Cross Entropy Equals Logistic Loss for Binary Classification
 Cynthia Rudin

Let us define cross entropy. It uses 2 discrete distributions, \mathbf{p} and \mathbf{q}.

$$
H(\mathbf{p}, \mathbf{q})=-\sum_{k} p_{k} \log q_{k},
$$

where we are summing over outcomes. Here, recall from the information theory lecture that entropy is $H(\mathbf{p}, \mathbf{p})$.

Here, we will choose $\mathbf{p}=[y, 1-y]$. This is a strange distribution, but it's valid, in the sense that if $y=1$, the distribution is $[1,0]$, otherwise it is $[0,1]$. In this lecture, y is either 1 or $\tilde{0}$, which again means either 0 or -1 , depending on whichever is convenient.

To compare y to \hat{y}, we define \mathbf{q} as:

$$
\mathbf{q}=[\hat{y}, 1-\hat{y}],
$$

and we'll compare y to \hat{y} by comparing \mathbf{p} with \mathbf{q}, by computing $H(\mathbf{p}, \mathbf{q})$.
Let us work on defining \hat{y}. We assume our machine learning method is producing a function $f(\mathbf{x})$ which takes on real values, and we send it through a sigmoid to produce values between 0 and 1 , which are $P(Y=1 \mid x)$.

$$
\hat{y}=\sigma(f(x))=\frac{e^{f(x)}}{1+e^{f(x)}}
$$

This is the same sigmoid that is used in logistic regression.
So far, our calculations have been for only one point (x, y). In fact this point will be one of our data points in reality, so I should really be calling it $\left(x_{i}, y_{i}\right)$.

$$
\begin{aligned}
H([y, 1-y],[\hat{y}, 1-\hat{y}]) & =-y_{i} \log (\hat{y})-\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right) \\
& =-y_{i} \log \frac{e^{f\left(x_{i}\right)}}{1+e^{f\left(x_{i}\right)}}-\left(1-y_{i}\right) \log \left(1-\frac{e^{f\left(x_{i}\right)}}{1+e^{f\left(x_{i}\right)}}\right)
\end{aligned}
$$

Our goal in this lecture is to show that this cross entropy equals the logistic loss.
Let's examine separately what happens when $y_{i}=1$ and when $y_{i}=\tilde{0}$.
When $y_{i}=1$, the second term goes away because it is multiplied by $\left(1-y_{i}\right)$, which is 0 . The first term remains, which is:

$$
\begin{aligned}
H([1,0],[\hat{y}, 1-\hat{y}]) & =-\log \frac{e^{f\left(x_{i}\right)}}{1+e^{f\left(x_{i}\right)}}=\log \frac{1+e^{f\left(x_{i}\right)}}{e^{f\left(x_{i}\right)}}=\log \left(e^{-f\left(x_{i}\right)}+1\right) \\
& =\log \left(1+e^{-y_{i} f\left(x_{i}\right)}\right)
\end{aligned}
$$

where here, I used our condition that $y_{i}=1$ in the last line. This, of course, is the logistic loss. So far so good.

When $y_{i}=\tilde{0}$, the first term goes away because it is multiplied by y_{i}, which is $\tilde{0}$, which we choose conveniently to be 0 here. The second term remains, which is:

$$
\begin{aligned}
H([0,1],[\hat{y}, 1-\hat{y}]) & =-\left(1-y_{i}\right) \log \left(1-\frac{e^{f\left(x_{i}\right)}}{1+e^{f\left(x_{i}\right)}}\right)=-(1-0)\left(1-\frac{e^{f\left(x_{i}\right)}}{1+e^{f\left(x_{i}\right)}}\right) \\
& =-\log \frac{1+e^{f\left(x_{i}\right)}-e^{f\left(x_{i}\right)}}{1+e^{f\left(x_{i}\right)}}=\log \left(1+e^{f\left(x_{i}\right)}\right) \\
& =\log \left(1+e^{-y_{i} f\left(x_{i}\right)}\right),
\end{aligned}
$$

where I used our condition that $y_{i}=-1$ in the last line. This is again the logistic loss, so we're done.

