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Voting

n voters…

b ≻ a ≻ c

a ≻ c ≻ b

a ≻ b ≻ c

a ≻ b ≻ c

… each produce a 
ranking of m
alternatives…

… which a social 
preference function 
(SPF) maps to one 
or more aggregate 
rankings.

… or, a social choice 
function (SCF) just 
produces one or 
more winners.

a



Plurality

b ≻ a ≻ c

a ≻ c ≻ b

a ≻ b ≻ c

a ≻ b ≻ c

1    0    0

2    1    0



Borda

b ≻ a ≻ c

a ≻ c ≻ b

a ≻ b ≻ c

a ≻ b ≻ c

2    1    0

5    3    1



Instant runoff voting / 

single transferable vote (STV)

b ≻ a ≻ c

a ≻ c ≻ b

a ≻ b ≻ c

b ≻ a

a ≻ b

a ≻ b

a

a

a

cb ≻a ≻



Kemeny

• Natural interpretation as maximum likelihood estimate of the 
“correct” ranking [Young 1988, 1995]

b ≻ a ≻ c

a ≻ c ≻ b

a ≻ b ≻ c

a ≻ b ≻ c

2 disagreements

↔

3*3 - 2 = 7 agreements

(maximum)



Kemeny on pairwise election graphs
• Final ranking = acyclic tournament graph

– Edge (a, b) means a ranked above b

– Acyclic = no cycles, tournament = edge between every pair

• Kemeny ranking seeks to minimize the total weight of 
the inverted edges
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pairwise election graph Kemeny ranking

a b

d c
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2

(b > d > c > a)

• NP-hard even with 4 voters [Dwork et al. 2001]

• Integer programs scale reasonably [C., Davenport, Kalagnanam 2006]



Ranking Ph.D. applicants 
(briefly described in C. [2010])

• Input: Rankings of subsets of the (non-eliminated) 
applicants

• Output: (one) Kemeny ranking of the (non-eliminated) 
applicants

≻ ≻

≻ ≻

≻ ≻



Choosing a rule

• How do we choose a rule from all of these 

rules?

• How do we know that there does not exist 

another, “perfect” rule?

• Let us look at some criteria that we would like 

our voting rule to satisfy



Condorcet criterion

• A candidate is the Condorcet winner if it wins all of its 

pairwise elections

• Does not always exist…

• … but the Condorcet criterion says that if it does exist, it 

should win

• Many rules do not satisfy this

• E.g., for plurality:

– b > a > c > d

– c > a > b > d

– d > a > b > c

• a is the Condorcet winner, but it does not win under plurality



Consistency 

(SPF sense)

• An SPF f is said to be consistent if the following holds:

– Suppose V1 and V2 are two voting profiles (multisets) such that f 

produces the same ranking on both

– Then f should produce the same ranking on their union.

• Which of our rules satisfy this?

Session 2B: Consistent 

approval-based multi-

winner rules



Consistency (SCF sense)

• An SCF f is said to be consistent if the following holds:

– Suppose V1 and V2 are two voting profiles (multisets) such that f 

produces the same winner on both

– Then f should produce the same winner on their union.

• Which of our rules satisfy this?

• Consistency properties are closely related to interpretability 

as MLE of the truth [C., Rognlie, Xia 2009]



Some axiomatizations

• Theorem [Young 1975].  An SCF is symmetric, consistent, 

and continuous if and only if it is a positional scoring rule.

• Theorem [Young and Levenglick 1978].  An SPF is neutral, 

consistent, and Condorcet if and only if it is the Kemeny SPF.

• Theorem [Freeman, Brill, C. 2014]. An SPF satisfies

independence of bottom alternatives, consistency at the 

bottom, independence of clones (& some minor conditions) if 

and only if it is the STV SPF.



Manipulability

• Sometimes, a voter is better off revealing her preferences 

insincerely, AKA manipulating

• E.g., plurality

– Suppose a voter prefers a > b > c

– Also suppose she knows that the other votes are

• 2 times b > c > a

• 2 times c > a > b

– Voting truthfully will lead to a tie between b and c

– She would be better off voting, e.g., b > a > c, guaranteeing b wins



Gibbard-Satterthwaite impossibility theorem

• Suppose there are at least 3 alternatives

• There exists no rule that is simultaneously:

– non-imposing/onto (for every alternative, there are 

some votes that would make that alternative win),

– nondictatorial (there does not exist a voter such 

that the rule simply always selects that voter’s 

first-ranked alternative as the winner), and

– nonmanipulable/strategy-proof



Single-peaked preferences

• Suppose candidates are ordered on a line

a1 a2 a3 a4 a5

• Every voter prefers candidates that are closer to 
her most preferred candidate

• Let every voter report only her most preferred 
candidate (“peak”)

v1v2 v3v4

v5

• Choose the median voter’s peak as the winner
– This will also be the Condorcet winner

• Nonmanipulable!

Impossibility results do not necessarily hold 

when the space of preferences is restricted



Moulin’s 

characterization

• Slight generalization: add phantom voters, then 
choose the median of real+phantom voters

a1 a2 a3 a4 a5

• Theorem [Moulin 1980].  Under single-peaked 
preferences, an SCF is strategy-proof, Pareto 
efficient, and anonymous if and only if it is such a 
generalized median rule.

v1v2

v3v4

v5

p1 p2 p4

p3

Session 1A: Strategyproof 

linear regression in high 

dimensions



Computational hardness as a 

barrier to manipulation

• A (successful) manipulation is a way of misreporting 

one’s preferences that leads to a better result for 

oneself

• Gibbard-Satterthwaite only tells us that for some 

instances, successful manipulations exist

• It does not say that these manipulations are always 

easy to find

• Do voting rules exist for which manipulations are 

computationally hard to find?



A formal computational problem 
• The simplest version of the manipulation problem:

• CONSTRUCTIVE-MANIPULATION:

– We are given a voting rule r,  the (unweighted) votes of the 
other voters, and an alternative p. 

– We are asked if we can cast our (single) vote to make p
win.

• E.g., for the Borda rule:

– Voter 1 votes A > B > C

– Voter 2 votes B > A > C

– Voter 3 votes C > A > B

• Borda scores are now: A: 4, B: 3, C: 2

• Can we make B win?

• Answer: YES. Vote B > C > A (Borda scores: A: 4, B: 5, C: 3)



Early research

• Theorem. CONSTRUCTIVE-MANIPULATION 

is NP-complete for the second-order 

Copeland rule. [Bartholdi, Tovey, Trick 1989]

– Second order Copeland = alternative’s score is 

sum of Copeland scores of alternatives it defeats

• Theorem. CONSTRUCTIVE-MANIPULATION 

is NP-complete for the STV rule. [Bartholdi, 

Orlin 1991]

• Most other rules are easy to manipulate (in P)



Ranked pairs rule [Tideman 1987]

• Order pairwise elections by decreasing 
strength of victory

• Successively “lock in” results of pairwise 
elections unless it causes a cycle

a b

d c

6

8
10

2

4
12

Final ranking: 

c>a>b>d

• Theorem. CONSTRUCTIVE-MANIPULATION 

is NP-complete for the ranked pairs rule [Xia 
et al. IJCAI 2009]



Many manipulation problems…

Table from: C. & Walsh, Barriers to Manipulation, Chapter 6 in 
Handbook of Computational Social Choice



STV manipulation algorithm
[C., Sandholm, Lang JACM 2007]

rescue d don’t rescue d

nobody eliminated yet

d eliminatedc eliminated

no choice for 

manipulator

b eliminated

no choice for 

manipulator

d eliminated

rescue a don’t rescue a

rescue a don’t rescue a

no choice for 

manipulator

b eliminated a eliminated

rescue c

don’t rescue c

… …

… …

…

Runs in 

O(((1+√5)/2)m) time 

(worst case)



Runtime on random votes [Walsh 2011]



Fine – how about another rule?

• Heuristic algorithms and/or experimental (simulation) evaluation 
[C. & Sandholm 2006, Procaccia & Rosenschein 2007, Walsh 2011, Davies, Katsirelos, 
Narodytska, Walsh 2011]

• Quantitative versions of Gibbard-Satterthwaite showing that 
under certain conditions, for some voter, even a random 
manipulation on a random instance has significant probability of 
succeeding [Friedgut, Kalai, Nisan 2008; Xia & C. 2008; Dobzinski & Procaccia 
2008; Isaksson, Kindler, Mossel 2010; Mossel & Racz 2013]

“for a social choice function f on k≥3 alternatives and n voters, 
which is ϵ-far from the family of nonmanipulable functions, a 
uniformly chosen voter profile is manipulable with probability at 
least inverse polynomial in n, k, and ϵ−1.”



Just a bit about fair 

allocation of 

resources

• Suppose we have m items and n agents

• Agent i values item j at vij (additive valuations)

• Who should receive what? (no payments!)

• One solution: max Σij vij xij

• Downsides?

• Better: max Nash welfare, max Πi (Σj vij xij)

• Does it matter if items are divisible?

Several talks in 9A



Eisenberg-Gale convex program

• Max Σi log ui

• subject to:

• for all i, ui = Σj vij xij

• for all j, Σi xij  ≤ 1

• for all i and j, xij ≥ 0

• Finding the optimal integer solution 

(indivisible items) is NP-hard [Ramezani and 

Endriss 2010], can be approximated efficiently 

in a sense [Cole and Gkatzelis 2015]



Competitive equilibrium from 

equal incomes (CEEI)

1

2

3

A

B

agents items

10

1

100

11

5

1

$2.50

$0.50

prices2/5

2/5

1/5

1$1

budgets

$1

$1

valuations
allocations

Nash welfare: 4*40*2 = 320

Note: (4-10ε)*40*(2+5ε) = 320-2000ε2



Nice properties of the max Nash 

welfare solution

• With divisible items, it constitutes a 

competitive equilibrium from equal incomes!

– Follows from KKT conditions on convex program

– Instant corollaries: envy-free, proportional

• With indivisible items: 

– envy-free up to one good [Caragiannis et al. 

2016]

– proportional up to one good (can be generalized 

to public decisions) [C., Freeman, Shah 2017]


