
Generalized Additive Models

Duke Course Notes
Cynthia Rudin

I have long been excited about the work of Rich Caruana and coauthors [Lou
et al., 2012, Caruana et al., 2015] on generalized additive models (GAMs). They
use a very simple but effective trick to be able to leverage the firepower of algo-
rithms like AdaBoost to create predictive models that are more easily understood
by humans.

A generalized additive model is comprised as a sum of p terms, each of which is
a nonlinear function of one of the original variables.

g(ŷ(x)) =

p!

j=1

fj(x·,j).

Here, again the x·,j notation means that I am talking about the jth feature,
leaving a placeholder so that you know I am referring to feature j rather than
datapoint j. The function g is a link function chosen by the user. This function
(like in logistic regression) might transform estimated probabilities ŷ – that must
take on values between 0 and 1 – to the whole real line to be compatible with the
right hand side. The term fj(x·,j) is called the component function for feature j.

An illustration is below, where nonlinear functions of each of the four variables
are shown. As you can see, there are no cross-terms, i.e., no interaction terms
between variables.

For instance, let us say that we want to predict poor outcomes of COVID-19,
and say that “age” is one of the original features in the dataset. In this case,
the probability of a poor outcome is low for younger people and could increase
rapidly for middle-aged people, and could be constant and high for older people.

1

Thus, we would hope that the component function fage would be flat, then in-
crease, and flatten out again.

Generalized additive models give us interpretability like that of a linear model
since there are no interaction terms between variables, but they also are more
powerful than linear models, as you could see from the example using age above
where nonlinearities are important.

We will use a sum of step functions to comprise each of the component functions.

Each of these step functions looks like either α · 1[x·j≥θjℓ] (a step facing right)
or α · 1[x·j≤θjℓ] (a step facing left), where α is nonnegative. If you would like
component function j to be monotonically decreasing, you could choose it to
contain only left-facing steps; if you would like the component function to be
monotonically increasing, you could choose only right-facing steps. If you want
the component function to be flexible and you do not care about monotonicity,
then you could allow it to use both right-facing and left-facing step functions.
Equivalently, we could use just upwards-facing steps and allow α to be either
positive (for the function to increase) or negative (for the function to decrease).

To get the component functions, the easiest way will be to use boosted stumps
and rearrange them into component functions. The term “stump” just refers
to a step function. It is called a stump because you might also think of a step
function as a tree with just one split. At every iteration, AdaBoost will add one
weighted step function to one of the component functions.

2

In the illustration above, AdaBoost added a step function of height α1 to the
component function for the 10th feature, then it added a step function of height
α2 to the component function of the 3rd feature and so on. After we run Ad-
aBoost, we have a lot of stumps. We sort them by feature, so that all the stumps
that used feature 1 are together at the top, all the stumps that used feature 2
are together below that, and so on:

Now, we add up the stumps for each feature separately to form the component
functions.

Notice how, in the illustration above, f1 is monotonically increasing because it
is comprised of only right-facing stumps. f2 has only left-facing stumps, and f3
has some of each.

3

Let us write down this process using AdaBoost notation. For simplicity, I will just
use right-facing stumps, but one could easily generalize this to include other kinds
of stumps. At iteration t, AdaBoost produces a term like αtht(x) = αt · 1[xjt≥θjtℓ]

,
where θjtl is the ℓth threshold for feature jt, which was chosen at iteration t
of AdaBoost by the weak learning algorithm. Let us regroup the terms. For
notational convenience, I’ll define weak classifier 1[x·j≥θjℓ] as stump(j, ℓ)(x). It is
1 when the jth component of x is at least θjℓ, and 0 otherwise.

g(ŷ(x)) =
!

t

αtht(x) (sum over iterations)

=

p!

j=1

!

thresholds ℓ

!

t

1[ht = stump(j, ℓ)] · αt · stump(j, ℓ)(x)

=

p!

j=1

!

thresholds ℓ

!

t

1 if classifier ht is a step of feature j at threshold θjℓ · αt ·

blacblacblahbblahh1if the jth feature of x exceeds threshold θjl

=

p!

j=1

!

thresholds ℓ

"
!

t

1[ht = stump(j, ℓ)] · αt

#
· stump(j, ℓ)(x)

=:
!

j

!

ℓ

λj,ℓ · stump(j, ℓ)(x)

blacb(defining λj,ℓ as sum over αt when the j, ℓ stump is used)

=
!

j

"
!

ℓ

λj,ℓ · stump(j, ℓ)(x)

#

=:
!

j

fj(x·,j) (defining the component functions).

Thus, we have our component functions.

Training Methods for Generalized Additive Models

First, AdaBoost is a perfectly reasonable way to train a GAM in the way I just
described.

Backfitting is a second approach, where you would iteratively model the residual
between y and our model, f =

$
j fj, and add it into f .

4

It might be beneficial to include pairwise interactions. In the paper Accurate
Intelligible Models with Pairwise Interactions [Caruana et al., 2015], they use a
functional form:

g(ŷ(x)) =
!

j

fj(x·,j) +
!

feature pairs k,j:k ∕=j

fk,j(x·,k, x·,j)

Caruana et al. [2015] call this a GA2M model. To train it, they first fit a gener-
alized additive model (no interaction terms yet). They use forward selection to
add in interaction terms. Specifically, until convergence, they add an interaction
term that is chosen to minimize the residual between y and the model’s predic-
tions ŷ. Then they refit the model ŷ with the new interaction term.

The component functions with lots of steps can model essentially any 1D func-
tion, which makes stumps a desirable choice. A problem with the component
functions fitted using AdaBoost or the other methods I just discussed is that
they can have very wiggly component functions that are caused by overfitting.
You can try to fix those manually, but you could also try not to overfit by making
the models sparse.

In the next subsection, I’ll discuss FastSparse [Liu et al., 2022], which is an
adaptation of AdaBoost for sparse GAM models.

FastSparse for Training Sparse GAMs

FastSparse [Liu et al., 2022] produces GAMs with a small number of overall
stumps. This is convenient because one can rearrange a component function into
a small table. For instance, if we had learned the sparse component function for
age: fage = 1.5 · 1[age≥30] + 0.5 · 1[age≥35] + 0.3 · 1[age≥40] + 0.1 · 1[age≥45], we could
plot it as a set of step functions, or it can translate into a table with the same
meaning:
Here you would be assigned some number of points based on your age for the
“age” component function, and be assigned points for other component func-
tions. The total number of points would translate into a risk as usual from
AdaBoost’s formula P (Y = 1|x) = e2f(x)/(1 + e2f(x)) that we derived earlier.

If you have a lot of component functions, it is useful if all of these tables are
fairly small. Such tables are often used in medicine and criminal justice.

5

age fage
age < 30 0 points

30 ≤ age <35 1.5 points
35 ≤ age <40 2 points
40 ≤ age <45 2.3 points

45 ≤ age 2.4 points
Your score

FastSparse leverages a lot of AdaBoost’s beautiful ideas.

AdaBoost Notation Refresher

We recall some notation from AdaBoost:

Rtrain(λ) =
1

n

!

i

e−yif(xi) (exponential loss)

=
1

n

!

i

e−
!

j yihj(xi)·λj

=
1

n

!

i

e−(Mλ)i (definition of matrix of margins)

At time t, the weight vector and normalization are:

dt,i =
e−(Mλt)i

Zt
where Zt =

!

i

e−(Mλt)i = nRtrain(λt).

Did you notice that the normalization factor is the objective we’re trying to
minimize? It’s so interesting! In any case, after we choose weak classifier jt, we
can define:

d− =
!

i:Mijt=−1

dt,i (weighted error of the weak classifier at time t)

AdaBoost’s update rule is

αt =
1

2
ln

%
1− d−
d−

&
.

Furthermore, we derived a recursive formula for AdaBoost’s objective:

Rtrain(λt+1) = Rtrain(λt)2[d−(1− d−)]
1/2. (1)

6

AdaBoost’s coordinate descent algorithm is:

d1,i = 1/n for i = 1...n
λ1 = 0
loop t = 1...T
jt = weak classifier chosen at iteration t, with weighted error d−, where
d− =

$
Mijt=−1 dt,i

αt =
1
2 ln

'
1−d−
d−

(

λt+1 = λt + αtejt
dt+1,i = e−(Mλt+1)i/Zt+1 for each i, where Zt+1 =

$n
i=1 e

−(Mλt+1)i

end

Now that we’ve finished reviewing AdaBoost, I can finally discuss FastSparse. It
is different from AdaBoost in two ways: the choice of jt, and the update rule for
λt+1. It’s objective is also different:

Rtrain
0 (λ) = Rtrain(λ) + C0‖λ‖0,

which is a sum of the exponential loss from AdaBoost, and a regularization term
that counts the nonzero terms of λ. Including the ℓ0 term encourages sparse
solutions.

I’ll give the update rule for λ first. The notation is a little simpler than AdaBoost
since I won’t use the jt notation. I’ll just say that I am updating component j
at time t.

FastSparse’s update rule for λt+1. Here we will update component j.

Case 1 is when λt,j = 0.
If the following condition holds:

d− ∈
)
1

2
− 1

2Rtrain(λt)

*
C0(2Rtrain(λt)− C0),

1

2

+
,

then set λt+1,j = 0. Otherwise set

λt+1,j =
1

2
ln

%
1− d−
d−

&
.

7

Case 2 is when λt,j ∕= 0.
We need to take away the jth component of f temporarily,

f
\j
t (x) = (λt − λt,jej)

Tx (set the jth component to 0).

d
\j
t,i := e−yif

\j
t (xi)/Z\j (where Z\j is a normalization constant) (2)

d
\j
− :=

!

i:Mij=−1

d
\j
t,i (3)

Rtrain
\j (λt) = Rtrain(λt − λt,jej) (4)

If

d
\j
− ∈

"
1

2
− 1

2Rtrain
\j (λt)

,
C0(2Rtrain

\j (λt)− C0),
1

2

#

then set λt+1,j = 0. Otherwise set

λt+1,j =
1

2
ln

-
1− d

\j
−

d
\j
−

.
.

Let us think about these two cases. They are actually very similar to each other.
In both cases, we start from the jth term of λt being 0 and compute an inter-
val around 1/2. An error rate of 1/2 means feature j is no better than random
guessing on the weighted training data. An error rate close to 0 means that weak
classifier j is really good and will reduce the error substantially if we use it.

Proof (i.e., derivation) of Case 1 and Case 2 for the update rule.
In Case 1, λt,j = 0 and we are considering setting λt+1,j ∕= 0. Recall

Rtrain
0 (λ) = Rtrain(λ) + C0‖λ0‖.

If we include a new non-zero term in λ, the value of Rtrain
0 will go up by C0.

Looking at the balance between these terms, if the second term goes up by C0,
in order to reduce Rtrain

0 , the first term (which is the exponential loss Rtrain(λ)),
must reduce by at least C0. So we need to know that Rtrain(λt)−Rtrain(λt+1) ≥ C0

at each iteration of our new algorithm for reducing Rtrain
0 .

Using the recursive formula (1) for AdaBoost’s loss above,

Rtrain(λt+1) = Rtrain(λt)2[d−(1− d−)]
1/2,

8

When does this obey Rtrain(λt)−Rtrain(λt+1) ≥ C0? Let’s find out.

Rtrain(λt)−Rtrain(λt+1) = Rtrain(λt)
/
1− 2[d−(1− d−)]

1/2
0 ?
≥ C0

1− 2[d−(1− d−)]
1/2

?
≥ C0

Rtrain(λt)

1− C0

Rtrain(λt)

?
≥ 2[d−(1− d−)]

1/2

1

2

%
1− C0

Rtrain(λt)

&
?
≥ [d−(1− d−)]

1/2

Setting the left side equal to v temporarily, we have:

v
?
≥ [d−(1− d−)]

1/2

v2
?
≥ d−(1− d−) = d− − d2−

d2− − d− + v2
?
≥ 0.

This is an upwards-facing quadratic, and we know that the inequality is satisfied
when d− is small and large, but possibly not in between. The roots of the
quadratic are:

roots =
1

2
± 1

2

*
1− 4v2. (5)

Doing a little simplifying on the term within the square root:

1− 4v2 = 1− 4
1

(2)2

%
1− C0

Rtrain(λt)

&2

= 1−
"
1− 2

C0

Rtrain(λt)
+

%
C0

Rtrain(λt)

&2
#

= 2
C0

Rtrain(λt)
−

%
C0

Rtrain(λt)

&2

=
C0

(Rtrain(λt))
2 [2R

train(λt)− C0].

So the roots in (5) become:

roots =
1

2
± 1

2Rtrain(λt)

*
C0[2Rtrain(λt)− C0]. (6)

9

We don’t really want to consider error rates above 1/2, so that removes the upper
root. Thus, we know that for d− being below 1

2 −
1

2Rtrain(λt)

*
C0[2Rtrain(λt)− C0],

we will get the improvement in the loss we needed in order to justify adding a
nonzero term for λt:
)
d− ≤ 1

2
− 1

2Rtrain(λt)

*
C0[2Rtrain(λt)− C0]

+
=⇒

1
Rtrain(λt)−Rtrain(λt+1) ≥ C0

2
.

In that case, since λt,j = 0, we update it using AdaBoost’s update rule, setting

λt+1,j = λt+1,j + αt = 0 + 1
2 ln

'
1−d−
d−

(
.

If d− is close to 1/2, i.e., it’s above 1
2 −

1
2Rtrain(λt)

*
C0[2Rtrain(λt)− C0], the ob-

jective Rtrain
0 is smaller if we keep the value of λt+1,j at 0, so we will do that. On

to Case 2.

In Case 2, λt,j ∕= 0. Certainly we would set λt+1,j = 0 if this improved the loss.
We calculate the objectives for λt − λt,jej (which is when we set the jth compo-
nent to 0), compared with λt − λt,jej + λstepej (where we then updated the jth
component afterwards). We need to compare these two options.

For Rtrain(λt − λt,jej + λstepej), using Definitions (2) and (3), by AdaBoost’s
recursive update rule, if we ran one step of AdaBoost,

λstep =
1

2
ln

-
1− d

\j
−

d
\j
−

.
, (7)

and by the recursive equation (1),

Rtrain(λt − λt,jej + λstepej) = Rtrain(λt − λt,jej) · 2
/
(1− d

\j
−)d

\j
−

01/2
.

This looks identical to the math from Case 1, so we know that:

Rtrain(λt − λt,jej)−Rtrain(λt − λt,jej + λstepej) ≤ C0 (8)

whenever the following happens, using notation from (4):

d
\j
− ∈

"
1

2
− 1

2Rtrain
\j (λt)

,
C0(2Rtrain

\j (λt)− C0),
1

2

#
.

10

If d
\j
− is in this range, weak classifier j is not very good according to (8) and won’t

give us an overall improvement in the loss, so we set λt+1,j = 0. Otherwise, we
set λt+1,j = λstep from (7). We are done with Case 2.

Order of weak classifiers

The only remaining part of FastSparse to discuss is its choice for the j to update
at iteration t.

As a preprocessing step, FastSparse sorts the features by their accuracy (that is,
their agreement with the labels):

acc(stump(j, ℓ)) =
1

n

!

i

[yi=stump(j,ℓ)(xi)].

Then it cycles through the j’s in order of this sorting for a while (maybe 100
iterations), following the steps above to tell it how far to move in each direction.
Thus, FastSparse does not (like AdaBoost) move in the steepest direction, it
cycles among all coordinates in order to reduce computation of gradients.

After several iterations (perhaps 100) of coordinate descent following the steps
listed above, it performs a “swap step” where it tries to swap one stump that
is in the model for another one that is not in the model, by trying to move the
coefficient λt,j from the current stump it is “swapping out” to every new feature
that is currently not being used in the model to see if there is a better one.
FastSparse has a priority queue. If it tries to swap out a stump but there is no
better one to swap with, FastSparse doesn’t want to try swapping that stump
again for a while, and puts it at the back of the priority queue. If the swap is
successful, it leaves that stump at the front of the priority queue.

FastSparse alternates between swap steps and more coordinate descent steps un-
til converged.

An example of a FastSparse model on the FICO dataset from the 2018 Explain-
able Machine Learning Challenge [FICO et al., 2018] is below. Here, you can see
all of the component functions. (There are some component functions that have
indicator variables for missing values that are shown at the left of the compo-

11

nent.) We can see that the feature ExternalRiskEstimate is important, because
it takes on a large range of values; individuals with low ExternalRiskEstimate
have a very different estimate loan default than individuals with high External-
RiskEstimate.

To calculate the total score, you add up each component at the value of each
feature, which is f(x), and send it through P (Y = 1|x) = e2f(x)/(1 + e2f(x)).

Remarks

Let us finish by discussing when generalized additive models of the kind we have
discussed are a good idea. Clearly they are designed for tabular data where each
feature is meaningful (as opposed to computer vision data, for instance).

They create powerful nonlinear component functions, but such functions are only
really helpful when the original features are real-valued. You can definitely still
use them on binary features, but the component functions are very boring single
step functions – either the function f increases when you increase the feature
from 0 to 1, or the function f decreases when you change the feature from 0 to
1. Thus, if you have a large number of binary features, f could become a giant
mess of step functions. In that case, perhaps a decision tree might be better.

12

They are good for binary classification (or you could use the same technique for
regression since it adapts easily) but it’s not clear how to use them for multiclass
problems. Decision trees would be better in that case, since each leaf can predict
a different class.

GAMs have no interaction terms, whereas decision trees are essentially comprised
of interaction terms.

So, as you can probably see by now, generalized additive models are probably
best suited for datasets with a relatively small number of continuous variables
(including a few binary variables too is fine).

References

Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie
Elhadad. Intelligible models for healthcare: Predicting pneumonia risk and hos-
pital 30-day readmission. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pages 1721–
1730, 2015.

FICO, Google, Imperial College London, MIT, University of Oxford, UC
Irvine, and UC Berkeley. Explainable Machine Learning Challenge.
https://community.fico.com/s/explainable-machine-learning-challenge,
2018.

Jiachang Liu, Chudi Zhong, Margo Seltzer, and Cynthia Rudin. Fast sparse
classification for generalized linear and additive models. In Proceedings of
Artificial Intelligence and Statistics (AISTATS), 2022.

Yin Lou, Rich Caruana, and Johannes Gehrke. Intelligible models for classi-
fication and regression. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pages 150–158,
2012.

13

