | i ∈ S} by σ (S). Consider the following randomized construction of дt .

дt (S) =

{
0, t ≥ n

I[σ ([n] \ [i − 1]) ⊆ S] · n2, t ∈ [i − 1, i) where i ∈ [n].

In words, дt (S) is prohibitively large (i.e., n
2
) if at time t ∈ [i−1, i), all resources in σ ({i, i+1, . . . ,n})

are in S , i.e., none of them is purchased.

Fix an algorithm. We condition on the random bits of the algorithm and consider its behavior on

the above random instance. Observe the following facts.

• W.l.o.g., the algorithm purchases only at integral t = i , when a new constant piece of дt
becomes available to the algorithm.

• At time t = i − 1, the algorithm purchases exactly one resource in σ ([n] \ [i − 1]), if the set

purchased right before time t does not contain any resource in σ ([n] \ [i − 1]). The algorithm

makes no purchase otherwise.

Given the above observations, the (cost minimizing) behavior of the algorithm is essentially fixed.

We now consider the cost incurred by the algorithm. At time 0, the algorithm purchases some

resource in [n]. This costs 1. For i ≥ 2, right before time t = i − 1, the intersection between the

purchased set and σ ([n] \ [i − 2]) has size exactly 1. At time t = i − 1, two things can happen

depending on the realzation of дt (which given дt−1 depends only on σ (i − 1)).

• With probability 1/(n − i + 2), σ (i − 1) is the resource in the above intersection. In such cases,

the algorithm has to purchase exactly 1 new resource, which costs 1.
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• With probability 1 − 1/(n − i + 2), σ (i − 1) is not the resource in the intersection. In such

cases, the algorithm makes no action till the next integral time.

Overall, the total expected cost of the algorithm is∑
2≤i≤n

1

n − i + 2
= Ω(logn).

On the other hand, knowing the full realization of σ , the offline optimal strategy is to simply

purchase σ (n) at time 0, at a total cost of 1. Taking expectation over the random bits of the algorithm

(or by Yao’s Minimax Lemma), this implies a gap of Ω(logm) between the algorithm and the offline

benchmark. The lower bound follows. □

Proof of Theorem 5.3. Fix n. Let the purchasing cost f be such that f (S) = |S |p for some

0 < p < 1. Let U = {u1, . . . ,uT } be a uniformly random set of resources of size T = nq where

0 < q < 1. Consider the following renting cost дt .

дt (S) =

{
0, t ≥ T

I[uk ∈ S] · n2, t ∈ [k − 1,k) where k ∈ [T ].

In words, дt (S) is prohibitively large (i.e., n2) if at time T > t ∈ [k − 1,k), resource uk is not yet

purchased.

Again, fix an algorithm.We condition on the random bits of the algorithm and cosider its behavior

on the above random instance. Observe the following facts.

• W.l.o.g., the algorithm purchases only at integral t = k , when a new constant piece of дt
becomes available to the algorithm.

• At time t = k−1 < T , the algorithmmust purchase resourceuk , ifuk is not already purchased.
• Suppose the total cost of the algorithm is no larger than nq . Then at any time t , the purchased
set has size no larger than npq (which is the cost of purchasing nq resources at once).

Now consider gradual realization of the random setU . At time t = k − 1, uk is picked uniformly at

random from the n − (k − 1) ≥ n − nq resources not yet picked. On the other hand, the set already

purchased right before time t has size at most nq , which means the probability that uk is not yet

purchased is at least

n − nq − nq

n − nq
= 1 −

nq

n − nq
= 1 − o(1).

So at each time t = k − 1, with constant probability the algorithm must purchase something, which

costs at least 1. The total cost incurred is therefore at least Ω(T ) = Ω(nq). Note that this is based on
the assumption that the actual cost of the algorithm does not exceed nq . So, either the assumption

holds, and the total cost is Ω(nq), or the assumption does not hold, and the total cost is at least nq .
On the other hand, knowing U beforehand, the offline optimal strategy is to purchase U at time

0, at a total cost of npq . This creates a gap of Ω(nq(1−p)), which can be larger than n1−ε for any ε > 0

by letting q → 1 and p → 0. Taking expectation over the random bits this implies the desired lower

bound. □
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