
Kernels

Duke Course Notes
Cynthia Rudin

Credits: Bartlett, Schölkopf and Smola, Cristianini and Shawe-Taylor

The kernel trick that I’m going to show you applies much more broadly than
SVM, but we’ll use it for SVM’s.

Basic idea: If you can’t separate positives from negatives very well in a low-
dimensional space using a hyperplane, then map everything to a higher dimen-
sional space where you can separate them better.

The picture looks like this but it’s going to be a little confusing at this point. In
any case, you can see that the original data in 2D is not separable but in higher
dimensions it is.

The left figure might be confusing because we took the data, mapped it to a
higher dimensional space, created a linear boundary in that space, and then
went back and drew that boundary in the original space.

Say I want to predict whether a house on the real-estate market will sell today

1

or not:

x =

!

" x(1)#$%&
house’s list price

, x(2)#$%&
estimated worth

, x(3)#$%&
length of time on market

, x(4)#$%&
in a good area

, ...

'

(.

We might want to consider something more complicated than a linear model:

Example 1: [x(1), x(2)] → Φ
)
[x(1), x(2)]

*
=

+
x(1)2, x(2)2, x(1)x(2)

,

The 2d space gets mapped to a 3d space. We could have the inner product in
the 3d space:

Φ(x)TΦ(z) = x(1)2z(1)2 + x(2)2z(2)2 + x(1)x(2)z(1)z(2).

Example 2:

[x(1), x(2), x(3)] → Φ
-
[x(1), x(2), x(3)]

.

= [x(1)2, x(1)x(2), x(1)x(3), x(2)x(1), x(2)2, x(2)x(3), x(3)x(1), x(3)x(2), x(3)2]

and we can take inner products in the 9d space, similarly to the last example.

Rather than apply SVM to the original x’s, apply it to the Φ(x)’s instead.

The kernel trick is that if you have an algorithm (like SVM) where the examples
appear only in inner products, you can freely replace the inner product with a dif-
ferent one. (And it works just as well as if you designed the SVM with some map
Φ(x) in mind in the first place, and took the inner product in Φ’s space instead.)

Remember the optimization problem for SVM?

max
α

n/

i=1

αi −
1

2

n/

i,l=1

αiαlyiyl xT
i xl ← inner product

s.t. 0 ≤ αi ≤ C, i = 1, ..., n and
n/

i=1

αiyi = 0

You can replace this inner product with another one, without even knowing Φ.
In fact there can be many different feature maps that correspond to the same

2

inner product.

In other words, we’ll replace xT
i xl (i.e., 〈xi,xl〉Rp) with k(xi,xl), where k happens

to be an inner product in some feature space, k(xi,xl) = 〈Φ(xi),Φ(xl)〉Hk
. Note

that k is also called the kernel (you’ll see why later).

Example 3: We could make k(x, z) the square of the usual inner product:

k(x, z) = 〈x, z〉2Rp =

0
p/

j=1

x(j)z(j)

12

=

p/

j=1

p/

ℓ=1

x(j)x(ℓ)z(j)z(ℓ).

But how do I know that the square of the inner product is itself an inner product
in some feature space? We’ll show a general way to check this later, but for now,
let’s see if we can find such a feature space.

Well, for p = 2, if we used Φ
)
[x(1), x(2)]

*
=

+
x(1)2, x(2)2, x(1)x(2), x(2)x(1)

,
to map

into a 4d feature space, then the inner product would be:

Φ(x)TΦ(z) = x(1)2z(1)2 + x(2)2z(2)2 + 2x(1)x(2)z(1)z(2) = 〈x, z〉2R2.

So we showed that k is an inner product for p = 2 because we found a feature
space corresponding to it.

For p = 3 we can also find a feature space, namely the 9d feature space from
Example 2 would give us the inner product k.
That is,

Φ(x) = (x(1)2, x(1)x(2), ..., x(3)2), and Φ(z) = (z(1)2, z(1)z(2), ..., z(3)2),

〈Φ(x),Φ(z)〉R9 = 〈x, z〉2R3.

That’s nice.

We can even add a positive constant c ≥ 0, so that k is the inner product plus
a constant squared.

3

Example 4:

k(x, z) = (xTz+ c)2 =

0
p/

j=1

x(j)z(j) + c

10
p/

ℓ=1

x(ℓ)z(ℓ) + c

1

=

p/

j=1

p/

ℓ=1

x(j)x(ℓ)z(j)z(ℓ) + 2c

p/

j=1

x(j)z(j) + c2

=

p/

j,ℓ=1

(x(j)x(ℓ))(z(j)z(ℓ)) +

p/

j=1

(
√
2cx(j))(

√
2cz(j)) + c2,

and in p = 3 dimensions, one possible feature map is:

Φ(x) = [x(1)2, x(1)x(2), ..., x(3)2,
√
2cx(1),

√
2cx(2),

√
2cx(3), c]

and c controls the relative weight of the linear and quadratic terms in the inner
product.

Even more generally, if you wanted to, you could choose the kernel to be any
higher power of the regular inner product.

Example 5: For any integer d ≥ 2

k(x, z) = (xTz+ c)d,

where the feature space Φ(x) will contain all monomials up to and including
degree d.

The decision boundary in the feature space (of course) is a hyperplane, whereas
in the input space it’s a polynomial of degree d. Now do you understand that
figure at the beginning of the lecture?

Because these kernels give rise to polynomial decision boundaries, they are called
polynomial kernels. They are very popular.

Here’s the crescent full moon dataset:

4

Here is a polynomial kernel that fully separates it. I’ve shown a side view so you
can see how it works.

Beyond these examples, it is possible to construct very complicated kernels, even
ones that have infinite dimensional feature spaces, that provide a lot of modeling
power. I’ll show an example of the spiral data with a gaussian kernel below,
which has an infinite-dimensional feature space.

5

SVMs with these kinds of fancy kernels are really cool.

But the solution to the optimization problem is still a simple linear combination,
even if the feature space is very high dimensional.

How do I evaluate f(x) for a test example x then?

Recall that the SVM derivation started with a linear model: f(x) =
2

j λ
∗
jx

(j)+
λ∗
0. We found that λ∗ =

2
i α

∗
i yixi in the linear case, and that λ∗

0 can be obtained
from any of the positive support vectors (call it isv) by λ∗

0 = 1 − λ∗Txisv . If we
use a plain linear kernel, this means:

f(xnew) =
/

j

λ∗
jx

new(j) + λ∗
0.

But when we’re using a kernel, we actually want to work with the α∗
i ’s. So let’s

change that back:

f(xnew) =
/

j

/

i

α∗
i yix

(j)
i xnew(j) + λ∗

0

=
/

i

α∗
i yixi · xnew + λ∗

0,

Let’s replace the inner product with the new one!

=
/

i

α∗
i yik(xi,x

new) + λ∗
0.

Then we need to do just a little more work on λ∗
0:

λ∗
0 = 1− λ∗Txisv = 1−

0
/

i

α∗
i yixi

1T

xisv = 1−
/

i

α∗
i yix

T
i xisv ,

which happily turns into the following when we replace the inner product with
our kernel:

λ∗
0 = 1−

/

i

α∗
i yik(xi,xisv).

So we can evaluate f(x) without having to know what the map is to the new
feature space.

6

If we’re going to replace xT
i xk everywhere with some function of xi and xk that is

hopefully an inner product from some other space (a kernel), we need to ensure
that it really is an inner product. More generally, we’d like to know how to
construct functions that are guaranteed to be inner products in some space. We
need to know some functional analysis to do that.

Roadmap

1. make some definitions (inner product, Hilbert space, kernel)

2. give some intuition by doing a calculation in a space with a finite number
of states

3. design a general Hilbert space whose inner product is the kernel

4. show it has a reproducing property - now it’s a Reproducing Kernel Hilbert
space

5. create a totally different representation of the space, which is a more intu-
itive to express the kernel (similar to the finite state one)

6. prove a cool representer theorem for SVM-like algorithms

7. show you some nice properties of kernels, and how you might construct them

Definitions

An inner product takes two elements of a vector space X and outputs a number.
An inner product could be a usual dot product: 〈u,v〉 = u′v =

2
i u

(i)v(i), or
it could be something fancier. An inner product 〈·, ·〉 must satisfy the following
conditions:

1. Symmetry
〈u, v〉 = 〈v, u〉 ∀u, v ∈ X

2. Bilinearity

〈αu+ βv, w〉 = α〈u, w〉+ β〈v, w〉 ∀u, v, w ∈ X , ∀α, β ∈ R

7

3. Strict Positive Definiteness

〈u, u〉 ≥ 0 ∀x ∈ X

〈u, u〉 = 0 ⇐⇒ u = 0.

An inner product space (or pre-Hilbert space) is a vector space together with an
inner product.

A Hilbert space is a complete inner product space. (‘Complete’ means sequences
converge to elements of the space - there aren’t any “holes” in the space.)

Examples of Hilbert spaces include:

• The vector space Rp with 〈u, v〉Rp = uTv, the vector dot product of u and
v.

• The space ℓ2 of square summable sequences, with inner product 〈u, v〉ℓ2 =2∞
i=1 uivi

• The space L2(X , µ) of square integrable functions, that is, functions f such
that

3
f(x)2dµ(x) < ∞, with inner product 〈f, g〉L2(X ,µ) =

3
f(x)g(x)dµ(x).

As a preview of what is coming later, a reproducing kernel Hilbert space (RKHS)
has an inner product and a special function k that work together to provide a
special property – the reproducing property. Specifically, k(·, ·) is a reproducing
kernel of Hilbert space H if for all f ∈ H,

f(x) = 〈k(x, ·), f(·)〉H,

where 〈·, ·〉H is the inner product in the Hilbert space. If we set fz(·) = k(·, z),
then the reproducing property will give us that k is exactly the inner prod-
uct: fz(x) = 〈k(x, ·), k(·, z)〉H and from the definition of fz(·), we get that
fz(x) = k(x, z). So we will see that k(x, z) is the inner product of functions
k(x, ·) and k(·, z), which are going to be exactly the feature maps Φ(x) and
Φ(z). So to put the preview all together, we’ll see that k(x, z) is the inner prod-
uct of Φ(x) and Φ(z), as long as everything is defined properly.

Now that I’ve gotten way ahead of myself, let’s back up and think about what
properties are absolutely necessary when we define function k.

8

A Finite World

Say we have a finite input space {x1, ..., xm}. So there’s only m possible states
for the xi’s. You might think this is unrealistic because even in 2D, there are an
infinite number of points. While that’s completely true, as it turns out, assum-
ing a finite state space is actually not unrealistic at all! Think about discrete
feature spaces rather than continuous ones. Try thinking of all features being
binary so there are m = 2p possible vectors for xi. Think about predicting stroke
from a combination of age, gender, whether someone has past history of stroke,
whether they take blood thinner, whether they have congestive heard failure,
and whether they have hypertension. Given that there are at most about 120
age values, 2 gender values (putting non-binary genders into the riskier group
which in this case is females), 2 values each for each of the other four features,
the whole feature space is of size 120×2×2×2×2×2, which is definitely finite!
We will get a lot of intuition about general properties using a finite space.

I want to be able to take inner products between any two elements of the space
using function k as the inner product. Inner products by definition are symmet-
ric, so k(xi, xl) = k(xl, xi). In other words, in order for us to even consider k as
a valid kernel function, the matrix:

needs to be symmetric. This means we can diagonalize it, and the eigendecom-
position takes this form:

K = VΛV′

where V is an orthogonal matrix where the columns of V are eigenvectors, vt,
and Λ is a diagonal matrix with eigenvalues λt on the diagonal. This fact (that
real symmetric matrices can always be diagonalized) isn’t difficult to prove, but
requires some linear algebra.

9

For now, assume all λt’s are nonnegative, and consider this feature map:

Φ(xi) = [
4

λ1v
(i)
1 , ...,

4
λtv

(i)
t , ...,

4
λmv

(i)
m].

(writing it for xl too):

Φ(xl) = [
4

λ1v
(l)
1 , ...,

4
λtv

(l)
t , ...,

4
λmv

(l)
m].

With this choice, k is just a dot product in Rm:

〈Φ(xi),Φ(xl)〉Rm =
m/

t=1

λtv
(i)
t v

(l)
t = (VΛV′)il = Kil = k(xi, xl).

Why did we need the λt’s to be nonnegative? Say λs < 0. Form a point in
feature space that is a special linear combination of the Φ(xi)’s:

z =
m/

i=1

v(i)s Φ(xi). (coeffs are elements of eigenvector vs)

Then calculate

‖z‖22 = 〈z, z〉Rm =
/

i

/

l

v(i)s Φ(xi)
TΦ(xl) v

(l)
s =

/

i

/

l

v(i)s Kilv
(l)
s

= vT
s Kvs = λs < 0

which conflicts with the geometry of the feature space.

We just showed that if k has any chance of being an inner product in a feature
space, then matrix K needs to be positive semi-definite (needs to have non-
negative eigenvalues).

In fact, we’ll just define kernels in the first place to have positive semi-definite
Gram matrices, since they can’t be inner products without that. In the infinite
state case, we can’t write out a Gram matrix (like K in the finite state case)
for the whole space, because the x’s can take infinitely many values. We’ll just
get to pick m observations - we want to make sure the Gram matrix for those
observations is positive semi-definite, no matter what observations we get!

Let us officially define a kernel. A function k : X × X → R is a kernel if

10

• k is symmetric: k(x, z) = k(z, x).

• k gives rise to a positive semi-definite “Gram matrix,” i.e., for any number
of states m ∈ N and any set of states x1, ..., xm chosen from X , the Gram
matrix K defined by Kil = k(xi, xl) is positive semidefinite.

Another way to show that a matrix K is positive semi-definite is to show that

∀c ∈ Rm, cTKc ≥ 0. (1)

(This is equivalent to all the eigenvalues being nonnegative, which again is not
hard to show but requires some calculations.)

Here are some nice properties of k:

• k(u, u) ≥ 0 (Think about the Gram matrix of m = 1.)

• k(u, v) ≤
4

k(u, u)k(v, v) (This is the Cauchy-Schwarz inequality.)

The second property is not hard to show for m = 2. The Gram matrix

K =

5
k(u, u) k(u, v)
k(v, u) k(v, v)

6

is positive semi-definite whenever cTKc ≥ 0 ∀c. Choose in particular

c =

7
k(v, v)
−k(u, v)

8
.

Then since K is positive semi-definite,

0 ≤ cTKc = [k(v, v)k(u, u)− k(u, v)2]k(v, v)

(where I skipped a little bit of simplifying in the equality) so we must then have
k(v, v)k(u, u) ≥ k(u, v)2. That’s it!

Building a Rather Special Hilbert Space

Define RX := {f : X → R}, the space of functions that map X to R. Let’s define
the feature map Φ : X → RX so that it maps x to k(·, x) :

Φ : x 0−→ k(·, x).

So, Φ(x) is a function, and for a point z ∈ X , the function assigns k(z, x) to it.

11

So we turned each x into a function on the domain X . Those functions could
be thought of as infinite dimensional vectors. These functions will be elements
of our Hilbert space. Think about Φ(xi) as being a bump centered on xi. Keep
in mind here that Φ(xi) is a function, so it has an additional argument. I guess
you could notate it Φ(xi)(·) to show that for your choice of z, you could compute
Φ(xi)(z) and get a number. That number would be k(z, xi).

We want to have k be an inner product in feature space. To do this we need to:

1. Define feature map Φ : X → RX , which we’ve done already. Then we need
to turn the image of Φ into a vector space.

2. Define an inner product 〈, 〉Hk
.

3. Show that the inner product satisfies:

k(x, z) = 〈Φ(x),Φ(z)〉Hk
.

That’ll make sure that the feature space is a pre-Hilbert space.

Let’s do the rest of Step 1. Elements in the vector space will look like this, they’ll
be in the span of the Φ(xi)’s:

f(·) =
m/

i=1

αik(·, xi) ← “vectors”

12

where m, αi and x1...xm ∈ X can be anything. (We have addition and multipli-
cation, so it’s a vector space.) The vector space is:

span ({Φ(x) : x ∈ X}) =
9
f(·) =

m/

i=1

αik(·, xi) : m ∈ N, xi ∈ X ,αi ∈ R

:
.

For Step 2, let’s grab functions f(·) =
2m

i=1 αik(·, xi) and g(·) =
2m′

j=1 βjk(·, x′j),
and define the inner product:

〈f, g〉Hk
=

m/

i=1

m′/

j=1

αiβjk(xi, x
′
j).

Is it well-defined?

Well, it’s symmetric, since k is symmetric:

〈g, f〉Hk
=

m′/

j=1

m/

i=1

βjαik(x
′
j, xi) = 〈f, g〉Hk

.

It’s also bilinear, look at this:

〈f, g〉Hk
=

m′/

j=1

βj

m/

i=1

αik(xi, x
′
j) =

m′/

j=1

βjf(x
′
j)

so we have

〈f1 + f2, g〉Hk
=

m′/

j=1

βj
)
f1(x

′
j) + f2(x

′
j)
*

(use the expression above)

=
m′/

j=1

βjf1(x
′
j) +

m′/

j=1

βjf2(x
′
j)

= 〈f1, g〉Hk
+ 〈f2, g〉Hk

(use the expression above again).

(We can do the same calculation to show 〈f, g1 + g2〉Hk
= 〈f, g1〉Hk

+ 〈f, g2〉Hk
.)

So it’s bilinear.

It’s also positive semi-definite, since k gives rise to positive semi-definite Gram
matrices. To see this, for function f ,

〈f, f〉Hk
=

m/

ij=1

αiαjk(xi, xj) = αTKα

13

and we said earlier in (1) that since K is positive semi-definite, it means that for
any αi’s we choose, the sum above is ≥ 0.

So, k is almost a inner product! (What’s missing?) We’ll get to that in a minute.

For Step 3, something totally cool happens, namely that the inner product of
k(·, x) and f is just the evaluation of f at x.

〈k(·, x), f〉Hk
=

/

i

αik(xi, x) = f(x).

And then this is a special case:

〈k(·, x), k(·, x′)〉Hk
= k(x, x′).

This is why k is called a reproducing kernel, and the Hilbert space is a RKHS.

Oops! We forgot to show that one last thing, which is that 〈, 〉Hk
is strictly

positive definite, so that it’s an inner product. Let’s use the reproducing property.
For any x,

|f(x)|2 = |〈k(·, x), f〉Hk
|2 ≤ 〈k(·, x), k(·, x)〉Hk

· 〈f, f〉Hk

which means that 〈f, f〉Hk
= 0 ⇒ f = 0 for all x. For the inequality the line

above, we used Cauchy-Schwarz, which I didn’t prove for this case, I only proved
it for the case of a single kernel. If Cauchy-Schwarz doesn’t hold, our space is
not an inner product space, so Cauchy-Schwarz must hold.

(An interesting thing to think about is whether the norm 〈f, f〉Hk
can be 0 when

the Gram matrix is positive semi-definite but not positive definite. In other
words, is it possible that 〈f, f〉Hk

= 0 but the αi’s that are used in f are not 0?
I think it is possible, when some of the rows of the Gram matrix be negatives
of each other and the αi’s of these two rows are both 1 perhaps. It is important
that such cases exist or we would have had to declare the Gram matrices to be
positive definite in the first place!)

14

Ok, let us conclude that our definition for the inner product is positive definite,
and thus, a valid inner product.

Now we have an inner product space. In order to make it a Hilbert space, we
need to make it complete. The completion is actually not a big deal, we just
create a norm:

‖f‖Hk
=

4
〈f, f〉Hk

and just add to Hk the limit points of sequences that converge in that norm.
Once we do that,

Hk = {f : f =
/

i

αik(·, xi)}

is a Reproducing Kernel Hilbert space (RKHS).

Here’s a formal (simplified) definition of RKHS:

We are given a (compact) X ⊆ Rd and a Hilbert space H of functions f : X → R.
We say H is a Reproducing Kernel Hilbert Space if there exists a k : X ×X → R,
such that

1. k has the reproducing property, i.e., f(x) = 〈f(·), k(·, x)〉H
2. k spans H, that is, H = span{k(·, x) : x ∈ X}

So when we do the kernel trick, we could think that we’re implicitly mapping x
to k(·, x) in the RKHS Hk. Neat, huh?

The RKHS we described is the one from the Moore-Aronszajn Theorem (1950)
that states that for every positive definite function k(·, ·) there exists a unique
RKHS.

What’s not a RKHS?

If you are wondering about a Hilbert space that is not a RKHS, you can think
about L2, the space of square integrable functions. The function that gives us
the reproducing property is the Dirac delta function.

f(x) =

;

z

δ(x− z)f(z)dz.

15

But the Dirac delta function is not actually in L2, because it is not square-
integrable: ;

z

δ(z)2dz ← not finite.

We could stop there, but we won’t. We’re going to define another Hilbert space
that has a one-to-one mapping (an isometric isomorphism) to the first one.

Mercer’s Theorem

The inspiration of the name “kernel” comes from the study of integral operators,
studied by Hilbert and others. Function k which gives rise to an operator Tk via:

(Tkf)(x) =

;

X
k(x, x′)f(x′)dx′

is called the kernel of Tk.

Think about an operator Tk : L2(X) → L2(X). If you don’t know this notation,
don’t worry about it. Just think about Tk eating a function and spitting out
another one. Think of Tk as an infinite matrix, which maps infinite dimensional
vectors to other infinite dimensional vectors. Remember earlier we analyzed the
finite state case? It’s just like that.1

And, just like in the finite state case, because Tk is going to be positive semi-
definite, it has an eigen-decomposition into eigenfunctions and eigenvalues that
are nonnegative.

The following theorem from functional analysis is very similar to what we proved
in the finite state case. This theorem is important – it helps people construct
kernels (though I admit myself I find the other representation more helpful).

Basically, the theorem says that if we have a kernel k that is positive (defined
somehow), we can expand k in terms of eigenfunctions and eigenvalues of a pos-
itive operator that comes from k. The theorem essentially provides a basis for

1If you know the notation, you’ll see that I’m missing the measure on L2 in the notation. Feel free to put it
back in as you like.

16

the RKHS.

Mercer’s Theorem (Simplified) Let X be a compact subset of Rn. Suppose k
is a continuous symmetric function such that the integral operator Tk : L2(X) →
L2(X) defined by

(Tkf)(·) =
;

X
k(·,x)f(x)dx

is positive; which here means ∀f ∈ L2(X),
;

X×X
k(x, z)f(x)f(z)dxdz ≥ 0,

then we can expand k(x, z) in a uniformly convergent series in terms of Tk’s
eigenfunctions ψj ∈ L2(X), normalized so that ‖ψ‖L2

= 1, and positive associated
eigenvalues λj ≥ 0,

k(x, z) =
∞/

j=1

λjψj(x)ψj(z).

The definition of positive semi-definite here is equivalent to the ones we gave
earlier.2

This looks like what we did in the finite case when we decomposed the Gram
matrix, using the fact that it is symmetric; there we also saw the Gram matrix
K as a matrix multiplication of eigenvectors and eigenvalues. We could define a
feature map – as in the finite case – this way:

Φ(x) = [
4

λ1ψ1(x), ...,
4

λjψj(x), ...].

So that’s a cool property of the RKHS that we can define a feature space ac-
cording to Mercer’s Theorem. Now for another cool property of SVM problems,
having to do with RKHS.

2To see the equivalence, for this direction ⇐, choose f as a weighted sum of δ functions at each x. For
this direction ⇒, say that

!
X×X k(x, z)f(x)f(z)dxdz ≥ 0 doesn’t hold for some f and show the contrapositive.

Approximate the integral with a finite sum over a mesh of inputs {x1, ..., xm} chosen sufficiently finely, then let v
be the values of f on the mesh, and as long as the mesh is fine enough, we’ll have v′Kv < 0, so K isn’t positive
semi-definite.

17

Representer Theorem

Recall that the SVM optimization problem can be expressed as follows:

f ∗ = argminf∈Hk
Rtrain(f)

where

Rtrain(f) :=
n/

i=1

hingeloss(f(xi), yi) + C‖f‖2Hk
.

Or, you could even think about using a generic loss function:

Rtrain(f) :=
n/

i=1

ℓ(f(xi), yi) + C‖f‖2Hk
.

You can pick whatever loss you’d like. Also, let’s use a generic regularization
term:

Rtrain(f) :=
n/

i=1

ℓ(f(xi), yi) + Ω(‖f‖2Hk
),

where Ω : R → R is nondecreasing function, so that it can regularize ‖f‖2Hk
.

The following theorem is a big surprise. It says that the solutions to any problem
of this type - no matter what the loss function is! - all have a solution in a rather
nice form.

Representer Theorem (Kimeldorf and Wahba, 1971, Simplified) Fix a set
X , a kernel k, and let Hk be the corresponding RKHS. Let Ω : R → R be a
nondecreasing function. For any function ℓ : R2 → R, the solutions of the
optimization problem:

f ∗ ∈ argminf∈Hk

n/

i=1

ℓ(f(xi), yi) + Ω(‖f‖2Hk
)

can all be expressed in the form:

f ∗ =
n/

i=1

αik(xi, ·).

This shows that to solve the SVM optimization problem, we need only to solve
for the αi, which agrees with the solution from the Lagrangian formulation for

18

SVM. It says that even if we’re trying to solve an optimization problem in an
infinite dimensional space Hk, where an arbitrary loss centered on arbitrary x′is,
then the solution lies in the span of the n kernels centered on the xi’s.

I hope you grasp how cool this is!

Proof. Suppose we project f onto the subspace:

span{k(xi, ·) : 1 ≤ i ≤ n}

obtaining fs (the component along the subspace) and f⊥ (the component per-
pendicular to the subspace). We have:

f = fs + f⊥ ⇒ ‖f‖2Hk
= ‖fs‖2Hk

+ ‖f⊥‖2Hk
≥ ‖fs‖2Hk

.

This implies that ‖f‖Hk
, and thus Ω(‖f‖2Hk

), is minimized if f lies in the subspace.

Ω(‖f‖2Hk
) ≥ Ω(‖fs‖2Hk

).

Furthermore, since the kernel k has the reproducing property, we have for each
i:

f(xi) = 〈f, k(xi, ·)〉Hk
= 〈fs, k(xi, ·)〉Hk

+〈f⊥, k(xi, ·)〉Hk
= 〈fs, k(xi, ·)〉Hk

= fs(xi).

So,
n/

i=1

ℓ(f(xi), yi) =
n/

i=1

ℓ(fs(xi), yi).

In other words, the loss depends only on the component of f lying in the subspace.
To minimize, we can just let ‖f⊥‖Hk

be 0 and we can express the minimizer as:

f ∗(·) =
n/

i=1

αik(xi, ·).

That’s it! !

Constructing Kernels

Let’s construct new kernels from previously defined kernels. Suppose we have k1
and k2. Then the following are also valid kernels:

19

1. k(x, z) = αk1(x, z) + βk2(x, z) for α, β ≥ 0

Proof. k1 has its feature map Φ1 and inner product 〈, 〉Hk1
and k2 has its

feature map Φ2 and inner product 〈, 〉Hk2
. By linearity, we can have:

αk1(x, z) = 〈
√
αΦ1(x),

√
αΦ1(z)〉Hk1

and βk2(x, z) = 〈
4

βΦ2(x),
4

βΦ2(z)〉Hk2
.

Then:

k(x, z) = αk1(x, z) + βk2(x, z)

= 〈
√
αΦ1(x),

√
αΦ1(z)〉Hk1

+ 〈
4

βΦ2(x),
4

βΦ1(z)〉Hk2

=: 〈[
√
αΦ1(x),

4
βΦ2(x)], [

√
αΦ1(z),

4
βΦ2(z)]〉Hnew

and that means that k(x, z) can be expressed as an inner product, and we
have given its feature map.

2. k(x, z) = k1(x, z)k2(x, z)
Proof omitted.

3. k(x, z) = k1(h(x), h(z)), where h : X → X .

Proof. Since h is a transformation in the same domain, k is simply a different
kernel in that domain:

k(x, z) = k1(h(x), h(z)) = 〈Φ(h(x)),Φ(h(z))〉Hk1
=: 〈Φh(x),Φh(z)〉Hnew

4. k(x, z) = g(x)g(z) for g : X → R.
Proof omitted.

5. k(x, z) = h(k1(x, z)) where h is a polynomial with positive coefficients
Proof. Since each polynomial term is a product of kernels with a positive
coefficient, the proof follows by applying construction principles 1 and 2.

6. k(x, z) = exp(k1(x, z))
Proof Since:

exp(z) = lim
i→∞

5
1 + z + · · ·+ zi

i!

6

the proof basically follows from 5 and then taking the limit. Think about
1
i!z

i as a term in a polynomial. When you construct the kernel matrix, each
element of it is a limit of a sum of these terms. Since each Gram matrix in
the sequence is positive semi-definite, so is the limiting one.

20

7. k(x, z) = exp
-−‖x−z‖2ℓ2

σ2

.
“Gaussian kernel”

Proof.

k(x, z) = exp

0
−‖x− z‖2ℓ2

σ2

1
= exp

0
−‖x‖2ℓ2 − ‖z‖2ℓ2 + 2xTz

σ2

1

=

5
exp

5
−‖x‖ℓ2

σ2

6
exp

5
−‖z‖ℓ2
σ2

66
exp

5
2xTz

σ2

6

=: g(x)g(z) exp(k1(x, z)).

where g(x)g(z) is a kernel according to 4, and exp(k1(x, z)) is a kernel ac-
cording to 6 (and xTz is a valid linear kernel, and 2/σ2 is positive). Finally,
according to 2, the product of kernels is a valid kernel.

Note that the Gaussian kernel is translation invariant, since it only depends on
x− z.

This picture helps with the intuition about Gaussian kernels if you think of the
first representation of the RKHS I showed you:

Φ(x) = k(x, ·) = exp

0
−‖x− ·‖2ℓ2

σ2

1

So just to summarize, from SVM, we get values of f(x) like this for the gaussian
kernel:

f(x) =
/

i

α∗
i yik(xi,x) + λ∗

0, with λ∗
0 = 1−

/

i

α∗
i yik(xi,xisv).

where

Φ(xi) = k(xi,x) = exp

0
−‖xi − x‖2ℓ2

σ2

1
.

21

Gaussian kernels can be very powerful:

Spiral Dataset

Spiral classifier (top view)

Spiral classifier (side view)

22

Don’t make the σ2 too small or you’ll overfit!

23

