
Decision Trees

Duke Course Notes
Cynthia Rudin

Credit: Russell & Norvig, Mitchell, Kohavi & Quinlan, Carter, Vanden Berghen

Why trees?

• interpretable/intuitive, popular in medical applications because they mimic
the way a doctor thinks

• model discrete outcomes nicely

• can be very powerful, can be as complex as you need them

• C4.5 and CART - from “top 10” - decision trees are very popular

Some real examples (from Russell & Norvig, Mitchell)

• BP’s GasOIL system for separating gas and oil on offshore platforms - deci-
sion trees replaced a hand-designed rules system with 2500 rules. C4.5-based
system outperformed human experts and saved BP millions. (1986)

• Learning to fly a Cessna on a flight simulator by watching human experts
fly the simulator (1992)

• Can also learn to play tennis, analyze C-section risk, etc.

1



How to build a decision tree:

• Start at the top of the tree.

• Grow it by “splitting” attributes one by one. To determine which attribute
to split, look at “node impurity.”

• Assign leaf nodes the majority vote in the leaf.

• When we get to the bottom, prune the tree to prevent overfitting

Why is this a good way to build a tree? Maybe it’s not...
I have to warn you that C4.5 and CART are not elegant by any means that I
can define elegant. But the resulting trees can be very elegant. Plus there are
2 of the top 10 algorithms in data mining that are decision tree algorithms! So
it’s worth it for us to know what’s under the hood... even though, well... let’s
just say it ain’t pretty.

Example: Will the customer wait for a table? (adapted from Russell & Norvig)
Here are the attributes:

• Will the customer wait for a table at a restaurant?

• OthOptions: Other options, True if there are restaurants nearby.

• Weekend: This is true if it is Friday, Saturday or Sunday.

• WaitArea: Does it have a bar or other nice waiting area to wait in?

• Plans: Does the customer have plans just after dinner?

• Price: This is either $, $$, $$$, or $$$$

• Precip: Is it raining or snowing?

• Restaur:

– Mateo (fancy),

– Juju (nice),

– Blue Corn Mexican Cafe (casual),

– Pompieri Pizza (very casual)

2



• Wait: Wait time estimate: 0-5 min, 6-15 min, 16-30 min, or 30+

• Crowded: Whether there are other customers (no, some, or full)

Here is the whole dataset. The label is on the right.

Here are two options for the first feature to split at the top of the tree. Which
one should we choose? Which one gives me the most information?

The answer is obvious. The split on Restaur gave us no information about the
label at all! The split on Crowded gives us a lot of information about the label.
If we pick Crowded, we might then split afterwards on Plans, because that has
some more information about the label.

3



In order to determine which split possibility is the best, we need is a formula to
compute “information.”

We’ll build up to the derivation of C4.5. Origins: Hunt 1962, ID3 of Quinlan
1979 (600 lines of Pascal), C4 (Quinlan 1987). C4.5 is 9000 lines of C (Quinlan
1993). We start with some basic information theory.

Information Theory (from slides of Tom Carter, June 2011)

“Information” from observing the occurrence of an event

:= #bits needed to encode the probability of the event p = − log2 p.

E.g., a coin flip from a fair coin contains 1 bit of information. If the event has
probability 1, we get no information from the occurrence of the event. If the
event has a very low probability, we get a lot of information when we see it, and
we’re surprised. That will give us a lot of information.

Where did this definition of information come from? Turns out it’s pretty cool.
We want to define I so that it obeys all these things:

• I(p) ≥ 0, I(1) = 0; the information of any event is non-negative, no infor-
mation from events with prob 1

• I(p1 · p2) = I(p1) + I(p2); the information from two independent events
should be the sum of their informations

4



• I(p) is continuous, slight changes in probability correspond to slight changes
in information

Together these lead to:

I(p2) = 2I(p) or generally I(pn) = nI(p),

this means that

I(p) = I
!
(p1/m)m

"
= mI

!
p1/m

"
so

1

m
I(p) = I

!
p1/m

"

and more generally,

I
!
pn/m

"
=

n

m
I(p).

This is true for any fraction n/m, which includes rationals, so just define it for
all positive reals:

I(pa) = aI(p).

The functions that do this are I(p) = − logb(p) for some b. Choose b = 2 for
“bits.”

Flipping a fair coin gives − log2(1/2) = 1 bit of information if it comes up either
heads or tails.

A biased coin landing on heads with p = .99 gives − log2(.99) = .0145 bits of
information.

A biased coin landing on heads with p = .01 gives − log2(.01) = 6.643 bits of
information.

Entropy. Say one of many of possible events could occur. What’s the mean
information of those events? Assume the events v1, ..., vJ occur with probabilities
p1, ..., pJ , where [p1, ..., pJ ] is a discrete probability distribution.

Ep∼[p1,...,pJ ]I(p) =
J#

j=1

pjI(pj) = −
#

j

pj log2 pj =: H(p)

5



where p is the vector [p1, ..., pJ ]. H(p) is called the entropy of discrete distri-
bution p.

So if there are only 2 events (binary), with probabilities p = [p, 1− p],

H(p) = −p log2(p)− (1− p) log2(1− p).

If the probabilities were [1/2, 1/2],

H(p) = −2
1

2
log2

1

2
= 1 (Yes, we knew that.)

Or if the probabilities were [0.99, 0.01],

H(p) = 0.08 bits.

As one of the probabilities in the vector p goes to 1, H(p) → 0, which is what
we want.

Back to C4.5, which uses Information Gain as the splitting criteria.

Back to C4.5 (source material: Russell & Norvig, Mitchell, Quinlan)
We consider a “test” split on attribute A at a branch.

In S we have #pos positives and #neg negatives. For each branch j, we have
#posj positives and #negj negatives.

The training probabilities in branch j are:
$

#posj
#posj +#negj

,
#negj

#posj +#negj

%
.

6



The Information Gain is calculated like this:

Gain(S,A) = expected reduction in entropy due to branching on attribute A

= original entropy− entropy after branching

= H

&$
#pos

#pos + #neg
,

#neg

#pos + #neg

%'

−
J#

j=1

#posj +#negj
#pos + #neg

H

$
#posj

#posj +#negj
,

#negj
#posj +#negj

%
.

Back to the example with the restaurants.

Gain(S,Crowded) = H

&$
1

2
,
1

2

%'
−

$
2

12
H([0, 1]) +

4

12
H([1, 0]) +

6

12
H

&$
2

6
,
4

6

%'%

≈ 0.541 bits.

Gain(S,Restaur) = 1−
$
2

12
H

&$
1

2
,
1

2

%'
+

2

12
H

&$
1

2
,
1

2

%'

+
4

12
H

&$
2

4
,
2

4

%'
+

4

12
H

&$
2

4
,
2

4

%'%
≈ 0 bits.

Actually Crowded has the highest gain among the attributes, and is chosen to be
the root of the tree. In general, we want to choose the feature A that maximizes
Gain(S,A).

One problem with Gain is that it likes to partition too much, and favors numerous
splits: e.g., if each branch contains 1 example:

7



Then,

H

$
#posj

#posj +#negj
,

#negj
#posj +#negj

%
= 0 for all j,

so all the terms for the entropy after branching would be zero and we’d choose
that attribute over all the others.

An alternative to Gain is the Gain Ratio. We want to have a large Gain, but
also we want a small number of partitions. We’ll choose our attribute according
to:

Gain(S,A)

SplitInfo(S,A)

← want large
← want small

where SplitInfo(S,A) comes from the partition:

SplitInfo(S,A) = −
J#

j=1

|Sj|
|S| log

&
|Sj|
|S|

'

where |Sj| is the number of examples in branch j. We want each term in the

sum to be large. That means we want
|Sj |
|S| to be large, which means we want |Sj|

to be large, meaning that we want lots of examples in each branch.

Keep splitting until:

• all examples have the same class

• no more attributes to split (we used them all earlier in the tree directly
above the leaf we’re working on)

Before I move on, I should talk about splitting a little bit more. There are
possibilities to replace H([p, 1 − p]); it is not the only option. Here are some
others.

• Gini index 2p(1− p) used by CART.

• Misclassification error 1−max(p, 1−p). (Say an event has prob p of success.
Using majority vote, we classify the event to happen when p > 1/2 and
classify the event not to happen when p ≤ 1/2. This value is thus the
proportion of time we guess incorrectly.)

8



You can see that often it will split in a similar way using any of these criteria.

Pruning
Let’s start with C4.5’s pruning. C4.5 recursively makes choices as to whether to
prune on an attribute:

• Option 1: leaving the tree as is

• Option 2: collapse that part of the tree into a leaf. The leaf has the most
frequent label in the data S going to that part of the tree.

• Option 3: replace that part of the tree with one of its subtrees, corresponding
to the most common branch in the split

To figure out which decision to make, C4.5 computes upper bounds on the prob-
ability of error for each option.

• Prob of error for Option 1 ≤ UpperBound1

• Prob of error for Option 2 ≤ UpperBound2

• Prob of error for Option 3 ≤ UpperBound3

C4.5 chooses the option that has the lowest of these three upper bounds. This
ensures that (w.h.p.) the error rate is fairly low.

E.g., which has the smallest upper bound:

• 1 incorrect out of 3

9



• 5 incorrect out of 9, or

• 9 incorrect out of 32?

Which of these could be the safest choice to reduce the misclassification rate?

To calculate the upper bounds, calculate confidence intervals on proportions. We
can calculate this numerically without a problem.

These confidence intervals use the binomial distribution. If you give me α, M
and N , I can give you pα. C4.5 uses α = .25 by default. M for a given branch
is how many misclassified examples are in the branch. N for a given branch is
just the number of examples in the branch, |Sj|.

So we can calculate the upper bound on a branch, but it’s still not clear how to
calculate the upper bound on a subtree. Actually, we calculate an upper con-
fidence bound on each branch on the subtree and average it over the relative
frequencies of landing in each branch of the tree. It’s best explained by example:

Let’s consider a new restaurant dataset of 16 examples (adapted from the Kranf
Site).

10



Think of a split on Crowded.

Calculate the upper bound on the tree for Option 1: calculate p.25 for each
branch, which are respectively .206, .143, and .75. You can check this easily
by typing into matlab the commands binocdf(0,6,.206), binocdf(0,9,.143), and

11



binocdf(0,1,.75), and all of these values will be around .25.

The binocdf(M,N,pα) command tells you the cdf of the binomial distribution
with parameters N (that’s the number of trials, which here is the number of
data points in the leaf) and pα (the probability of “success” for each trial, which
in our case is the probability of misclassified examples in the leaf), at the value
M (the number of misclassified points in the leaf). When we chose pα so that
α = .25, we chose the largest probability that is still “reasonable” (there’s only
a 25% chance the “true” probability is larger than this.

The average over the three leaves that comprise the tree is:

Ave of the upper bounds for tree =
1

16
(6 · .206 + 9 · .143 + 1 · .75) = .204.

Calculate the upper bound on the tree for Option 2: where we’d collapse the
tree to a leaf with 6+9+1 = 16 examples in it, where 15 are positive, and 1 is
negative. Calculate pα that solves α =

(1
z=0Bin(z, 16, pα), which is .157. The

average is:

Ave of the upper bounds for leaf =
1

16
16 · .157 = .157.

Option 3 is the same as Option 2. (If a leaf had a subtree below it then Option
3 would have us keep that subtree, but it’s just a leaf here.)

The upper bound on the error for Option 2 is lower, so we’ll prune the tree to a
leaf. Look at the data – does it make sense to do this? I think so. There’s only
one negative example, so best to collapse.

By the way, for the restaurant example, at the end we get this:

12



CART - Classification and Regression Trees (Breiman, Friedman, Olshen, Stone,
1984)

Does only binary splits, not multiway splits (less interpretable, but simplifies
splitting criteria).

For splitting, CART uses the Gini index. The Gini index is

p(1− p) =
variance of Bin(n, p)

n
= variance of Bernoulli(p).

For pruning, CART uses “minimal cost complexity.”

Each subtree is assigned a cost.

cost(subtree) =
#

leaves j

#

xi∈leaf j
1[yi ∕=leaf’s class] + C [#leaves in subtree] . (1)

It eliminates the subtree if it doesn’t reduce the error rate enough relative to the
number of leaves. We could create a sequence of nested subtrees by gradually
increasing C. We can use a validation set or full-blown nested cross-validation
to choose C.

CART’s Regression Trees Here are some regression trees for a 2D dataset on
continuous variables. They are piecewise constant predictive models.

13



CART decides which attributes to split and where to split them.
In each leaf, we’re going to assign f(x) to be a constant.

Can you guess what value to assign?

Consider the empirical error, using the least squares loss:

Rtrain(f) =
#

i

(yi − f(xi))
2

Break it up by leaves. Call the value of f(x) in leaf j by fj since it’s a constant.

Rtrain(f) =
#

leaves j

#

i∈leaf j
(yi − f(xi))

2

=
#

leaves j

#

i∈leaf j
(yi − fj)

2 =:
#

leaves j

Rtrain
j (fj).

To choose the value of the fj’s so that they minimize Rtrain
j , take the derivative,

set it to 0. Let |Sj| be the number of examples in leaf j.

0 =
d

df̃

#

i∈leaf j
(yi − f̃)2

)))
f̃=fj

= −2
#

i

(yi − f̃)
)))
f̃=fj

= −2

**
#

i

yi

+
− |Sj|f̃

+)))
f̃=fj

fj =
1

|Sj|
#

i∈leaf j
yi = ȳSj

,

14



where ȳSj
is the sample average of the labels for leaf j’s examples.

So now we know what value to assign for f in each leaf. How to split? Greedily
want feature j and split point s solving the following.

min
j, s

for each feature j do

a linesearch over s

,

-min
C1

#

xi∈{leaf|x(j)≤s}

(yi − C1)
2 +min

C2

#

xi∈{leaf|x(j)>s}

(yi − C2)
2

.

/ .

The first term means that we’ll choose the optimal C1 = ȳ{leaf|x(j)≤s}. The second
term means we’ll choose C2 = ȳ{leaf|x(j)>s}.

For pruning, again CART does minimal cost complexity pruning:

cost =
#

leaves j

#

xi∈Sj

(yi − ȳSj
)2 + C[# leaves in tree]

Now we’ve finished the dirty work of going over the heuristics of the decision tree
algorithms. There are some advantages and disadvantages of trees. First, be-
cause they are based on heuristics, they don’t always perform well, particularly
for imbalanced data. Also if you want to change the loss function, you probably
would want to change the splitting criteria. There is a whole cottage industry of
academics whose goal it is to design the splitting and pruning criteria for various
kinds of decision tree objectives!

Greedily grown trees (like CART and C4.5) are really useful for combining into
more powerful models, like boosted decision trees and random forests (here we are
aiming for accuracy, at the expense of interpretability). If we want to optimize
for interpretability, it is best to consider modern decision tree methods, which is
covered in the next set of notes.

15


