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Unsupervised Learning
• “Unsupervised” means that the training data has 

no ground truth labels to learn from.
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• Clustering is a key unsupervised problem.
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Clustering

Applications include:
• Automatically grouping documents/webpages into topics

– For instance, grouping news stories from today into categories

• Clustering large number of products
– E.g., etsy products

• Clustering customers into those with similar purchase behavior
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K-Means Clustering
– Input number of clusters, randomly initialize centers
– Assign all points to the closest cluster center
– Change cluster centers to be in the middle of its points
– Repeat until convergence
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Ready to see it?
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K-Means Actual Goal

cost(c1,...,cK ) = min
ki

∑ dist(xi ,ck )( )

Input: Data set x1,…,xn, number of clusters K
Output: Cluster centers c1,..,cK
Goal: Minimize Perhaps Squared Euclidean Distance
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cost(c1,...,cK ) = min
ki

∑ dist(xi ,ck )( )

Input: Data set x1,…,xn, number of clusters K
Output: Cluster centers c1,..,cK
Goal: Minimize

Global minimization: Try all possible assignments of n points to K clusters:

Combos(10,4) = 34K ,   Combos(19,4) = 1010,...,urg

Stirling number of 
the second kind == S(n,K)
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K-Means Actual Goal

cost(cluster1,cluster2,..,clusterk ,c1,...,cK ) =
k
∑ dist(xi ,ck )

i: xi  is in clusterk
∑

min
c1,c2 ,..,ck

cost(cluster1,cluster2,..,clusterk ,c1,...,cK )

X
(Assign centers to the 
middle of the points 

assigned to that cluster)
X



K-Means Actual Goal

Input: number of clusters K, randomly initialize centers ck

Until converged:

Assign each point to the closest cluster center

Change each cluster center to be in the middle of its points

min
c1,c2 ,..,ck

cost(cluster1,cluster2,..,clusterk ,c1,...,cK )

cost(cluster1,cluster2,..,clusterk ,c1,...,cK ) =
k
∑ dist(xi ,ck )

i: xi  is in clusterk
∑

min
cluster1,cluster2 ,..,clusterk

cost(cluster1,cluster2,..,clusterk ,c1,...,cK )
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K-Means Actual Goal
cost(cluster1,cluster2,..,clusterk ,c1,...,cK ) =

k
∑ dist(xi ,ck )
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∑

Does K-Means achieve its goal?
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K-Means Actual Goal
cost(cluster1,cluster2,..,clusterk ,c1,...,cK ) =

k
∑ dist(xi ,ck )

i: xi  is in clusterk
∑

Does K-Means achieve its goal?

Not always. Might need multiple replicates. Even worse than that, 
its goal might not be the right one…
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How to Choose K for K-Means



How to Choose K for K-Means

• Look for the point of diminishing returns.

kink

Use this number of clusters

K

cost



K-Means
• Popular clustering algorithm, computationally efficient
• Performs alternating minimization on a cost function
• Does not always fully minimize that cost function (multiple 

replicates might be needed for a good solution)
• Can use the cost function to evaluate whether one replicate 

is better than another
• Can use cost function to help choose the number of clusters
• Doesn’t work well for highly non-spherical clusters
Note: I used Euclidean distance, but can use other distances.
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Hierarchical Agglomerative Clustering

• Start with each point in its own cluster
• Repeatedly merge the clusters of the closest two points
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K-Means vs Hierarchical Agglomerative Clustering

• Both are useful for different sorts of problems. K-Means works well for 
spherical data. 

• Hierarchical Agglomerative Clustering is useful when clusters are well-
separated. (Here, 2 points that are close should be in the same cluster.)

• There are many different linkage criteria for Hierarchical Agglomerative 
Clustering (I only discussed “min” criteria.)

• For K-means, one needs to choose the number of clusters (try a few 
different ones). For hierarchical clustering, one chooses when to stop 
merging clusters (and linkage criteria).

• The distance metric is important. Can have a large impact on the solution.


