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Abstract

We consider settings in which voters vote in sequence, each
voter knows the votes of the earlier voters and the preferences
of the later voters, and voters are strategic. This can be mod-
eled as an extensive-form game of perfect information, which
we call a Stackelberg voting game.

We first propose a dynamic-programming algorithm for find-
ing the backward-induction outcome for any Stackelberg vot-
ing game when the rule is anonymous; this algorithm is effi-
cient if the number of alternatives is no more than a constant.
We show how to use compilation functions to further reduce
the time and space requirements.

Our main theoretical results are paradoxes for the backward-
induction outcomes of Stackelberg voting games. We show
that for any n ≥ 5 and any voting rule that satisfies non-
imposition and with a low domination index, there exists
a profile consisting of n voters, such that the backward-
induction outcome is ranked somewhere in the bottom two
positions in almost every voter’s preferences. Moreover, this
outcome loses all but one of its pairwise elections. Further-
more, we show that many common voting rules have a very
low (= 1) domination index, including all majority-consistent
voting rules. For the plurality and nomination rules, we show
even stronger paradoxes.

Finally, using our dynamic-programming algorithm, we run
simulations to compare the backward-induction outcome of
the Stackelberg voting game to the winner when voters vote
truthfully, for the plurality and veto rules. Surprisingly, our
experimental results suggest that on average, more voters pre-
fer the backward-induction outcome.

Introduction

Voting is a useful methodology that allows multiple agents
to aggregate their preferences over alternatives and make a
group decision. In the standard voting setting, each voter
(agent) reports a linear order over (strict ranking of) the al-
ternatives; moreover, the voters are generally assumed to do
so simultaneously (or without knowledge of previously re-
ported votes, which is equivalent from a game-theoretic per-
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spective). Then, a voting rule is applied to the profile (vector)
of reported linear orders, producing a winning alternative.

An important concern is that voters may vote strategically
rather than truthfully. That is, a voter may report a false vote
that does not represent her true preferences to make herself
better off. This phenomenon is called manipulation; if the
voting rule r is such that no voter can ever benefit from
manipulating, then r is said to be strategy-proof. Unfortu-
nately, there are some very minimal conditions that are not
satisfied by any strategy-proof voting rule, according to the
celebrated Gibbard-Satterthwaite theorem (Gibbard 1973;
Satterthwaite 1975).

This raises the following fundamental question: if vot-
ers vote strategically, what outcome can we expect? It is
natural to turn to game theoretic solution concepts to an-
swer this question. One approach is to consider the game
where all voters vote at the same time, and study the equi-
libria of this game. Unfortunately, even in a complete-
information setting where all voters’ preferences are com-
mon knowledge, this leads to an extremely large number of
equilibria, many of them bizarre. For example, in a plu-
rality election (where everyone votes for a single alterna-
tive), it may be the case that all voters prefer alternative a
to both b and c. Nevertheless, in one equilibrium of this
game, all voters will vote for either b or c. This equi-
librium is quite robust, because voting for a is a waste,
given that nobody else is expected to vote for a. There
has been some work exploring different solution concepts in
simultaneous-move voting games—e.g., (Farquharson 1969;
Moulin 1979)—but in some sense, the equilibrium selection
issue in the above example is inherent in settings where vot-
ers vote simultaneously.

However, in many practical situations, the voters vote one
after another, and the later voters know the votes cast by the
earlier voters. For example, consider online systems that al-
low users to rate movies or other products. This is the set-
ting that we consider in this paper. We assume that voters’
preferences over the alternatives are strict; we also make
a complete-information assumption that the voters’ prefer-
ences are common knowledge (among the voters themselves,
though not necessarily to the election organizer).1 This re-

1While this is clearly a simplifying assumption, it approximates
the truth in many settings, and with this assumption we do not need



sults in an extensive-form game of perfect information that
can be solved by backward induction. In sharp contrast to the
simultaneous-move setting, this results in a unique outcome
(winning alternative). We refer to this game as Stackelberg
voting game.
Related work and discussion. The idea of modeling a vot-
ing process in which voters vote one after another as an
extensive-form game is not new. Sloth (1993) studied elec-
tions with two alternatives, as well as settings with more al-
ternatives where a pairwise decision between two options is
made at every stage. She relates the outcomes of this process
to the multistage sophisticated outcomes of the game (McK-
elvey and Niemi 1978; Moulin 1979). In the extensive-form
games studied by Dekel and Piccione (2000), multiple vot-
ers can vote simultaneously in each stage. They compare
the equilibrium outcomes of these games to the outcomes of
the symmetric equilibria of their simultaneous counterparts.
Battaglini (2005) studies how these results are affected by
the possibility of abstention and a small cost of voting.

Our approach is significantly different from the previous
approaches in several aspects. First, the prior work focuses
mostly on the case of two alternatives or, in the case of mul-
tiple alternatives, on particular voting procedures; in con-
trast, we consider general (anonymous) voting rules with any
number of alternatives, and correspondingly derive very gen-
eral paradoxes. Second, we also study how the backward-
induction outcome can be efficiently computed, and we use
these algorithmic insights in simulations to evaluate the qual-
ity of the Stackelberg voting game’s outcome “on average.”

Desmedt and Elkind (2010) simultaneously and indepen-
dently studied a similar setting in which voters vote sequen-
tially under the plurality rule, and showed several types of
paradoxes. In their model, voters are allowed to abstain,
and voting comes at a small cost. They assume random tie-
breaking and therefore need to consider expected utilities.
Their paradoxes are significantly different from ours.

Preliminaries

Let X be the set of alternatives, |X | = m. A vote V is a
linear order over X . The set of all linear orders over X is
denoted by L(X ). An n-profile P is a collection of n votes,
that is, P ∈ L(X )n. A voting rule r (for m alternatives and
n voters) is a mapping that assigns to each profile a unique
winning alternative. That is, r : L(X )n → X . Some voting
rules are listed below.
• (Positional) scoring rules: Given a scoring vector ~v =
(v(1), . . . , v(m)), for any vote V ∈ L(X ) and any c ∈ X ,
let s(V, c) = v(j), where j is the rank of c in V . For any
profile P = (V1, . . . , Vn), let s(P, c) =

∑n
i=1 s(Vi, c). The

rule will select c ∈ X so that s(P, c) is maximized. Some
examples of positional scoring rules are plurality, for which
the scoring vector is (1, 0, . . . , 0); and veto, for which the
scoring vector is (1, . . . , 1, 0).
• Nomination: Nom is defined as follows. For any pro-
file P , we let Tops(P ) denote the set of alternatives that are

to specify prior distributions over preferences. Also, naturally, our
negative results still apply to more general models, including mod-
els allowing for incomplete information.

ranked in the top position in at least one vote in P (the al-
ternatives that have been “nominated”). We choose the first
alternative in Tops(P ) according to a fixed order. That is,
Nom(P ) = ci∗ where i∗ = min{i : ci ∈ Tops(P )}.

There are also certain criteria that voting rules can
satisfy. We now give two criteria and some example rules
that satisfy them. (We do not define these example rules
here because they are well known in the computational
social choice community, and a definition is not technically
necessary because the results in this paper will hold for all
rules satisfying the criterion.)
•Condorcet-consistent rules: A voting rule r is Condorcet-
consistent if it always selects the Condorcet winner, when-
ever one exists. (A Condorcet winner is an alternative
that wins in every pairwise election—that is, for any other
alternative, more voters prefer the Condorcet winner to this
alternative than vice versa.) Copeland, maximin, ranked
pairs, Kemeny, Slater, Dodgson, and voting trees are all
Condorcet-consistent.
• Majority-consistent rules: A voting rule r is majority-
consistent if it always selects the majority winner, whenever
one exists. (A majority winner is an alternative that is ranked
first by more than half the votes.) Any Condorcet-consistent
rule is also majority-consistent, because a majority winner is
always a Condorcet winner. In addition, plurality, plurality
with runoff, STV, and Bucklin are all majority-consistent.

Stackelberg voting game. We now consider the strategic
Stackelberg voting game. We use a complete-information
assumption: all the voters’ preferences are common knowl-
edge. Given this assumption, for any voting rule r, the pro-
cess where voters vote in sequence can be modeled as an
extensive-form game of perfect information, as follows. The
game has n stages. In stage j (j ≤ n), voter j chooses an
action from L(X ). Each leaf of the tree is associated with
an outcome, which is the winner for the profile consisting of
the votes that were cast to reach this leaf.

Because the voters’ preferences are linear orders (which
implies that there are no ties), we can solve the game by
backward induction, which results in a unique outcome. We
note that this requires only ordinal preferences, that is, we do
not need to define utilities. The backward-induction process
works as follows. First, for any subprofile of votes by the
voters 1 through n − 1 (that is, any node that is the parent
of leaves), there will be a nonempty subset of alternatives
that n can make win by casting some vote. She will pick
her most preferred one. Now, because we can predict what
voter n will do, we take voter (n − 1)’s perspective: for any
subprofile of votes by the voters 1 through n−2, there will be
a nonempty subset of alternatives that voter n − 1 can make
win by casting some vote (taking into account how voter n
will act). She will pick her most preferred one; etc. We
continue this process all the way to the root of the tree; the
outcome there is called the backward-induction outcome.

As noted above, only the ordinal preferences of the voters
matter; that is, a voter’s preferences correspond to a mem-
ber of L(X ). While votes and preferences both lie in the
same set L(X ), we must be careful to distinguish between
them, because in this context, a voter will sometimes cast a



vote that is different from her true preferences. Nevertheless,
we can use P ∈ L(X )n to denote a profile of preferences,
as well as a profile of votes. For a given voting rule r, let
r(P ) be the outcome if the votes are P ; let SGr(P ) be the
backward-induction outcome if the true preferences are P .2

Computing the Backward-Induction Outcome

Even if the outcome of the rule r is easy to compute, it
does not follow that the outcome of SGr is easy to compute.
The straightforward backward-induction process described
above is very inefficient, because the game tree has (m!)n

leaves.
In this section, we first propose a general dynamic-

programming algorithm to compute SGr(P ), for any anony-
mous voting rule r. Then, we show how to use compila-
tion functions (Chevaleyre et al. 2009) to further reduce the
time/space-complexity of the dynamic-programming algo-
rithm. These techniques are crucial for obtaining our later
experimental results.

The dynamic-programming algorithm still solves the
game tree in a bottom-up fashion, but does not need to con-
sider all the different profiles separately. Because r is anony-
mous, at any stage j of the game, the state (the profile of
votes 1 through j − 1) can be summarized by a vector com-
posed of m! natural numbers, one for each linear order: each
number in the vector represents the number of times that the
corresponding linear order appears in the (j−1)-profile. For-
mally, for any j ≤ n, we let the set of these vectors (states)

be Sj = {(s1, . . . , sm!) ∈ N≥0
m! :

∑m!
i=1 si = j − 1}. For

any anonymous voting rule r and any ~s ∈ Sn+1, let r(~s) be
the winner for any profile that corresponds to ~s (because r is
anonymous, the winner only depends on the vector ~s). More
generally, for arbitrary Sj , the algorithm computes a labeling
function g that maps each state ~s ∈ Sj to the alternative rep-
resenting the backward-induction outcome of the subgame
whose root corresponds to ~s.

Algorithm 1
Input. P = (V1, . . . , Vn) and an anonymous voting rule r.
Output. SGr(P ).
1. For j from n + 1 to 1, do Step 2.
2. For any state ~s ∈ Sj , do

2.1 If j = n + 1, then let g(~s) = r(~s).
2.2 If j < n+1, then let ~e∗ ∈ argmin~e∈E rank(Vj , g(~s+
~e))), where E consists of all vectors that are composed of
m! − 1 zeroes and only one 1, and rank(Vj , g(~s + ~e)) is
the position of g(~s+~e) in Vj . (Thus, e∗ corresponds to an
optimal vote for j.) Then, let g(~s) = g(~s + ~e∗).

3. Output g((0, . . . , 0)).

Analysis. For any j ≤ n, |Sj | =
(

j+m!−2
m!−1

)

(this is a ba-

sic combinatorial result, see e.g. (Bender and Williamson
2006)). To analyze the runtime of the algorithm, we note

that the total number of states considered is
∑n+1

j=1

(

j+m!−2
m!−1

)

,

2Of course, because it is a function from profiles of linear orders
to alternatives, SGr can also be interpreted as a voting rule, though
there is a significant risk of confusion in doing so. We note that
even if r is anonymous, SGr (as a voting rule) is not necessarily
anonymous (the order of the voters matters).

which is O((n + 1)m!+1); in each state, we need to consider
m! vectors ~e, resulting in a total bound of O(m!(n+1)m!+1).
To analyze the space requirements of the algorithm, we note
that we only need to keep the last stage j + 1 and the current
stage j in memory, so that the maximum number of states in

memory is
(

n+m!−1
m!−1

)

+
(

n+m!−2
m!−1

)

, which is O((n + 1)m!).
Therefore, when m is bounded above by a constant, Algo-
rithm 1 runs in polynomial time (using polynomial space).

However, when there is no upper bound on m, Algo-
rithm 1 runs in exponential time and uses exponential space.
We conjecture that for many common voting rules (e.g., plu-
rality), computing SGr is PSPACE-hard, but we have not
managed to obtain any such result yet.3

Compilation. In the step corresponding to stage j in Al-
gorithm 1, a very large set Sj is used to keep track of all
possible m!-dimensional vectors whose entries sum to ex-
actly j − 1, representing the possible states. While it may
be necessary to have this many states for anonymous rules
in general, it turns out that for specific rules like plurality or
veto, we need far fewer states to represent the profiles, be-
cause many of the states in Algorithm 1 will be equivalent
for the specific rule. For example, if we have so far received
only a single vote a ≻ b ≻ c, this in general is not equivalent
to having received only a single vote a ≻ c ≻ b. However, if
the rule is plurality, these states are equivalent.

Pursuing this idea, for any anonymous voting rule r, we
can ask the following questions. (1) What is the smallest set
of states needed for stage j? (2) How can we incorporate
smaller sets of states into Algorithm 1?

The answer to question (1) corresponds to the compila-
tion complexity of r, a concept introduced by Chevaleyre et
al. (2009). For any k, u ∈ N with k + u = n, the com-
pilation complexity Cm,k,u(r) is defined to be the smallest
number of bits needed to represent all “effectively different”
k-profiles, when there are u remaining votes and the winner
is chosen by using r. (Two k-profiles are “effectively the
same” if, for any profile of u votes that we may add to them,
they result in the same outcome.) It follows that, if we tailor
Algorithm 1 to a specific rule r, the size of the smallest pos-

sible set of states for stage j is between 2Cm,j−1,n−j+1(r)−1

and 2Cm,j−1,n−j+1(r). Chevaleyre et al. (2009) also studied
the compilation complexity for some common voting rules.

Now we turn to address question (2). Suppose that we
have already determined that we can use a smaller set of
states. In order to modify the dynamic-programming algo-
rithm to use this smaller set of states, for step (2.2) we must
have a function that takes a state in Sj and a vote V as inputs,
and outputs a state in Sj+1; moreover, this function must be
easy to compute. Fortunately, the compilation functions de-
signed for some common voting rules in (Chevaleyre et al.
2009; Xia and Conitzer 2010), which map each profile to a
string (state), can serve as such functions. For example, the
compilation function for plurality simply counts how often
each alternative has been ranked first, and this is easy to up-

3We have obtained a PSPACE-hardness result for a not-so-
common rule with a different type of voter preferences, which thus
falls somewhat outside of the setting described so far. We omit it
due to the space constraint.



date. More generally, we can modify Algorithm 1 for any
specific rule r as follows. Let f r

m,k,u be a compilation func-

tion for r. For any j ≤ n, we let Sj = f r
m,k,u(L(X )j−1),

that is, the set of all “compressed” (j − 1)-profiles. Then, in
step (2.2), for each given state ~s ∈ Sj and each4 given vote
V ∈ L(X ), the next state (which lies in Sj+1) is computed
by applying the compilation function f r

m,k,u to the combina-

tion of ~s and V . Among these resulting states, we again find
voter j’s most-preferred outcome.
Illustration. Let us illustrate how the use of compilation
functions helps reduce the time and space requirements of
Algorithm 1 for the nomination rule. In this case, for any
j ≤ n, let Sj = X , and let fNom be the following compi-

lation function. For any profile P , let fNom(P ) be the first
alternative (according to the order c1 > . . . > cm) that has
been nominated (is ranked first in some vote in P ). For any
profile P and any vote V , fNom(P ∪ {V }) can be easily
computed from fNom(P ) and V , by determining which of
fNom(P ) and the alternative ranked in the top position in V
is earlier in the order. (As in the case of plurality, we do
not need to consider every vote V : we only need to consider
which alternative is ranked first.) Because |Sj | = m for all j
in this case, it follows that Algorithm 1 (using fNom) runs in
polynomial time for the nomination rule.

Proposition 1 SGNom can be computed in polynomial time
(and space) by Algorithm 1 (using fNom).

For other, more common voting rules, the runtime of
the dynamic-programming algorithm is also significantly re-
duced by using compilation functions, though it remains ex-
ponential. For example, for plurality and veto, the time/space
complexity of our approach is O(nm), which allows us to
conduct the simulation experiments (later in the paper) much
more efficiently.

Paradoxes

In this section, we investigate whether the strategic behav-
ior described above will lead to undesirable outcomes. It
turns out that it can. Our main theorem is a general result
that applies to many anonymous voting rules. We will show
that, for such a rule, there exists a profile that has two types
of paradox associated with it in the backward-induction out-
come: first, the winner loses all but one of its pairwise elec-
tions; second, the winner is ranked somewhere in the bottom
two positions in almost every voter’s true preferences. For
the second type of paradox, we will show that the number
of exceptions (voters who rank the winner higher) is closely
related to a parameter called the domination index. The dom-
ination index of a voting rule r that satisfies non-imposition
(that is, any alternative is the winner under some profile) is
the smallest number q such that any coalition of ⌊n/2⌋ + q
voters can make any given alternative win (no matter how
the remaining voters vote) under r. We note that the domi-
nation index is always well defined for any rule that satisfies
non-imposition, and is at least 1.

4For some rules, we do not need to consider every vote: for
example, under plurality, we do not need to consider both a ≻ b ≻
c and a ≻ c ≻ b.

Definition 1 For any voting rule r that satisfies non-
imposition, and any n ∈ N, we let the domination index
DIr(n) be the smallest number q such that for any alterna-
tive c, and for any subset of ⌊n/2⌋ + q voters, there exists a
profile P for these voters, such that for any profile P ′ for the
remaining voters, r(P, P ′) = c.

The domination index DIr is closely related to the anony-
mous veto function VFr : {1, . . . , n} → {0, . . . , m} (Defini-
tion 10.4 in (Moulin 1991)), defined as follows. VFr(i) is the
largest number j ≤ m− 1 such that any coalition of i voters
can veto any subset (that is, make sure that none of the alter-
natives in the set is the winner) of no more than j alternatives.
We note that the domination index DIr(n) for a voting rule r
is the smallest number q such that VFr(⌊n/2⌋+ q) = m− 1
(that is, any coalition of size ⌊n/2⌋ + q can veto any set of
m − 1 alternatives).

The next proposition gives bounds on the domination in-
dex for some common voting rules.

Proposition 2 DINom = ⌈n/2⌉. For any positional scoring
rule r, DIr ≤ ⌊n/2⌋ − ⌊n/m⌋. For any majority-consistent
voting rule r (e.g., any Condorcet-consistent rule, plurality,
plurality with runoff, Bucklin, or STV), DIr(n) = 1.

The next lemma provides a sufficient condition for an al-
ternative not to be the backward-induction winner. It says
that if there is a coalition of size k ≥ ⌊n/2⌋ + DIr(n) who
all prefer c to d, and another condition holds, then d cannot
win.5 For any alternative c ∈ X and any V ∈ L(X ), we
let Up(c, V ) denote the set of all alternatives that are ranked
higher than c in V .

Lemma 1 Let P be a profile. An alternative d is not the win-
ner SGr(P ) if there exists another alternative c and a sub-
profile Pk = (Vi1 , . . . , Vik

) of P that satisfies the following
conditions: 1. k ≥ ⌊n/2⌋+ DIr(n), 2. c ≻ d in each vote in
Pk, 3. for any 1 ≤ j1 < j2 ≤ k, Up(c, Vij1

) ⊇ Up(c, Vij2
).

Proof. Let Dk = {i1, . . . , ik}. Since k ≥ ⌊n/2⌋+ DIr(n),
this coalition of voters can guarantee that any given alter-
native be the winner under r, if they work together. Let
P ∗

k = (V ∗
i1

, . . . , V ∗
ik

) be a profile that can guarantee that c
be the winner under r. That is, for any profile P ′ for the
other voters ({1, . . . , n} \ Dk), we have r(P ∗

k , P ′) = c. For
any j ≤ k, we let D′

ij
= {1, . . . , ij} \ Dk—that is, the first

ij voters, except those in the coalition Dk. For any j ≤ k,
we let P ∗

j = (V ∗
i1

, . . . , V ∗
ij

). That is, P ∗
j consists of the first

j votes in P ∗
k . For any i ≤ n − 1 and any pair of profiles

P1 (consisting of i votes) and P2 (consisting of n− i votes),
we let SGr(P2 : P1) denote the backward-induction winner
of the subgame of the Stackelberg voting game in which vot-
ers 1 through i have already cast their votes P1, and the true

5This may seem trivial because the coalition can guarantee that
c wins if they work together. However, we have to keep in mind
that the members of the coalition each pursue their own interest.
For example, it may be the case that whenever the second-to-last
voter in the coalition votes in a way that enables the last voter in
the coalition to make c the winner, it also enables this last voter to
make e the winner, which this last voter prefers—but the second-
to-last voter actually prefers d to e, and therefore votes to make d

win instead. We need the extra condition to rule out such examples.



preferences of voters i + 1 through n are as in P2. We prove
the following claim by induction.

Claim 1 For any j ≤ k and any profile P ′
ij

for the voters in

D′
ij

, SGr((Vij
, Vij+1, . . . , Vn) : P ′

ij
, P ∗

j−1) �Vij
c.

Claim 1 states that for any j ≤ k, if voters i1, . . . , ij−1 have
already voted as in P ∗

j , and voter ij will vote next, then the
backward-induction outcome of the corresponding subgame
must be (weakly) preferred to c by voter ij .
Proof of Claim 1: The proof is by (reverse) induction on
j. First, we consider the base case where j = k. If voter ik
casts V ∗

ik
, then the winner is c, because the subprofile P ∗

k will
guarantee that c wins. Voter ik will only vote differently if it
results in at least as good an outcome for her as c. Therefore,
the claim holds for j = k.

Now, suppose that for some j′, the claim holds for j′ ≤
j ≤ k. We will now show that it also holds for j = j′ − 1.
Let c′ be the backward-induction outcome when voter ij′−1

submits V ∗
ij′−1

. By the induction hypothesis, we have that

c′ �Vi
j′

c. That is, voter ij′ (weakly) prefers c′ to c. We

recall that Up(c, Vij′−1
) ⊇ Up(c, Vij′

), which means that c′

is also (weakly) preferred to c by voter ij′−1. This means
that voter ij′−1 can guarantee that the outcome be at least as
good as c for her. She will only vote differently from V ∗

ij′−1
if

it results in at least as good an outcome for her as c′ (which
is at least as good as c already). Therefore, the claim also
holds for j′ − 1, and Claim 1 follows by induction. �

Letting j = 1 in Claim 1, we have that SGr(P ) �Vi1
c.

Therefore, d 6= SGr(P ) (because c ≻Vi1
d). This completes

the proof of Lemma 1. �

We are now ready to present our main theorem. We note
that this theorem does not depend on the tie-breaking mech-
anism used in the rule.

Theorem 1 For any voting rule r that satisfies non-
imposition, and any n ∈ N, there exists a profile P such
that SGr(P ) is ranked somewhere in the bottom two posi-
tions in n−2DIr(n) of the votes, and, if DIr(n) < n/4, then
SGr(P ) loses to all but one alternative in pairwise elections.
Proof. The proof is constructive. Let P = (V1, . . . , Vn) be
the profile (the voters’ true preferences) defined as follows.

V1 = . . . = V⌊n/2⌋−DIr(n) = [c3 ≻ . . . ≻ cm ≻ c1 ≻ c2]

V⌊n/2⌋−DIr(n)+1 = . . . = V⌊n/2⌋+DIr(n)

= [c1 ≻ c2 ≻ c3 ≻ . . . ≻ cm]

V⌊n/2⌋+DIr(n)+1 = . . . = Vn = [c2 ≻ c3 ≻ . . . ≻ cm ≻ c1]

We now use Lemma 1 to prove that SGr(P ) = c1. First,
we let k = ⌊n/2⌋ + DIr(n), and let Pk be the first k votes.
It follows from Lemma 1 (letting c = c1 and d = c2) that
c2 6= SGr(P ). Next, for any c′ ∈ X \ {c1, c2}, we let
k = ⌈n/2⌉ + DIr(n) and let Pk be the last k votes, that
is, Pk = (V⌊n/2⌋−DIr(n)+1, . . . , Vn). By Lemma 1 (letting

c = c2 and d = c′), we have that c′ 6= SGr(P ). It follows
that SGr(P ) = c.

In P , c1 is ranked somewhere in the bottom two positions
in n − 2DIr(n) votes (the first ⌊n/2⌋ − DIr(n) votes and
the last ⌈n/2⌉ − DIr(n) votes). If DIr(n) < n/4, then

2DIr(n) < n/2, which means that c1 will lose to any other
alternative (except c2) in pairwise elections. �

Combining Proposition 2 and Theorem 1, we obtain the
following corollary for common voting rules.

Corollary 1 Let r be any majority-consistent rule and let
n ≥ 5. There exists a profile P such that SGr(P ) is ranked
somewhere in the bottom two positions in n− 2 votes; more-
over, SGr(P ) loses to all but one alternative in pairwise
elections. (This holds regardless of how ties are broken.)

While this is a strong paradox already, it is sometimes pos-
sible to obtain even stronger paradoxes if we restrict atten-
tion to individual rules. We illustrate this on the plurality and
nomination rules. We recall that ties are broken in the order
c1 > . . . > cm. We only give some proof sketches show-
ing the paradoxical profile for Proposition 3. The proofs are
omitted due to the space constraint.

Proposition 3 For any m ≥ 3, if n is even, then there exists
an n-profile P such that SGPlu(P ) is ranked somewhere in
the bottom two positions in every voter’s true preferences;
moreover, all voters prefer all but one other alternatives to
SGPlu(P ) (that is, SGPlu(P ) is Pareto-dominated by all but
one other alternatives). (This assumes ties are broken in the
order c1 > . . . > cm.)
Proof sketch. We let P be an n-profile consisting of the
following votes.

V1 = . . . = Vn/2 = [c3 ≻ c4 ≻ . . . ≻ cm ≻ c1 ≻ c2]
Vn/2+1 = . . . = Vn = [c2 ≻ c3 ≻ . . . ≻ cm ≻ c1]

It can be shown that SGPlu(P ) = c1. �

Proposition 4 For any m ∈ N, if n is odd, then there exists
an n-profile P such that SGPlu(P ) is ranked somewhere in
the bottom ⌈2m/(n + 1)⌉ + 2 positions in every vote’s true
preferences. (This assumes ties are broken in the order c1 >
. . . > cm.)

We recall that the domination index for Nom is ⌈n/2⌉.
Therefore, Theorem 1 does not imply any real paradox for
Nom. However, paradoxes for Nom can still be obtained
directly, as the following proposition shows.

Proposition 5 For any m, n, there exists a profile P such
that in each vote, SGNom(P ) is ranked somewhere in the bot-
tom (⌈m/n⌉+ 1) positions in each voter’s true preferences;
moreover, SGNom(P ) loses in all pairwise elections (that is,
it is a Condorcet-loser).

Experimental results
In the previous section, we showed that the backward-
induction solution to the Stackelberg voting game is so-
cially undesirable for some profiles. We may ask ourselves
whether such profiles are common, or just isolated instances
that are not very likely to happen in practice. To answer this
question, we will compare the backward-induction winner
SGr(P ) to a benchmark outcome—namely, the alternative
r(P ) that would win under r if all voters vote truthfully. This
may seem like a difficult benchmark to achieve, because of-
ten strategic behavior comes at a cost (cf. price of anarchy,
first-best vs. second-best in mechanism design, etc.). Nev-
ertheless, in the experiments that we describe in this sec-
tion, it turns out that in randomly chosen profiles, in fact,
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Figure 1: The x-axis gives the number of voters (n); the y-axis gives the percentage of voters. In each case we consider various numbers of
alternatives (m). (a) The percentage of voters who prefer the SGr winner to the r winner minus the other way around, under plurality. (b)
The percentage of profiles for which the SGr winner and the r winner are the same, under plurality. (c) The percentage of voters who prefer
the SGr winner to the r winner minus the other way around, under veto. (d) The percentage of profiles for which the SGr winner and the
truthful r winner are the same, under veto. Please note the different scales on the y-axis for (a) and (c).

slightly more voters prefer the backward-induction outcome
SGr(P ) to the truthful outcome r(P ) than vice versa!

The setup of our experiment is as follows. We study the
plurality and veto rules (these are the easiest to scale to large
numbers of voters, because they have low compilation com-
plexity).6

For any m, n, and r ∈ {Plurality, Veto}, our experiment
has 25,000 iterations. In each iteration, we perform the fol-
lowing three steps. 1. In iteration j, an n-profile Pj is
chosen uniformly at random from L(X )n. 2. We calculate
SGr(Pj) using Algorithm 1 (with a compilation function to
reduce time/space-complexity), and we calculate r(Pj). 3.
We then count the number of voters in this profile P that
prefer SGr(P ) to r(P ) (according to their true preferences
in P ), denoted by n1, and vice versa, denoted by n2. If
SGr(P ) = r(P ), then n1 = n2 = 0.

For each m, n, r, we calculate the total percentage (across
all 25,000 iterations) of voters that prefer the backward-
induction winner for their profile to the winner under truthful

voting for their profile, that is, p1 =
∑25000

j=1 nj
1/(25000n).

We also compute p2 =
∑25000

j=1 nj
2/(25000n). We note that

it is not necessarily the case that p1 + p2 = 1, because if
SGr(P ) = r(P ), then n1 = n2 = 0. Let p3 = 1−p1−p2 be
the percentage of profiles for which the backward-induction
(SGr) winner coincides with the truthful (r) winner. We are
primarily interested in p1 − p2.

The results are summarized in Figure 1. First, from (a)
and (c) it can be observed that for plurality and veto, perhaps
surprisingly, on average, more voters prefer the backward-
induction winner to the winner under truthful voting than
vice versa. Generally, the difference becomes smaller when
n increases; the difference is larger when m is larger; and
the percentage seems to converge to some limit as n → ∞.
Second, from (b) and (d) it can be observed that the percent-
age of profiles for which the two winners coincide is smaller
for larger values of m; the percentage is decreasing in the
number of voters n for plurality, but increasing for veto.

6We also investigated other rules. It appears that they may lead
to similar results, though it is difficult to say this with high confi-
dence because we can only solve for the backward-induction out-
come for small numbers of voters.

Future Work

There are several directions for future research. First, is it
possible to design algorithms that compute the backward-
induction outcome efficiently, even for rules with high com-
pilation complexity and with many alternatives? We conjec-
ture that without any bound on the number of alternatives,
PSPACE-hardness results lie in waiting. If so, what implica-
tions does this have for practical strategic voting in the Stack-
elberg voting game? Second, is it possible to more generally
characterize the circumstances under which the backward-
induction outcome is “better” than the truthful-voting out-
come? If so, can this lead to practical recommendations
about when Stackelberg voting should be encouraged?
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