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The first thing that we usually want to do with a new dataset is to “look” at
it. But that’s not easy in high dimensions. The goal of dimension reduction for
data visualization is to take high dimensional data and project it down to 2 or
3 dimensions so that humans can understand its structure. Usually people are
interested in seeing whether the data has cluster structures or curving manifolds.
I’ll cover two techniques for doing this, an old one (PCA), which is from 1901
and a new one (PaCMAP), which is from 2021.

As an aside, dimension reduction techniques are used for other purposes be-
sides dimension reduction. Scientists often use PCA to reduce an extremely high
dimensional dataset (thousands of dimensions perhaps) to a much lower dimen-
sional space (say 10 or 100 dimensions) so they can produce meaningful learning
results. I will just cover dimension reduction for visualization here. I typically
do not use PCA for dimension reduction in my projects because it destroys in-
terpretability for tabular data, and it doesn’t make sense to do it for image data.
Some people find it useful in applications that are different than the ones I work
on.

1 Principal Components Analysis

The first technique people think of using for dimension reduction is principal
components analysis (Pearson, 1901). You have probably already seen this tech-
nique before reading this, but embarrassingly, most ML scientists do not know
its derivation.

PCA projects the data onto the several orthogonal vectors that capture the most
variation in the data. Those several vectors will be the several eigenvectors of
the data’s covariance matrix Σ̂ = 1

n−1XXT that correspond to the largest eigen-
values. It will take me a few steps to show this.
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Let us consider a random variable x with mean 0 (E(x) = 0). If the variable is
2-dimensional, its covariance matrix would look like:

Σ2×2 =

[
Var(x1) Cov(x1, x2)

Cov(x2, x1) Var(x1)

]
.

In higher dimensions, we have variances on the diagonals and pairwise covari-
ances at other positions.

First Principal Component: First, let us just try to find the direction with maxi-
mum variance. (We will see that this is the eigenvector for the largest eigenvalue.)
The direction we want is α′x =

∑
j αjxj that maximizes Var(α′x). For instance,

if only the first feature has variance and all the others are essentially constant,
then α1 should be 1 and the rest should be zero. By definition, the variance is
E[(α′x− E(α′x))2] but E(α′x) = 0 since we mean-centered our random variable
so that E(x) = 0. So the variance is just E((α′x)2).

Var(α′x) = E((α′x)2) = E(α′xx′α) = α′E(xx′)α = α′Σα.

Thus we need to find α that maximizes this, subject to α being a unit vector
along a direction, meaning that α must have norm 1, that is, α′α = 1.

Using Lagrange multipliers, we thus want to maximize:

α′Σα− ν(α′α− 1), (1)

using −ν as the Lagrange multiplier (I used a negative sign for convenience later
on). Differentiating with respect to α and setting the result to 0 yields:

Σα− να = 0 =⇒ Σα = να,

which is an eigenvalue equation. So we know that α must be an eigenvector
and ν must be its eigenvalue. But which one? Substituting Σα = να into the
first term of our objective (1), we find α′Σα = α′να = ν, which means we want
ν to be as large as possible. So ν is the largest eigenvalue and α is its eigenvector.

So we now know why the first principal component is α′1x where α1 is the eigen-
vector corresponding to the largest eigenvalue. We will now call them α1 and ν1.
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Second Principal Component: The second principal component, which will be
denoted α′2x, needs to maximize the same objective, α′2Σα2, but is constrained
to be orthogonal/uncorrelated with the first principal component α′1x. We thus
add a constraint as follows:

0 = Cov(α′1x,α
′
2x) = Eα′1xx′α2 = α′1E(xx′)α2 = α′1Σα2 = α′2Σα1 (2)

= α′2ν1α1 = ν1(α
′
2α1). (3)

Thus, α′2α1 = 0 would be sufficient to force the covariance to 0. Creating a
Lagrangian, we want to maximize:

α′2Σα2 − ν(α′2α2 − 1)− γ(α′2α1), (4)

where −ν and −γ are Lagrange multipliers (again the negation is for convenience
later). Differentiating with respect to α2 and setting the result to 0 yields:

Σα2 − να2 − γα1 = 0. (5)

Now here is a trick, where we multiply both sides on the left by α′1:

α′1Σα2 − να′1α2 − γα′1α1 = 0.

We know already that the first term is 0 from (2) and the second term is 0 from
(3). The last term has α′1α1 which is 1. Thus, we must have γ = 0. Plugging
that back into (5), we have:

Σα2 − να2 = 0 −→ Σα2 = να2,

which is again an eigenvalue equation, where ν is an eigenvalue, and α2 is its
eigenvector. Using the eigenvalue equation,

Σα2 = ν2α2 −→ ν = α′2Σα2,

and since the term we aim to maximize is α′2Σα2, we again want to have ν as
large as possible. Since it needs to be an eigenvalue, and since it can’t be the
largest one (or else α2 = α1 which violates our constraint α′1α2 = 0), it must
be the second largest one. Thus, α2 must be the eigenvector corresponding to
the second largest eigenvalue. The second principal component (PC) is thus α′2x.

Remaining principal components: The pattern from the first two PCs continues,
so that the remaining principal components are αkx, where αk is the eigenvalue
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corresponding to the kth eigenvalue.

We refer to the α′kx’s as principal components, and the αk vectors as “loadings.”
The loadings for PC k tell us how each original variable is weighted in PC k.
For instance, if α5 is large, it means that variable 5 is an important contributor
to PC 5.

Back to Data: Now that we showed that we need to consider eigenvectors to
derive principal components, let’s go back to the data and do it. Again assume
that the data has already been mean-centered, so that we have subtracted the
mean of each covariate to form the n× p data matrix X, whose entries are thus:
xij = xij − x̄j. Define the covariance matrix:

Σ̂ =
1

n− 1
X′X.

Now, let us take its top K eigenvalues (assuming we want K PCs) and form
their eigenvectors into a p×K matrix A. Each column is an eigenvector.

Now, we project the data onto those first K components:

Xprojected = XA.

X is n× p and A is p×K, so the result is n×K. That is, we projected n points
from p dimensions to K dimensions. The graphic below shows an example of
two principal components for 2D data. The longer axis corresponds to the first
principal component because that is the direction with the most variation. The
second PC is always perpendicular to it.
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If desired, we could project the data down to the first PC, and ignore the second
PC. In that case, all the data would be projected to lie along the first PC and
we would lose some information.

But we didn’t lose too much information because we only lost information where
the variance was small!

Discussion

PCA is straightforward and preserves global structure. The benefits of
PCA are that it is straightforward and does not involve optimization, and that it
really does allow us to keep the dimensions where the interesting variation in the
data lies. PCA nicely preserves the global structure of high-dimensional data,
in that the points at the extremes of the projection are at the extremes of the
high-dimensional space.

PCA does not preserve neighborhoods or local structure. There are
disadvantages to PCA. If the data live along manifolds or in clusters, that in-
formation will not necessarily be preserved when projecting to only 2 or 3 PCs.
PCA does not preserve graph structure – in other words, it does not aim to
preserve which points are neighbors in the high-dimensional space. So we should
not expect to see neighborhoods or clusters preserved when we project to 2D
using PCA.

5



PCA for preprocessing does not preserve interpretability. PCA is typi-
cally used as a preprocessing step to other methods (though here we’re discussing
dimension reduction). When using PCA as a preprocessing step, we often lose
interpretability of the models we create from the PCA-transformed data. For
instance, let us say we did PCA and then created a sparse model after that.
This new model is not sparse in the original variables, it is only sparse in the
PCs. But each PC is generally created from all of the other variables. So even
though the transformed model is sparse in PCs, it is still a combination of all of
the original variables.

PCA can be kernelized. Here we would replace the inner product between
x’s with the inner product in the new space.

Var(α′x) = E((α′x)2) = E(α′xx′α)→ E(α′k(x,x)α).

Since I have already discussed kernels in depth, I’ll refrain from it again here.

Demonstration

Mammoth. Here is an example of PCA on the mammoth dataset (The Smith-
sonian Institute, 2020) which is shown on the left. The whole dataset is 3 di-
mensional. The image on the right is the mammoth dataset after preserving 2 of
the 3 PCs. PCA captures the dominant two dimensions of the mammoth, and
ignores the final (lower variance dimension).

Original mammoth dataset PCA result

S-Curve with a hole. This is another 3D dataset projected onto the first two
PCs.
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Original S-Curve dataset S-curve PCA result

While 3D datasets are good for demonstration, most datasets are not 3D, so
there is often significant information lost when projecting down to 2D.

HIV dataset. This dataset contains gene expression levels of 17K genes for 59K
cells (Kazer u. a., 2020).

HIV PCA result

I think this dataset may actually have some cluster structure that is not visible
from the PCA results, as we will see when we look at PaCMAP’s results.

MNIST handwritten digits. The number of dimensions is the number of
pixels in the images. It is not possible to display the full dataset without some
kind of dimension reduction, so I will show some samples on the left, and PCA’s
result on the right, projecting onto 2 PCs.

Samples from MNIST dataset MNIST PCA result
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After projecting to the first two PCs, the global structure is preserved, but you
would not be able to tell from this image that the clusters of handwritten digits
are fairly well separated in the high-dimensional space. In order to see this when
projecting to 2D, we need a method that preserves neighborhood structure.

2 Dimension Reduction with PaCMAP

There are a huge number of algorithms for dimension reduction – hundreds or
thousands of them. They have usually fallen into two categories: local and global
structure-preservation algorithms. There is no strict definition of local or global
structure preservation, but I typically think of a global structure-preservation
method (like PCA) as preserving overall relative placement of large clusters.
I think of local structure-preservation methods as preserving neighborhoods,
so that neighbors in the high-dimensional space are still neighbors in the low-
dimensional space.

For global structure preservation, I typically think of older methods like PCA or
multidimensional scaling (MDS) (Torgerson, 1952). There is a lot of recent work
on local structure preservation including LLE (Roweis und Saul, 2000), Isomap
(Tenenbaum u. a., 2000), Laplacian Eigenmaps (Belkin und Niyogi, 2001), t-SNE
(van der Maaten und Hinton, 2008), LargeVis (Tang u. a., 2016), and UMAP
(McInnes u. a., 2018) (see van der Maaten u. a., 2009; Bellet u. a., 2013; Belkina
u. a., 2019, for useful surveys.).

A typical introductory lecture on dimension reduction might feature t-SNE and
UMAP, which are really popular in biology, but those methods tend to be near-
sighted, meaning that they don’t preserve global structure, tend to be unstable
with initialization (giving totally different results depending on how it is ini-
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tialized). They are also difficult to understand and explain. Local dimension
reduction methods often make some critical errors, for instance:

• They try to maintain the actual distance values between points, but in high
dimensions, the distances between points are all similar. These types of
techniques don’t seem to work. It seems to be better to maintain relative
distances: which points are near and which points are far.

• They do not optimize global structure. An algorithm that has a zero loss
whenever the high-dimensional neighbors are close and the high-dimensional
further points are far is not good enough. For instance, in the figure below,
the original dataset is on the left (which are points along a curve in 2D, so
the algorithm just needs to leave the points where they are for an optimal
solution), but the UMAP result on the right moves the points around in a
way that does not preserve global structure. But, it does keep nearby points
near, and it does keep farther points far.

2D Curve Dataset UMAP Result

So, I chose to focus here on a more recent (and much simpler) method, PaCMAP
(Wang u. a., 2021), which aims to preserve both local and global structure. The
figure below shows the projected Mammoth dataset using t-SNE with several
choices for its parameters, LargeVis with several parameter values, UMAP with
several parameter values, and PaCMAP with its default parameters (it shouldn’t
need tuning of the parameters).
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In the cases on the left where the mammoth seems to have been run over by a
steam roller, the Mammoth’s global structure was not preserved. In cases where
the Mammoth’s legs have been split off from its body, global structure has not
been preserved.

PacMAP (Pairwise Controlled Manifold Approximation Projection) incorporates
several principles in its design, and handles local and global preservation in dif-
ferent ways.

First, some notation. Define the scaled distances between pairs of observations
i and j:

d2,selectij =
‖xi − xj‖2

σij

and σij = σiσj, where σi is the average distance between i and its Euclidean
nearest fourth to sixth neighbors. Here we just define the distances, we do not
precompute these distances, as we will select only a small subset of them and can
compute the distances after selecting them. These distances are scaled to take
into account the local density of points nearby, so that smaller distances within
dense areas appear to be larger, for instance.
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PaCMAP Algorithm Outline
Input: Data points X, which is n× p.
Output: Projected data points Xprojected, which is n× 2 (or 3).

1. Collect all of the information we will keep from the high-dimensional data.
To do this, compile a set of pairs of data points as follows:

• Near pairs NB: Pair each point i with its nearest nNB neighbors accord-
ing to distance d2,selectij . Default nNB value is 10. These points will be
strongly attracted.

• Mid-near pairs MN: For each i, sample 6 observations, choose the second
closest of the 6, and pair it with i. The number of mid-near pairs to
compute is nMN = bnNB×MN ratioc. Default MN ratio is 0.5. These
points will be weakly attracted.

• Further pairs FP: Sample non-neighbors by using random sampling
(here we assume most points are not neighbors). The number of such
pairs is nFP = bnNB × FP ratioc, where default FP ratio = 2. These
points will be repulsed.

The illustration below shows these three types of points, green for neigh-
bors, purple for mid-near points, and blue for further points.

2. Initialize Xprojected using PCA to the first 2 PCs.

Now that we have all information we need from the high-dimensional data,
we will start optimizing the values of Xprojected.

3. Adjust Xprojected to minimize the loss below in three stages, where d̃ab =
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‖xprojected
a − xprojected

b ‖2 + 1:

LossPaCMAP =

wNB ·
∑

i,j are neighbors

d̃ij

10 + d̃ij
(strong attraction) (6)

+ wMN ·
∑

i,k are mid-near pairs

d̃ik

10000 + d̃ik
(weak attraction) (7)

+ wFP ·
∑

i,l are further points

1

1 + d̃il
. (repulsion) (8)

These terms might look arbitrary, and they are. But it does not matter
exactly what these functions are, as long as we choose functions that obey
a general set of principles (Wang u. a., 2021), it will probably work. For
instance, the NB term is large if the neighbors in high dimensions are not
close in the 2D projected space, which is what causes attraction. As long as
we strongly attract neighbors, weakly attract mid-near points, and repulse
further points, it should generally work, with the caution that once the
neighbors get close enough we would like to stop pulling them towards us
to avoid problems with crowding. We change the parameters over 3 stages.

(a) Global Structure Optimization. In the first stage (i.e., the first 100
iterations of an optimizer such as Adam), the mid-near points are
weighted very highly, and they help maintain global structure. Set
wNB = 2, wMN(t) = 1000 ·

(
1− t−1

100

)
+ 3 · t−1100 , wFP = 1. (Here, wMN

decreases linearly from 1000 to 3.)

(b) Local and Global Structure Optimization. In the second stage (itera-
tions 101 to 200), set wNB = 3, wMN = 3, wFP = 1.

(c) Refine Local Structure. In the third stage (iteration 201 to 450), wNB =
1, wMN = 0, wFP = 1.

Again, the parameters don’t matter too much, it’s the spirit of what they
are doing that matters.

4. Return Xprojected.

Several important choices made in PaCMAP allow it to maintain both local and
global structure.
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• Notice that in the loss function, near pairs have a strong attractive force: if
d̃ij is large, then neighbors are too far away from each other in the projected
space and the the loss term in (6) is large. This loss term ensures that local
structure is maintained: neighbors in the high-dimensional space should be
neighbors in the low-dimensional space.

• Note that when d̃ij is small for neighbor pairs, the force goes to 0. This
helps to avoid “crowding” of points close to one spot.

• The repulsive forces between further points in (8) are necessary to maintain
both local and global structure, since points that are far away in high-
dimensional space should be far in the projected space.

• The weakly attractive force on mid-near pairs in (7) are essential for main-
taining global structure. Mid-near pairs ensure that clusters that are near
each other in high dimensions are still near each other in the projected
space. The force is weak so that its attractive forces do not interfere with
the neighbors term (6), but it is strong enough so that nearby clusters are
pulled towards each other. (Think of weak attractive forces between many
points within two nearby clusters.)

In its three stages, PaCMAP first emphasizes fixing global structure, then grad-
ually eases its global structure optimization and starts optimization of the local
structure. In the third stage, it just refines the local structure. Let us show what
happens over iterations of PaCMAP.

For the mammoth, when we start from the PCA solution, the algorithm needs
to separate the tusks and the ribs. Stage 1 forces move the points around with-
out consideration of the local structure, until they are roughly in the right areas
around iteration 100. In Stage 2, the local and global structure are nicely opti-
mized, and the result looks quite good by iteration 170.
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If we had instead started from a random initialization rather than PCA, you can
see the global structure form more clearly.
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For MNIST, a similar pattern arises, where by the end of Stage 1 at iteration 100,
the global structure is in place thanks to the attractive forces on the mid-near
points. Here it is also easier to see the improvement from the refinement in the
third stage. We will start from PCA again:
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This time, we will start from random initialization rather than PCA so we can
see the global structure form.
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It is hard to resist including more pictures. I will include some pictures from the
S-curve dataset.
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The last one is the HIV dataset, where cluster structures appear that were not
there previously.
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