A Crash Course on Computational Social Choice and Fair Division

Vincent Conitzer, Duke University ACM Conference on Economics and Computation (EC), 2018

comsoc mailing list: <u>https://lists.duke.edu/sympa/subscribe/comsoc</u>

HANDBOOK of COMPUTATIONAL SOCIAL CHOICE

Felix Brandt • Vincent Conitzer • Ulle Endriss Jérôme Lang • Ariel D. Procaccia

Lirong Xia (Ph.D. 2011, now at RPI)

Markus Brill (postdoc 2013-2015, now at TU Berlin)

Rupert Freeman (Ph.D. 2018, joining MSR NYC for postdoc)

Voting

n voters...

... each produce a ranking of *m* alternatives...

b > a > c

a > c > b

a > b > c

- ... which a social preference function (SPF) maps to one or more aggregate rankings.
 - a > b > c

... or, a social choice function (SCF) just produces one or more winners.

a

Plurality

1 0 0

b > a > c

a > c > b

a > b > c2 1 0

a > b > c

Borda

2 1 0

b > a > c

a > c > b

a > b > c5 3 1

a > b > c

Instant runoff voting / single transferable vote (STV)

b > a > c

a > b > c

a > b > b

a > b > c

Kemeny

 Natural interpretation as maximum likelihood estimate of the "correct" ranking [Young 1988, 1995]

Kemeny on pairwise election graphs

- Final ranking = acyclic tournament graph
 - Edge (a, b) means a ranked above b
 - Acyclic = no cycles, tournament = edge between every pair
- Kemeny ranking seeks to minimize the total weight of the inverted edges

pairwise election graph

Kemeny ranking

(b > d > c > a)

- NP-hard even with 4 voters [Dwork et al. 2001]
- Integer programs scale reasonably [C., Davenport, Kalagnanam 2006]

Ranking Ph.D. applicants (briefly described in C. [2010])

Input: Rankings of subsets of the (non-eliminated) applicants

 Output: (one) Kemeny ranking of the (non-eliminated) applicants

Choosing a rule

- How do we choose a rule from all of these rules?
- How do we know that there does not exist another, "perfect" rule?
- Let us look at some criteria that we would like our voting rule to satisfy

Condorcet criterion

- A candidate is the Condorcet winner if it wins all of its pairwise elections
- Does not always exist...
- ... but the Condorcet criterion says that if it does exist, it should win
- Many rules do not satisfy this
- E.g., for plurality:
 - -b>a>c>d
 - c > a > b > d
 - d > a > b > c
- a is the Condorcet winner, but it does not win under plurality

Consistency (SPF sense)

Session 2B: Consistent approval-based multiwinner rules

- An SPF f is said to be consistent if the following holds:
 - Suppose V_1 and V_2 are two voting profiles (multisets) such that f produces the same ranking on both
 - Then f should produce the same ranking on their union.
- Which of our rules satisfy this?

Consistency (SCF sense)

- An SCF f is said to be consistent if the following holds:
 - Suppose V_1 and V_2 are two voting profiles (multisets) such that f produces the same **winner** on both
 - Then f should produce the same winner on their union.
- Which of our rules satisfy this?
- Consistency properties are closely related to interpretability as MLE of the truth [C., Rognlie, Xia 2009]

Some axiomatizations

- **Theorem** [Young 1975]. An SCF is symmetric, consistent, and continuous if and only if it is a positional scoring rule.
- **Theorem** [Young and Levenglick 1978]. An SPF is neutral, consistent, and Condorcet if and only if it is the Kemeny SPF.
- Theorem [Freeman, Brill, C. 2014]. An SPF satisfies independence of bottom alternatives, consistency at the bottom, independence of clones (& some minor conditions) if and only if it is the STV SPF.

Manipulability

- Sometimes, a voter is better off revealing her preferences insincerely, AKA manipulating
- E.g., plurality
 - Suppose a voter prefers a > b > c
 - Also suppose she knows that the other votes are
 - 2 times b > c > a
 - 2 times c > a > b
 - Voting truthfully will lead to a tie between b and c
 - She would be better off voting, e.g., b > a > c, guaranteeing b wins

Gibbard-Satterthwaite impossibility theorem

- Suppose there are at least 3 alternatives
- There exists no rule that is simultaneously:
 - non-imposing/onto (for every alternative, there are some votes that would make that alternative win),
 - nondictatorial (there does not exist a voter such that the rule simply always selects that voter's first-ranked alternative as the winner), and
 - nonmanipulable/strategy-proof

Single-peaked preferences

- Suppose candidates are ordered on a line
- Every voter prefers candidates that are closer to her most preferred candidate
- Let every voter report only her most preferred candidate ("peak")
- Choose the median voter's peak as the winner
 This will also be the Condorcet winner

a₃

• Nonmanipulable!

Impossibility results do not necessarily hold when the space of preferences is restricted

 $\begin{array}{ccc} \mathbf{v}_1 & \mathbf{v}_3 \\ \mathbf{a}_4 & \mathbf{a}_5 \end{array}$

Moulin's characterization

Session 1A: Strategyproof linear regression in high dimensions

- Slight generalization: add phantom voters, then choose the median of real+phantom voters
- **Theorem [Moulin 1980]**. Under single-peaked preferences, an SCF is strategy-proof, Pareto efficient, and anonymous if and only if it is such a generalized median rule.

Computational hardness as a barrier to manipulation

- A (successful) manipulation is a way of misreporting one's preferences that leads to a better result for oneself
- Gibbard-Satterthwaite only tells us that for some instances, successful manipulations exist
- It does not say that these manipulations are always easy to find
- Do voting rules exist for which manipulations are computationally hard to find?

A formal computational problem

- The simplest version of the manipulation problem:
- CONSTRUCTIVE-MANIPULATION:
 - We are given a voting rule *r*, the (unweighted) votes of the other voters, and an alternative *p*.
 - We are asked if we can cast our (single) vote to make p win.
- E.g., for the Borda rule:
 - Voter 1 votes A > B > C
 - Voter 2 votes B > A > C
 - Voter 3 votes C > A > B
- Borda scores are now: A: 4, B: 3, C: 2
- Can we make B win?
- Answer: YES. Vote B > C > A (Borda scores: A: 4, B: 5, C: 3)

Early research

- Theorem. CONSTRUCTIVE-MANIPULATION is NP-complete for the second-order Copeland rule. [Bartholdi, Tovey, Trick 1989]
 - Second order Copeland = alternative's score is sum of Copeland scores of alternatives it defeats

- Theorem. CONSTRUCTIVE-MANIPULATION is NP-complete for the STV rule. [Bartholdi, Orlin 1991]
- Most other rules are easy to manipulate (in P)

Ranked pairs rule [Tideman 1987]

- Order pairwise elections by decreasing strength of victory
- Successively "lock in" results of pairwise elections unless it causes a cycle

Final ranking: c>a>b>d

 Theorem. CONSTRUCTIVE-MANIPULATION is NP-complete for the ranked pairs rule [Xia et al. IJCAI 2009]

Many manipulation problems...

	unweighted votes,			weighted votes,						
	constructive manipulation			constructive			destructive			
# alternatives			2	3	4	≥ 5	2	3	≥ 4	
# manipulators	1	≥ 2								
plurality	Р	Р	Р	Р	Р	Р	Р	Р	Р	
plurality with runoff	Р	Р	Р	NP-c	NP-c	NP-c	Р	NP-c	NP-c	
veto	Р	Р	Р	NP-c	NP-c	NP-c	Р	Р	Р	
cup	Р	Р	Р	Р	Р	Р	Р	Р	Р	
Copeland	Р	Р	Р	Р	NP-c	NP-c	Р	Р	Р	
Borda	Р	NP-c	Р	NP-c	NP-c	NP-c	Р	Р	Р	
Nanson	NP-c	NP-c	Р	Р	NP-c	NP-c	Р	Р	NP-c	
Baldwin	NP-c	NP-c	Р	NP-c	NP-c	NP-c	Р	NP-c	NP-c	
Black	Р	NP-c	Р	NP-c	NP-c	NP-c	Р	Р	Р	
STV	NP-c	NP-c	Р	NP-c	NP-c	NP-c	Р	NP-c	NP-c	
maximin	Р	NP-c	Р	Р	NP-c	NP-c	Р	Р	Р	
Bucklin	Р	Р	Р	NP-c	NP-c	NP-c	Р	Р	Р	
fallback	Р	Р	Р	Р	Р	Р	Р	Р	Р	
ranked pairs	NP-c	NP-c	Р	Р	Р	NP-c	Р	Р	?	
Schulze	Р	Р	Р	Р	Р	Р	Р	Р	Р	

Table from: C. & Walsh, Barriers to Manipulation, Chapter 6 in Handbook of Computational Social Choice

STV manipulation algorithm

Runtime on random votes [Walsh 2011]

Fine – how about another rule?

- Heuristic algorithms and/or experimental (simulation) evaluation [C. & Sandholm 2006, Procaccia & Rosenschein 2007, Walsh 2011, Davies, Katsirelos, Narodytska, Walsh 2011]
- Quantitative versions of Gibbard-Satterthwaite showing that under certain conditions, for some voter, even a random manipulation on a random instance has significant probability of succeeding [Friedgut, Kalai, Nisan 2008; Xia & C. 2008; Dobzinski & Procaccia 2008; Isaksson, Kindler, Mossel 2010; Mossel & Racz 2013

"for a social choice function f on k≥3 alternatives and n voters, which is ϵ -far from the family of nonmanipulable functions, a uniformly chosen voter profile is manipulable with probability at least inverse polynomial in n, k, and ϵ^{-1} ."

Just a bit about fair allocation of resources

Several talks in 9A

- Suppose we have *m* items and *n* agents
- Agent *i* values item *j* at v_{ij} (additive valuations)
- Who should receive what? (no payments!)
- One solution: max $\Sigma_{ij} v_{ij} x_{ij}$
- Downsides?
- Better: max Nash welfare, max $\Pi_i (\Sigma_i v_{ii} x_{ii})$
- Does it matter if items are divisible?

Eisenberg-Gale convex program

- Max $\Sigma_i \log u_i$
- subject to:
- for all *i*, $u_i = \sum_j v_{ij} x_{ij}$
- for all j, $\Sigma_i x_{ij} \leq 1$
- for all *i* and *j*, $x_{ij} \ge 0$
- Finding the optimal integer solution (indivisible items) is NP-hard [Ramezani and Endriss 2010], can be approximated efficiently in a sense [Cole and Gkatzelis 2015]

Nice properties of the max Nash welfare solution

- With divisible items, it constitutes a competitive equilibrium from equal incomes!
 - Follows from KKT conditions on convex program
 - Instant corollaries: envy-free, proportional
- With indivisible items:
 - envy-free up to one good [Caragiannis et al.
 2016]
 - proportional up to one good (can be generalized to public decisions) [C., Freeman, Shah 2017]