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Let us define cross entropy. It uses 2 discrete distributions, p and q.

H(p,q) = −
!

k

pk log qk,

where we are summing over outcomes. Here, recall from the information theory
lecture that entropy is H(p,p).

Here, we will choose p = [y, 1− y]. This is a strange distribution, but it’s valid,
in the sense that if y = 1, the distribution is [1,0], otherwise it is [0,1]. In this lec-
ture, y is either 1 or 0̃, which again means either 0 or -1, depending on whichever
is convenient.

To compare y to ŷ, we define q as:

q = [ŷ, 1− ŷ],

and we’ll compare y to ŷ by comparing p with q, by computing H(p,q).

Let us work on defining ŷ. We assume our machine learning method is producing
a function f(x) which takes on real values, and we send it through a sigmoid to
produce values between 0 and 1, which are P (Y = 1|x).

ŷ = σ(f(x)) =
ef(x)

1 + ef(x)
.

This is the same sigmoid that is used in logistic regression.

So far, our calculations have been for only one point (x, y). In fact this point
will be one of our data points in reality, so I should really be calling it (xi, yi).

H([y, 1− y], [ŷ, 1− ŷ]) = −yi log(ŷ)− (1− yi) log(1− ŷi)

= −yi log
ef(xi)

1 + ef(xi)
− (1− yi) log

"
1− ef(xi)

1 + ef(xi)

#

1



Our goal in this lecture is to show that this cross entropy equals the logistic loss.

Let’s examine separately what happens when yi = 1 and when yi = 0̃.

When yi = 1, the second term goes away because it is multiplied by (1 − yi),
which is 0. The first term remains, which is:

H([1, 0], [ŷ, 1− ŷ]) = − log
ef(xi)

1 + ef(xi)
= log

1 + ef(xi)

ef(xi)
= log(e−f(xi) + 1)

= log(1 + e−yif(xi)),

where here, I used our condition that yi = 1 in the last line. This, of course, is
the logistic loss. So far so good.

When yi = 0̃, the first term goes away because it is multiplied by yi, which is 0̃,
which we choose conveniently to be 0 here. The second term remains, which is:

H([0, 1], [ŷ, 1− ŷ]) = −(1− yi) log

"
1− ef(xi)

1 + ef(xi)

#
= −(1− 0)

"
1− ef(xi)

1 + ef(xi)

#

= − log
1 +✟✟✟✟

ef(xi) − e✟✟✟f(xi)

1 + ef(xi)
= log(1 + ef(xi))

= log(1 + e−yif(xi)),

where I used our condition that yi = −1 in the last line. This is again the logistic
loss, so we’re done.
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