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Clustering is a key problem unsupervised machine learning. It is used often by
companies to understand customer segments who have similar purchasing be-
havior. It can be used to group documents into categories. Biologists use it to
find clusters of genes.

Keep in mind that good clusters do not always look spherical, they could have
many different shapes. For instance, you could envision what good clusters might
look like for the spiral data... they would look like spirals!

Unsupervised problems are generally much more difficult than supervised prob-
lems, because it is not clear how to evaluate the quality of the result. Clustering
suffers from this issue.
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K-Means Clustering

The K-Means clustering algorithms is quite easy to explain:

Input: data points x1, ..,xn, number of desired clusters K.
Output: cluster centers c1, .., cK .

• Randomly initialize centers for each cluster, c1, .., cK .

• Assign all points to the closest cluster center.

• Change each cluster center to be in the middle of its points.

• Repeat the previous two steps until convergence.

We can try this out in 2D. Starting with randomly assigned cluster centers, we
assign all points to the closest center. This induces a Voronoi partition of the
feature space. Then we move the cluster centers to be in the center of their
clusters.

After repeating the assignment and center update steps several times, eventually
it converges to an excellent answer.
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As it turns out, K-Means is actually an alternating minimization algorithm. It is
actually trying to iteratively minimize a global objective. Alternating minimiza-
tion does not necessarily converge to a global optimum, which means we might
not always get a good answer from K-Means. However, we can try starting from
lots of different random initializations and hopefully one of them will give us a
good solution.

Let us write the objective that K-Means actually optimizes. Some notation:

dist(xi, ci) = distance between xi and center ck.

Typically we use Euclidean distance, but we should consider this choice of dis-
tance metric carefully since it determines the quality of the clustering.

Since xi is assigned to the nearest cluster center, the distance between xi and its
assigned cluster center is:

min
k

dist(xi, ck).

K-Means would like these distances between each of the points and their cluster
centers to be small. This sum of distances of each point to its cluster center will
be the cost.

cost(c1, ..., cK) =
!

i

min
k

(dist(xi, ck)) .

This cost function is what K-Means aims to minimize. It chooses the cluster
centers c1, ..., cK to minimize this cost.

K-Means is Alternating Minimization

Let us say we wanted to minimize the cost using brute force. We could try cre-
ating all possible assignments of n points to K clusters, and for each of these
assignments, we could compute the cluster centers c1, ..., cK . But this is not a
good idea. The total number of possible assignments is huge. If we had 10 points
and assigned them to K = 4 possible clusters in every possible way, there are
over 34 thousand possibilities. For 19 points in 4 clusters, there are 1010 possi-
bilities. So this is not possible in reality. That is why we will use alternating
minimization.
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Starting with the cost function, we will break up the sum over all points into the
sum over all clusters, and the sum of points in each cluster.

cost(c1, ..., cK) =
!

k

!

i: xi is assigned to cluster k

min
k

(dist(xi, ck)) .

Now, we will set the cluster assignments to be variables, so that we can assign
point i to cluster k, even if i is not close to k’s cluster center. This might seem
silly, but it allows us to consider the cluster centers and cluster assignments sep-
arately. Here, clusterk is the set of points in cluster k. Now ck is not necessarily
at the center of cluster k, it is just a point that is a representative for the cluster.

cost(c1, ..., cK , cluster1, ...clusterK) =
K!

k=1

!

i: xi is assigned to clusterk

min
k

(dist(xi, ck)) .

Now we will do alternating minimization. This is very similar to coordinate de-
scent in that we will minimize with respect to one type of variable, then another.

1. Minimize with respect to cluster assignment:

min
cluster1,...clusterK

cost(c1, ..., cK , cluster1, ...clusterK).

This step will just assign each point to its nearest cluster representative.

2. Minimize with respect to the placement of the cluster representatives:

min
c1,...cK

cost(c1, ..., cK , cluster1, ...clusterK).

This step will assign ck to be in the middle of cluster k, for all k. Thus,
after this step, ck will be at the cluster center for cluster k.

K-Means repeats these two steps until convergence.

K-Means requires the user to input K. But since the problem is unsupervised,
there is no obvious choice for K. We often use the “elbow” method, where we
would choose several values of K, picking the K after which the cost improves at
a slower rate (the point of diminishing returns). If we choose K to be too large
(close to the total number of points n), it will essentially place each point into
its own cluster, which would not be interesting. In the figure below, we would
choose K at the “kink” in the curve.
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As discussed earlier, alternating minimization on the cost function is not guar-
anteed to reach a global minimum, so it is a good idea to restart the algorithm
a few times with random cluster centers, and take the solution with the smallest
value of the cost function.

K-Means is useful when the clusters are somewhat spherical. But sometimes,
K-Means just is not the right algorithm for a dataset. Here is an example where
K-Means chooses clusters that do not really make sense for the problem.

Here, perhaps a better clustering method would be able to determine that there
are two spiral-shaped clusters. We next discuss Hierarchical Agglomerative Clus-
tering, which can handle this.

1 Hierarchical Agglomerative Clustering

Despite its complicated name, this algorithm is extremely simple.

1. Start with each point in its own cluster.

2. Repeatedly merge the clusters of the two closest points.
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Here is an example. On the left, no points have been merged. Then there is one
merge, then two, etc.

...

If we go too far, everything will get merged into one cluster.

Hierarchical Agglomerative Clustering performs extremely well on the spiral
data. I’ll show the raw data, and then the result after clustering.

However, if we apply Hierarchical Agglomerative Clustering to the dataset from
earlier with the close-to-spherical clusters, the result is not good. K-Means was
better.
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Often Hierarchical Agglomerative Clustering results are displayed as dendro-
grams, which explain the order in which clusters are merged. The horizontal
axis shows the indices of datapoints. The earlier merges are at the bottom, the
more recent merges are at the top.

Here, I have marked “7” where there are 7 clusters. Perhaps we will choose to
stop merging here. However, there is no clear rule as to when to stop merging.
Perhaps I would stop merging when I am trying to merge clusters that are far
away from each other.

2 Perspective on Clustering

As we have already seen, K-Means is excellent for spherical clusters, whereas Hi-
erarchical Agglomerative Clustering is useful when the data has manifold struc-
tures. For most types of tabular data, it is fairly safe to assume that the data
has gaussian clusters. However, for “raw” data (image, sound, text, biological)
we may have clusters that look more like skinny manifolds.

There are numerous variations of each type of algorithm, for instance, for Hi-
erarchical Agglomerative Clustering, instead of using the closest points between
two clusters to determine merging, we could use the means or medians of the
two clusters.

I will finish this chapter on clustering with the most important remark:
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The quality of the clustering depends heavily on the distance metric.

Changing the distance metric in any way could substantially impact the results.
Hierarchical Agglomerative Clustering is particularly sensitive to the choice of
distance metric and merging criteria.
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