Cross Validation for Evaluating Algorithms Cynthia Rudin

Machine Learning Course, Duke

"Cross-validation" has multiple meanings

- "We evaluated the algorithm by 10 fold cross-validation"
- "The parameters of the algorithm were tuned by 10-fold cross-validation" (part of nested cross-validation)

- Cross Validation (CV) is the most popular way to evaluate a machine learning algorithm on a dataset.
- You will need a dataset, an algorithm, and an evaluation measure.
- The evaluation measure might be the squared error between the predictions and the truth. Or it might be misclassification error.
 - Divide the data into approximately-equally sized 10 "folds"
 - Train the algorithm on 9 folds, compute the evaluation measure on the last fold.
 - Repeat this 10 times, using each fold in turn as the test fold.
 - Report the mean and standard deviation of the evaluation measure over the 10 folds.

- Divide the data into approximately-equally sized 10 "folds"
- Train the algorithm on 9 folds, compute the evaluation measure on the last fold.
- Repeat this 10 times, using each fold in turn as the test fold.
- Report the mean and standard deviation of the evaluation measure over the 10 folds.

- Divide the data into approximately-equally sized 10 "folds"
- Train the algorithm on 9 folds, compute the evaluation measure on the last fold.
- Repeat this 10 times, using each fold in turn as the test fold.
- Report the mean and standard deviation of the evaluation measure over the 10 folds.

- Divide the data into approximately-equally sized 10 "folds"
- Train the algorithm on 9 folds, compute the evaluation measure on the last fold.
- Repeat this 10 times, using each fold in turn as the test fold.
- Report the mean and standard deviation of the evaluation measure over the 10 folds.

- Divide the data into approximately-equally sized 10 "folds"
- Train the algorithm on 9 folds, compute the evaluation measure on the last fold.
- Repeat this 10 times, using each fold in turn as the test fold.
- Report the mean and standard deviation of the evaluation measure over the 10 folds.

- The algorithm that performed the best was the one with the best average out-of-sample performance across the 10 test folds.
- If desired, compute significance tests on performance across folds.

$$.87 \pm .01$$
 $.85 \pm .04$ $.81 \pm .03$

Coming Soon

- CV for tuning parameters
- Nested CV

Cross Validation for Tuning Parameters

Cynthia Rudin

Machine Learning Course, Duke

"Cross-validation" has multiple meanings

- "We evaluated the algorithm by 10 fold cross-validation"
- "The parameters of the algorithm were tuned by 10-fold cross-validation" (part of nested cross-validation)

We'll call the parameter K and it takes values 1, 10, 100, 1000, or 10000.

- Set aside the test fold.
- Reserve a validation set from the training set.
- Train the algorithm on the rest of the training set for each K, evaluate on validation set.
- Rotate the validation fold and repeat.
- Report the mean of the evaluation measure for each K over the validation folds. Choose the best K.
- Train on the full training set (training + validation) with best K, evaluate on test set.

- Set aside the test fold.
- Reserve a validation set from the training set.
- Train the algorithm on the rest of the training set for each K, evaluate on validation set.
- Rotate the validation fold and repeat.
- Report the mean of the evaluation measure for each K over the validation folds. Choose the best K.
- Train on the full training set (training + validation) with best K, evaluate on test set.

- Set aside the test fold.
- Reserve a validation set from the training set.
- Train the algorithm on the rest of training set for each K, evaluate on validation set.
- Rotate the validation fold and repeat.
- Report the mean of the evaluation measure for each K over the validation folds. Choose the best K.
- Train on the full training set (training + validation) with best K, evaluate on test set.

K=1: Accuracy is 86%

K=100: Accuracy is 91%

K=1000: Accuracy is 57%

:

- Set aside the test fold.
- Reserve a validation set from the training set.
- Train the algorithm on the rest of the training set for each K, evaluate on validation set.
- Rotate the validation fold and repeat.
- Report the mean of the evaluation measure for each K over the validation folds. Choose the best K.
- Train on the full training set (training + validation) with best K, evaluate on test set.

K=1: Accuracy is 83%

K=100: Accuracy is 94%

K=1000: Accuracy is 75%

:

- Set aside the test fold.
- Reserve a validation set from the training set.
- Train the algorithm on the rest of the training set for each K, evaluate on validation set.
- Rotate the validation fold and repeat.
- Report the mean of the evaluation measure for each K over the validation folds. Choose the best K.
- Train on the full training set (training + validation) with best K, evaluate on test set.

K=1: Accuracy is 82%

K=100: Accuracy is 79%

K=1000: Accuracy is 72%

•

- Set aside the test fold.
- Reserve a validation set from the training set.
- Train the algorithm on the rest of the training set for each K, evaluate on validation set.
- Rotate the validation fold and repeat.
- Report the mean of the evaluation measure for each K over the validation folds. Choose the best K.
- Train on the full training set (training + validation) with best K, evaluate on test set.

K=1: Accuracy is 87%

K=100: Accuracy is 92%

K=1000: Accuracy is 81%

:

- Set aside the test fold.
- Reserve a validation set from the training set.
- Train the algorithm on the rest of the training set for each K, evaluate on validation set.
- Rotate the validation fold and repeat.
- Report the mean of the evaluation measure for each K over the validation folds. Choose the best K.
- Train on the full training set (training + validation) with best K, evaluate on test set.

K=1: Accuracy is 83%

K=100: Accuracy is 94%

K=1000: Accuracy is 75%

•

- Set aside the test fold.
- Reserve a validation set from the training set.
- Train the algorithm on the rest of the training set for each K, evaluate on validation set.
- Rotate the validation fold and repeat.
- Report the mean of the evaluation measure for each K over the validation folds. Choose the best K.
- Train on the full training set (training + validation) with best K, evaluate on test set.

K=1: Accuracy is 81%

K=100: Accuracy is 90%

K=1000: Accuracy is 72%

•

- Set aside the test fold.
- Reserve a validation set from the training set.
- Train the algorithm on the rest of the training set for each K, evaluate on validation set.
- Rotate the validation fold and repeat.
- Report the mean of the evaluation measure for each K over the validation folds. Choose the best K.
- Train on the full training set (training + validation) with best K, evaluate on test set.

Best K

K=1: Accuracy is 83%

K=100: Accuracy is 94%

K=1000: Accuracy is 75%

:

- Set aside the test fold.
- Reserve a validation set from the training set.
- Train the algorithm on the rest of the training set for each K, evaluate on validation set.
- Rotate the validation fold and repeat.
- Report the mean of the evaluation measure for each K over the validation folds. Choose the best K.
- Train on the full training set (training + validation) with best K, evaluate on test set.

Train with K = 100

Coming Soon

Nested CV

- Uses CV for evaluation as an outer loop, and CV for tuning parameters as an inner loop.

Nested Cross Validation

Cynthia Rudin

Machine Learning Course, Duke

"Cross-validation" has multiple meanings

- "We evaluated the algorithm by 10 fold cross-validation"
- "The parameters of the algorithm were tuned by 10-fold cross-validation" (part of nested cross-validation)

Nested Cross-validation combines both.

Nested CV evaluates an algorithm including parameter tuning

• Inner loop: CV for parameter tuning

Nested CV evaluates an algorithm including parameter tuning

- Divide the data into approximately-equally sized 10 "folds"
- Train the algorithm on 9 folds, compute the evaluation measure on the last fold.
- Repeat this 10 times, using each fold in turn as the test fold.
- Report the mean and standard deviation of the evaluation measure over the 10 folds.

- Divide the data into approximately-equally sized 10 "folds"
- Train the algorithm on 9 folds, compute the evaluation measure on the last fold.
- Repeat this 10 times, using each fold in turn as the test fold.
- Report the mean and standard deviation of the evaluation measure over the 10 folds.

- Divide the data into approximately-equally sized 10 "folds"
- Train the algorithm on 9 folds, compute the evaluation measure on the last fold.
- Repeat this 10 times, using each fold in turn as the test fold.
- Report the mean and standard deviation of the evaluation measure over the 10 folds.

- Divide the data into approximately-equally sized 10 "folds"
- Train the algorithm on 9 folds, compute the evaluation measure on the last fold.
- Repeat this 10 times, using each fold in turn as the test fold.
- Report the mean and standard deviation of the evaluation measure over the 10 folds.

- Divide the data into approximately-equally sized 10 "folds"
- Train the algorithm on 9 folds, compute the evaluation measure on the last fold.
- Repeat this 10 times, using each fold in turn as the test fold.
- Report the mean and standard deviation of the evaluation measure over the 10 folds.

- Divide the data into approximately-equally sized 10 "folds"
- Train the algorithm on 9 folds, compute the evaluation measure on the last fold.
- Repeat this 10 times, using each fold in turn as the test fold.
- Report the mean and standard deviation of the evaluation measure over the 10 folds.

• Inner loop: CV for parameter tuning

Nested CV evaluates an algorithm including parameter tuning

Best K=100
(I got this from CV inside the training set)

Test Accuracy = 87%

Test Accuracy = 86%

Best K=10000

(I got this from CV inside the training set)

Test Accuracy = 89%

Best K=1

(I got this from CV inside the training set)

Test Accuracy = 86%

Best K=100

(I got this from CV inside the training set)

Test Accuracy = 86%

Best K=100

(I got this from CV inside the training set)

Nested Cross-Validation

• ...is a lot of work

Rotate test fold among these folds to evaluate algorithm (including tuning)

Nested Cross-Validation

- Outer loop: CV for evaluation
- Inner loop: CV for parameter tuning

Nested CV evaluates an algorithm including parameter tuning

A common question

• What is the "final model"?

Hint: Remember, Nested CV is for evaluating an algorithm. To produce a final model, you must ask about parameter tuning.

Cross Validation for Tuning Parameters

Cynthia Rudin

Machine Learning Course, Duke

- Set aside the test fold.
- Reserve a validation set from the training set.
- Train the algorithm on the rest of the training set for each K, evaluate on validation set.
- Rotate the validation fold and repeat.
- Report the mean of the evaluation measure for each K over the validation folds. Choose the best K.
- Train on the full training set (training + validation) with best K, evaluate on test set.

- Set aside the test fold.
- Reserve a validation set from the training set.
- Train the algorithm on the rest of the training set for each K, evaluate on validation set.
- Rotate the validation fold and repeat.
- Report the mean of the evaluation measure for each K over the validation folds. Choose the best K.
- Train on the full training set (training + validation) with best K, evaluate on test set.

- Set aside the test fold.
- Reserve a validation set from the training set.
- Train the algorithm on the rest of training set for each K, evaluate on validation set.
- Rotate the validation fold and repeat.
- Report the mean of the evaluation measure for each K over the validation folds. Choose the best K.
- Train on the full training set (training + validation) with best K, evaluate on test set.

K=1: Accuracy is 86%

K=100: Accuracy is 91%

K=1000: Accuracy is 57%

- Set aside the test fold.
- Reserve a validation set from the training set.
- Train the algorithm on the rest of the training set for each K, evaluate on validation set.
- Rotate the validation fold and repeat.
- Report the mean of the evaluation measure for each K over the validation folds. Choose the best K.
- Train on the full training set (training + validation) with best K, evaluate on test set.

K=1: Accuracy is 83%

K=100: Accuracy is 94%

K=1000: Accuracy is 75%

- Set aside the test fold.
- Reserve a validation set from the training set.
- Train the algorithm on the rest of the training set for each K, evaluate on validation set.
- Rotate the validation fold and repeat.
- Report the mean of the evaluation measure for each K over the validation folds. Choose the best K.
- Train on the full training set (training + validation) with best K, evaluate on test set.

K=1: Accuracy is 82%

K=100: Accuracy is 79%

K=1000: Accuracy is 72%

•

- Set aside the test fold.
- Reserve a validation set from the training set.
- Train the algorithm on the rest of the training set for each K, evaluate on validation set.
- Rotate the validation fold and repeat.
- Report the mean of the evaluation measure for each K over the validation folds. Choose the best K.
- Train on the full training set (training + validation) with best K, evaluate on test set.

K=1: Accuracy is 87%

K=100: Accuracy is 92%

K=1000: Accuracy is 81%

- Set aside the test fold.
- Reserve a validation set from the training set.
- Train the algorithm on the rest of the training set for each K, evaluate on validation set.
- Rotate the validation fold and repeat.
- Report the mean of the evaluation measure for each K over the validation folds. Choose the best K.
- Train on the full training set (training + validation) with best K, evaluate on test set.

K=1: Accuracy is 83%

K=100: Accuracy is 94%

K=1000: Accuracy is 75%

•

- Set aside the test fold.
- Reserve a validation set from the training set.
- Train the algorithm on the rest of the training set for each K, evaluate on validation set.
- Rotate the validation fold and repeat.
- Report the mean of the evaluation measure for each K over the validation folds. Choose the best K.
- Train on the full training set (training + validation) with best K, evaluate on test set.

K=1: Accuracy is 81%

K=100: Accuracy is 90%

K=1000: Accuracy is 72%

•

- Set aside the test fold.
- Reserve a validation set from the training set.
- Train the algorithm on the rest of the training set for each K, evaluate on validation set.
- Rotate the validation fold and repeat.
- Report the mean of the evaluation measure for each K over the validation folds. Choose the best K.
- Train on the full training set (training + validation) with best K, evaluate on test set.

Best K

K=1: Accuracy is 83%

K=100: Accuracy is 94%

K=1000: Accuracy is 75%

- Set aside the test fold.
- Reserve a validation set from the training set.
- Train the algorithm on the rest of the training set for each K, evaluate on validation set.
- Rotate the validation fold and repeat.
- Report the mean of the evaluation measure for each K over the validation folds. Choose the best K.
- Train on the full training set (training + validation) with best K, evaluate on test set.

Train with K = 100

A common question

• What is the "final model"?