
Fundamentals of Learning Course Notes
Cynthia Rudin

Welcome! Machine learning is a broad field within machine learning and predic-
tive statistics. It involves the design of algorithms that learn by example. Ma-
chine learning is (in a broad sense) pattern recognition. It is not real intelligence.

In machine learning, we often represent objects as vectors (that is, an ordered
set of numbers). For instance, an image can be represented by its red-green-blue
pixel values. A medical patient can be represented by numbers that represent
the patient’s age, number of prior strokes, whether they have had past congenital
heart failure, whether they take specific dosages of specific drugs, etc.

I’ll start by listing some of the important machine learning problems, starting
with the most famous one: classification.

List of Some (Not All) Important Problems in Machine Learning

1. Classification

• Input: {(xi, yi)}ni=1 “examples,” “instances with labels,” “observations”

• xi ∈ X ⊂ Rp. When yi ∈ {−1, 1} it is “binary classification.”

• Output: f : X → R and use sign(f) to classify. If sign(f) ∕= y, the
point is misclassified. This can also be written y · sign(f) ≤ 0.

• Applications: automatic handwriting recognition, face recognition, speech
recognition, biometrics, document classification, predicting medical out-
comes (e.g., disease vs no disease), predicting equipment failure, pre-
dicting credit default.

1



• Multiclass problems: If there are more than two classes, the problem is a
multiclass problem. Binary classification techniques generalize nicely to
multiclass. For instance, we could solve binary “one-vs-all” classification
problems for each class.

• Algorithms: There are many famous classification algorithms, including
logistic regression, AdaBoost, random forest, support vector machines,
k-nearest neighbors, decision tree optimization algorithms, and various
types of neural networks. People often use the term “classification”
interchangeably with “conditional probability estimation” since you can
generally get a probability from f .

2. Conditional probability estimation

• Input: {(xi, yi)}ni=1, xi ∈ X , yi ∈ {−1, 1}
• Output: f : X → [0, 1] as “close” to p(y = 1|x) as possible.
• Applications: estimate probability of failure, probability to default on
loan, probability to commit another crime

• Algorithms: Most classification algorithms, such as logistic regression,
AdaBoost, decision trees, and neural networks can be used for condi-
tional probability estimation too.

3. Regression

• Input: {(xi, yi)}ni=1, xi ∈ X , yi ∈ R

• Output: f : X → R

• Applications: predicting an individual’s income, predict house prices,
predict demand for energy, predict test scores, predict amount that
customer will spend

• Algorithms: Least squares, ridge regression, L1-penalized regression
(lasso), kernel least squares, kernel ridge regression, kernel regression
(which is different from kernel ridge regression), gaussian process re-
gression

4. Ranking - between classification and regression.

• Input: {xi}ni=1, xi ∈ X , and also we have a set of pairs (i, k) that
are labeled that i should be ranked above k, that is, we should have
f(xi) > f(xk) for these special pairs.

2



• Output: f : X → R such that f(xi) > f(xk) for the specified (i, k)
pairs as often as possible.

• Applications: Some search engines use ranking methods. Useful also for
predictive maintenance applications since you want to rank the equip-
ment most likely to fail on top. Conditional probability estimation
algorithms can be used for ranking if you have binary labels y, where
you rank by f . In that case, one could view text generation algorithms
as ranking algorithms, since, to determine what should be the next word
in the sentence, they rank all words and choose the top one to include.

5. Finding patterns (correlations) in large datasets, rule mining, frequent item-
set mining

• Input: {xi}ni=1, xi ∈ X , (labels can be included optionally)

• Output for Frequent Itemset Mining: Find frequent combinations of
items (e.g., Milk & Cookies).

• Output for Rule Mining: Find rules such as (Diapers → Beer) that are
“interesting” according to some interestingness criteria.

• There are thousands of algorithms that all produce the same result -
the list of frequent patterns. The Apriori and FP-Growth algorithms
are the most famous. Rules themselves can serve as very small machine
learning models (e.g., “People who buy diapers also tend to buy beer.”)

6. Clustering - grouping data into clusters that “belong” together - objects
within a cluster are more similar to each other than to those in other clusters.
This is unsupervised.

• Input: {xi}ni=1, xi ∈ X
• Output: f : X → {1, . . . , K} (K clusters)

• Applications: clustering consumers for market research, clustering genes
into families, image segmentation (medical imaging)

• Algorithms: Kmeans, Kmedians, Hierarchical agglomerative clustering,
Gaussian mixture models

7. Density estimation. This is unsupervised.

• {xi}ni=1, xi ∈ X

3



• Output: f : X → [0, 1] as “close” to p(x) as possible.

• Applications: anomaly detection (anomalous mechanical behavior of a
piece of equipment), useful for variance estimates (lower density areas
might have larger confidence intervals)

• Algorithms: Adaptive kernel density estimation methods are probably
the most popular.

Clustering, density estimation, and (generally) rule mining are unsupervised
problems (no ground truth), whereas classification, ranking, and conditional
probability estimation are supervised problems (there is ground truth). In
all of these problems, we do not necessarily assume we know the distribution (or
even the form of the distribution) that the data are drawn from.

In “self-supervised” problems, the y comes from the x. E.g., language mod-
els, where you remove a word and try to predict the missing word using the
surrounding words.

Training and Testing (in-sample and out-of-sample) for supervised learning.

Training : training data are input, and model f is the output.

{(xi, yi)}ni=1 =⇒ Algorithm =⇒ f.

Testing : Evaluate the model. You want to predict y for a new x, where (x, y)
comes from the same distribution as {(xi, yi)}ni=1.

That is, (x, y)∼ D(X ,Y) and each (xi, yi) ∼ D(X ,Y).

Problems arise in practice when the training data and test data are not drawn
from the same distribution.

To judge the quality of predictions, we need to know how to answer: How well
does f(x) match the label y? We will measure the goodness of f using a loss
function ℓ : Y × Y → R. It is a function that takes f(x) and y and produces a
(generally nonnegative) number.

4



For instance,

ℓ(f(x), y) = (f(x)− y)2 least squares loss, or

ℓ(f(x), y) = 1[sign(f(x)) ∕=y] (mis)classification error

The expected loss over the distribution that the data comes from is:

Rtest(f) = E(x,y)∼Dℓ(f(x), y)

=

󰁝

(x,y)∼D

ℓ(f(x), y)dD(x, y).

Rtest is also called the true risk or the test error. This is the main quantity
considered in supervised learning.

We can’t calculate it. But we want Rtest to be small. If so, that would mean
f(x) is a good predictor of y.

How can we ensure Rtest(f) is small? The answer involves a few magic ingredi-
ents: a low training error, a large number of training points, and a simple model
class. Let’s discuss that.

Let’s look at how well f performs (on average) on the training set {(xi, yi)}ni=1:

Rtrain(f) =
1

n

n󰁛

i=1

ℓ(f(xi), yi).

Rtrain is also called the empirical risk or training error. For example,

Rtrain(f) =
1

n

n󰁛

i=1

1[sign(f(xi)) ∕=yi].

(For instance, this might represent how many handwritten digits f classified in-
correctly.)

Say our algorithm constructs f so that Rtrain(f) is small. If Rtrain(f) is small,
hopefully Rtest(f) is too. But that doesn’t always happen. Sometimes we overfit.
Overfitting is the enemy of machine learning.

5



The left figure contains the data, and the right figure is a good fit. In the middle
figure, f was overfitted to the data, modeled the noise, “memorized” the exam-
ples, and didn’t give us much other useful information. In other words, it doesn’t
“generalize,” i.e., predict. We didn’t “learn” anything!

Thus, it’s not enough to have a small training error, because we could overfit.
We also need a guarantee on how close Rtrain is to Rtest. Hence we need the other
two ingredients for when Rtrain would be close to Rtest:

• If n is large.

• If f is “simple.”

A beautiful mathematical theory (discussed next) formalizes what these mean,
and how we can get a guarantee on the test risk being close to the training
risk. This guarantee is important, because it tells us that if we have all three
ingredients (low training error, large training set, simple models), then our test
risk is also likely to be small.

Computational Learning Theory, a.k.a. Statistical Learning Theory, a.k.a.,
Learning Theory, and in particular, Vapnik’s Structural Risk Minimization
(SRM) addresses generalization (Vapnik and Chervonenkis, 1971). Here’s SRM’s
classic picture:

6



Structural Risk Minimization says that we need models to be somewhat simple
in order to learn/generalize/avoid overfitting.

Statistical learning theory addresses how to construct probabilistic guarantees
on the true risk. In order to do this, it quantifies classes of “simple models,”
discussed formally later.

What can we use as a definition of a “simple” model in practice?

There are many definitions. For instance:

• “simple” linear models have small coefficients.

f(x) =
󰁛

j

λjx
(j) where 󰀂λ󰀂22 =

󰁛

j

λ2
j < C.

• “simple” models could be models that are very smooth, and can’t change
too fast as we move around the space X .

• “simple” models have small values of a “simplicity function” which we gen-
erally call a regularization term.

7



• “simple” Bayesian models might be models that have large values of a
Bayesian prior. (As we will learn, this is equivalent to having a small regu-
larization term.)

Later we will learn some formal definitions of simplicity.

This expression below is kind of omnipresent. This form captures many algo-
rithms: SVM, boosting, ridge regression, LASSO, and logistic regression.

Regularized Learning Expression:

󰁛

i

ℓ(f(xi), yi) + CRreg(f).

In the regularized learning expression, there are two terms: the loss term (which
controls training performance) and the regularization term (which controls model
simplicity). The loss ℓ(f(xi), yi) is often misclassification error 1[yi ∕=sign(f(xi))] =
1[yif(xi)≤0] for classification problems. The regularization parameter C is a num-
ber that trades off between training loss and simplicity. I’ll tell you later how to
choose it, using cross-validation.

Note that minimizing
󰁓

i 1[yif(xi)≤0] with respect to f is computationally hard.
This is why we often minimize upper bounds for it that are convex and easier to
minimize. Here are some of them. I have noted which common machine learning
algorithms they are used in.

• “logistic loss” log
󰀃
1 + e−yif(xi)

󰀄
⇐= logistic regression, neural networks

• “hinge loss” max(0, 1− yif(xi)) ⇐= support vector machines (SVM)

• “exponential loss” e−yif(xi) ⇐= AdaBoost

8



The margin is an important quantity in classification. A point with a margin
of 0 means it is on the decision boundary. A large positive margin means that
the point is correctly classified and far from the decision boundary. A negative
margin means the point is misclassified. Let’s show an example on this simple
2D dataset, where the function f increases to the left.

Now let’s plot the margins. I’ll flip the points over the decision boundary so that
all the correctly classified points on the right and all the incorrectly classified
points on the left. That way, the margin is now along the horizontal axis.

9



Intuitively, the margin tells us how well the point was classified. As we have
shown, the major loss functions of machine learning are defined in terms of
margins.

Let us define various options for the regularization term Rreg(f). Usually f is
linear, f(x) =

󰁓
j λjx

(j) (where notation x(j) means the jth component of x).
There are a variety of choices for Rreg(f) such as:

• 󰀂λ󰀂22 =
󰁓

j λ
2
j ⇐= used by ridge regression and SVM

• 󰀂λ󰀂1 =
󰁓

j |λj| ⇐= used by LASSO, approximately used by AdaBoost

• 󰀂λ󰀂0 =
󰁓

j 1[λj ∕=0] ⇐= counts the number of nonzero terms.

The method called ridge regression is simply the squared loss with ℓ2 regulariza-
tion:

1

n

󰁛

i

(yi − f(xi))
2 + C󰀂λ󰀂22.

Support vector machines use the hinge loss and the ℓ2 norm:

1

n

󰁛

i

max(0, 1− yif(xi)) + C󰀂λ󰀂22.

10



AdaBoost uses the exponential loss without regularization, (although it acts as
if it uses ℓ1 regularization in some cases):

1

n

󰁛

i

e−yif(xi).

Regularized logistic regression uses the logistic loss with either the ℓ1 or ℓ2 norm.

It is also possible to use the ℓ0 norm (well, it’s actually a semi-norm), which is
the count of non-zero terms in the model. It’s more difficult to regularize this
because it’s not continuous in its arguments, but we will use it when we discuss
modern optimization methods. As we’ll see, using ℓ0 has some major advantages
if we can do it computationally. The major one is that C gains more intuitive
meaning – it becomes the amount of loss we are willing to trade off for one fewer
term in the model.

You might have noticed that the differences between these algorithms, as I have
described them so far, is somewhat small. In fact, these algorithms all tend to
perform similarly in practice on many datasets if they use the same features. The
catch is that they use very different kinds of features, as you will see.

References:
V. N. Vapnik and A. Y. Chervonenkis. “On the uniform convergence of rela-
tive frequencies of events to their probabilities.” Theory of Probability and its
Applications, 16(2):264-280, 1971.

11


