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The “kernel trick” allows the SVM to map all points to a high 
dimensional space where points are more easily separated.

Credits: Bartlett, Scholkopf and Smola, Cristianini and Shawe-Taylor



Applies much more broadly than SVMs. 

Applies to any problem where the xi’s appear only within inner products.

Credits: Bartlett, Scholkopf and Smola, Cristianini and Shawe-Taylor

The “kernel trick” allows the SVM to map all points to a high 
dimensional space where points are more easily separated.



SVM Replace with Φ(xi)TΦ(xl)

Replace with k(xi,xl)



SVM
Replace with k(xi,xl)



The trick:
• You don’t need to know     .
• There could even be multiple      corresponding to the same k

(and you don’t care which one you use!)
The catch: You must use a k(xi,xl) that is a valid inner product.

SVM

k(xi,xl)

Warning: k is not just any similarity metric!  



2D     to    3D

Example 1

= k(x,z)

3D     to    9D

Standard inner product in 9D = k(x,z)



p to    ?

Example 3

k(x,z)

2 to    ? 2 to    4

p = 2 is ok.

p = 3 is ok too! (See Example 2)… and so are the other p’s.



p to    ?

Example 3

k(x,z)

p = 3 is ok too! (See Example 2)… and so are the other p’s.

3D     to    9D



k(x,z)

Example 4

A possible feature map for p = 3:



Example 5
For any integer 

includes all monomials up to and including degree d.

The decision boundary in the feature space (of course) is a hyperplane, whereas
in the input space it’s a polynomial of degree d.

Polynomial kernels



Crescent-full-moon dataset



Linear Kernel (plain inner product)



Polynomial kernels



Kernels

•Linear kernels
•Polynomial kernels
•Later: Gaussian kernels
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Functions as infinite dimensional vectors
[1,5,3]

1
3

5

1
3

5

1
3

5



Even if the feature space is infinite-dimensional, the solution to 
the optimization problem is still easy to work with. 

SVM

k(xi,xl)

How do I make predictions f (x) for a test sample x?



If using ordinary linear kernel, get the primal solution:
Solve the dual, get      . 

(for a positive support vector)

(If using kernels, do this instead.)



If using ordinary linear kernel, get the primal solution:
Solve the dual, get      . 

(for a positive support vector)



If using ordinary linear kernel, get the primal solution:
Solve the dual, get      . 

(for a positive support vector)

Evaluate f (x) without knowing
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- allows you to think about taking inner products on functions and infinite sequences.

A Hilbert Space is a complete inner product space.



A Hilbert Space is a complete inner product space.

An inner product takes two elements of a vector space      and outputs a number.
It must satisfy:

Symmetry

Bilinearity

Strict Positive Definiteness



A Hilbert Space is a complete inner product space.

Example 1

Example 2



A Hilbert Space is a complete inner product space.

Example 3



A Reproducing Kernel Hilbert Space (RKHS) has a special 
function k that obeys the reproducing property:

k evaluates f at the point x.
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Given that k is going to be an inner product, what 
properties should it have? 

Start simple. Live in a finite-sized world. 
Feature space is of size m.

This is not too unrealistic.

age
gender
past history of strokes
blood thinner
congestive heart failure
hypertension 

Predict stroke from:

120 values
2 values

2 values
2 values

2 values
2 values

m  =



The Gram matrix of all inner products:

Every possible inner 
product in the space.

Inner products are symmetric

K must be symmetric. This means it can be diagonalized.



The Gram matrix of all inner products:

ei
ge
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ec
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vt
eigenvalues



Write also for xl :
(assume nonnegative)

Take regular dot product in Rm:

Consider this feature map:

vt

i

l



(assume nonnegative)

Consider this feature map:

Why do we assume the eigenvalues are nonnegative?

Take this special point:

Coefficients are elements of eigenvector 

bad

So, if k is an inner product, its 
Gram matrix K had better be 
positive semidefinite! 
(nonnegative eigenvalues)



So far…

If k is going to be an inner product:

Its Gram matrix K must be positive semidefinite. 
It must be symmetric.
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So far…

If k is going to be an inner product:

Its Gram matrix K must be positive semidefinite. 
It must be symmetric.



Let’s officially define a kernel. We will give it properties we want.

x1
x2

x3
x4

x5
x6

x7

x1 x2 x3 x4 x5 x6 x7x1
x2
x3
x4
x5
x6
x7



This is useful! It allows us to prove:

A convenient way to show that a matrix is positive semidefinite:

(equivalent to showing that all the eigenvalues are nonnegative)

Gram Matrix of m = 1. K is just k (u, u).

cKc c2K K 

Let’s show it for m = 2.



A convenient way to show that a matrix is positive semidefinite:

(equivalent to showing that all the eigenvalues are nonnegative)

Let’s show it for m = 2.

Choose

Because K is positive semidefinite:



We have a definition of kernel!
It is symmetric and gives rise to positive semidefinite Gram 
matrices. 
Now we can use them to define a RKHS.

So far…
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Need to do four things:
- Define a feature map 
- Use that to define elements of our Hilbert space
- Define inner product of the space
- Show that k is the special function needed for the reproducing property.



Define the feature map (functions from      to R) 

Φ(𝑥!) Φ(𝑥")

𝑥! 𝑥"

𝑥! 𝑥"z

Φ(𝑥!)(z)

Φ(𝑥!)(z) is a number. It is k(z,xi).

(k is your choice)



Define the feature map

Construct the vectors for our vector space.

The vector space is:

The inner product is:



Is it well-defined?

It’s symmetric, since k is symmetric:

It’s bilinear:

Can do same for other side:



Is it well-defined?

It’s strictly positive definite:

Because k is a kernel, K is a positive semidefinite Gram matrix

So we got positive semidefinite…



Interlude 

A reproducing kernel!

Reproducing property!

RKHS



Is it well-defined?

Last thing: 

reproducing property

Cauchy-Schwarz
(must have it to be an inner product)

reproducing property



For completeness, define a norm

And include its completion:



A reproducing kernel!

Reproducing property!

The RKHS I described is from the Moore-Aronszajn Theorem (1950) 
that states that for every positive definite function k(·, ·) there exists a 
unique RKHS.

There is another way to construct an RKHS that is closer to what we 
did in the finite case, based on Mercer’s theorem. (Think eigenvalues 
and eigenvectors.)
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The kernel would need to be the Dirac delta function. But it is not in L2.
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where      is nondecreasing

Start with SVM – we want to find solutions to this problem:

What about any loss function?

Let’s even use a generic regularization term



Representer Theorem (Kimeldorf and Wahba, 1971)

Fix a set     , kernel k, and let Hk be the corresponding RKHS.    
Let                        be a nondecreasing function.
For any loss function , the solutions of

can be expressed in the following form:

.

Even if we're trying to solve an optimization problem in an infinite dimensional space Hk , 
where an arbitrary loss depends on arbitrary xi’s, 
then the solution lies in the span of the n kernels centered on these xi’s.

To solve SVM, all we 
need are the    ‘’s. 
(We knew that!)



Proof: Project f onto the subspace

(perpendicular)

(monotonicity)



Thus, to minimize, set       to 0. 

So, the minimizer is in                                                 . 

minimizef
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Let’s construct kernels from other kernels. Say k1 and k2 are kernels.

has           and has           and

so k is an inner product

1



where h is a polynomial with positive coefficients

2

3

4

5



where h is a polynomial with positive coefficients

2

5

1



6

x1 x2 x3 x4 x5 x6 x7x1
x2
x3
x4
x5
x6
x7

polynomial with positive coefficients !
"!

Each element is a limit of polynomials

a



6

7

Gaussian kernel

4 2



7

Gaussian kernel

Φ(𝑥!) Φ(𝑥")

𝑥! 𝑥"
𝑥! 𝑥"



φ(xi )

Reminder:







f (x) = 0



Notes:

• The width of the gaussian kernel controls regularization:
• Too small kernel = memorizing the data = overfitting!
• Too large kernel = too flat = underfitting!

• Either tune it using CV or set it to the default.

• It is not clear how to choose which kernel to use (linear, poly, gaussian). 
Usually try a few. Or just use gaussian!

• Again, beware of bad solvers. Don’t expect it to work in higher dimensions!

Gaussian kernel demo in the next video!


