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The “kernel trick” allows the SVM to map all points to a high
dimensional space where points are more easily separated.
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Credits: Bartlett, Scholkopf and Smola, Cristianini and Shawe-Taylor



The “kernel trick” allows the SVM to map all points to a high
dimensional space where points are more easily separated.

Applies much more broadly than SVMs.

Applies to any problem where the x,’s appear only within inner products.

Credits: Bartlett, Scholkopf and Smola, Cristianini and Shawe-Taylor
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Replace with A(x,,x))
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The trick:
 You don’t need to know P .

e There could even be multiple @ corresponding to the same &
(and you don’t care which one you use!)
The catch: You must use a k(x;,x;) that 1s a valid inner product.

_S)q/m Warning: k is not just any similarity metric!

max Z o — 5 Z ;oYY k(x,x,) <— inner product
«
i=1 i,l=1

n
s.t. 0 < o < C,’L — 1,...,7’L and Z()éz'yi =0
1=1
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Example 1

— \ 2D to 3D

— [x(l), CU(Q)] — P ([56(1), ,CU(Q)]) — [$(1)27 x(2)27 33(1)513(2)]

P(x)I®(z) = W22 4 122,22 4 515212 = f(x,2)

]

B 3D to 9D

2@, 2@ 20 5 q)([x(l),x@), 35(3)])

= (202, 0@ £ 06) 1Op0) 22 12 ()50 373 HB)2)

®(x)"®(z) = Standard inner product in 9D = k(x,7)

——




Example 3

p to ?
p 2 pp
J=1 j=1 ¢=1
2 to ? 2 to 4

p =2 1s ok.

®(x)I®(z) = W22 4 22522 4L 9513212 — (x,2)Z,.

]

p =3 1s ok too! (See Example 2)... and so are the other p’s.



Example 3

®(x)®(z) = (x,2)g:
p =3 1s ok too! (See Example 2)... and so are the other p’s.

]



Example 4

p p
i) = euror = (Fa0 ) ($0000.+)

A possible feature map for p = 3:

®(x) = [z12, zWz® | 232 /2ezV V2P| V2



Example 5 Polynomial kernels

For any integer d > 2
T d
k(x,z) = (x"z+ c)
® includes all monomials up to and including degree d.

The decision boundary in the feature space (of course) is a hyperplane, whereas
in the input space it’s a polynomial of degree d.




Crescent-full-moon dataset
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Kernels

e Linear kernels
* Polynomial kernels
e Later: Gaussian kernels
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Functions as infinite dimensional vectors
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Even if the feature space is infinite-dimensional, the solution to
the optimization problem is still easy to work with.

How do I make predictions f(x) for a test sample x?

SVm

max Z o — 5 Z ;oYY k(x,x,) <— inner product
Y
i=1 i,l=1

n
s.t. 0 < o < C,Z — 1,...,n and ZOzi’yi =0
1=1

— e



Solve the dual, get «;.

If using ordinary linear kernel, get the primal solution:

A=Yy AN =1-Ax,

(for a positive support vector)

f(xnew> _ Z/\;xnew(j)_*_/\g
3

~—A—
_ Z Z a;fyia:z(j) z*"0) + \*  (If using kernels, do this instead.)

] 1

Stk = Dotk
i 7




Solve the dual, get «;.

If using ordinary linear kernel, get the primal solution:

A=Yy AN =1-Ax,

(for a positive support vector)

F(xev) = Z o y:k(x;, X)) + Ap.




Solve the dual, get «;.

If using ordinary linear kernel, get the primal solution:

A=Yk M =1,

(for a positive support vector)

) = Z a; Yik (i, X"V) + Ap.

T
N = 1- ATx, —1- (z y) v, =1- 3 ayad xi,
) )

— )\8 =1 - Za;‘yz-k(xi,xz-sv)

Evaluate 1 (x) without knowing &
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- F‘w‘m\/’m‘(ﬂ_\v g “? f,,...\‘ AN TN

A‘?Hllbert Spacea 1s a complet%g ner product space.
NN 3 e S

s

- allows you to think about taking inner products on functions and infinite sequences.



Ai?Hllbert Spacea 1s a completinner product space.
N NN e Nt

vt

f"’"a: B Y e
Ani inner product takes two elements of a vector space X and outputs a number.
e
[t must satisfy:

Symmetry
(u,v) = (v,u) Yu,v € X
Bilinearity
(au + v, w) = alu,w) + B{v,w) Yu,v,w € X,Va,B € R
Strict Positive Definiteness
(u,uy >0 Ve e X

(u,u) =0 <= u=0.



ATV, P

A?Hllbert Spaces is a completinner product space.
N NN e e

Example 1

The vector space R? with (u,v)rr = ulv

Example 2

The space /5 of square summable sequences,

with inner product (u,v),, = > .-, u;v;



YOV N e Va Ve
A’Hllbert Spaces is a completé\nner product space.

A~ ,%3 S N

Example 3

The space Lo(X, ) of square integrable functions, that is, functions f such

that [ f(z)°du(z) < oo, with inner product (f, g) 1,(x.) ff ()
)




A Reproducing Kernel Hilbert Space (RKHS) has a special
function k that obeys the reproducing property:

() = (k(@, ), F ()

.

~NC

k evaluates f at the point x.
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Given that £ 1s going to be an inner product, what
properties should it have?

Start simple. Live in a finite-sized world.
Feature space is of size m.

{x1,...,xm}
This 1s not too unrealistic.
Predict stroke from:

age 120 values

gender 2 valucs m=120X2X2X2X2xX2
past history of strokes 2 values

blood thinner 2 values

congestive heart failure 2 values

hypertension 2 values



The Gram matrix of all inner products:

Every possible inner
product 1n the space.

K= o~ k(x,,x,) — VAV’

Inner products are symmetric

Elay, ) = K@y, a)

K must be symmetric. This means it can be diagonalized.



The Gram matrix of all inner products:

K= - k(x,,x,) — VAV,
/ \ eigenvalues

<

At

eigenvectors




Consider this feature map:
@(Z’z) = [\/ )\1’()&2), a3 \/)TtvggZ)’ cory \/ )\m’Uq(?,;)]

. (assume nonnegative)
Write also for x; :

D (1) = [\/)Tlfugl), s ﬁvgl), ey AV A Y]

Take regular dot product in R™:

(®(2:), ®(2))rm = % Aoy vy
=1




Consider this feature map:
@(Z’z) — [\/ )\1’U§z), a3 \/)\_t.g'g)’ ceny \/ )\m’Ug;)]

(assume nonnegative)

Why do we assume the eigenvalues are nonnegative? So, if k is an inner product, its
Say A\, < 0. Coefficients are elements of eigenvectorV g Gram matrix K had better be
- positive semidefinite!
Take this special point: Z = Z vy (i) (nonnegative eigenvalues)

|23 = (z,2)re =) > v®(2;)"®(x;) v ZZU Kol

7 [
= viKvy=MX\,<0 “bad



So far...

If £ 1s going to be an inner product:

It must be symmetric.

Its Gram matrix K must be positive semidefinite.
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So far...

If £ 1s going to be an inner product:

It must be symmetric.

Its Gram matrix K must be positive semidefinite.




Let’s officially define a kernel. We will give it properties we want.

A function £k : A x X — R is a kernel if
N———

e k is symmetric: k(z,z2) = k(z, ).

e £ gives rise to a positive semi-definite “Gram matrix,” i.e., for any number
(O ) P SN N —A—
of states m € N and any set of states x4, ..., x,, chosen from X, the Gram
matrix K defined by K;; = k(x;, x;) is positive semidefinite.

.xl )Cz )C3 .X4 x5 x6 x7

X4 k(x;,x,)




A convenient way to show that a matrix is positive semidefinite:

Ve e R™, c!'Ke > 0
(equivalent to showing that all the eigenvalues are nonnegative)

This 1s useful! It allows us to prove:

¥ k(u,u) >0 Gram Matrix of m = 1. K is just k(u, u).

cKc >0 == 2K >0 == K >0 == F£(u,u)>0

e k(u,v) < /k(u,u)k(v,v) (This is the Cauchy-Schwarz inequality.)

Let’s show it for m = 2.



A convenient way to show that a matrix is positive semidefinite:

Ve e R™, c!'Ke > 0
(equivalent to showing that all the eigenvalues are nonnegative)

N\

k(u,v) < \/k(u,u)k(v,v)J(This is the Cauchy-Schwarz inequality.)

Let’s show it for m = 2.
| k(u,u) k(u,v) Ch _ [ k(v,v) ]
=S ( k(v,u) E(v,0) ) O ET | —k(u,v)
Because K is positive semidefinite:
0 < c'Ke = [k(v,v)k(u,u) — k(u, v)*k(v,v)

\AO
k(v,v)k(u,u) > k(u,v)?



So far...

We have a definition of kernel!

It 1s symmetric and gives rise to positive semidefinite Gram
matrices.

Now we can use them to define a RKHS.
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Need to do four things:

- Define a feature map &

- Use that to define elements of our Hilbert space

- Define inner product of the space

- Show that k 1s the special function needed for the reproducing property.



Define the feature map @ : X — (functions from X to R)

d:z+— k(°, :1;) (k is your choice)

/7 N\ (x;) (i)

X; X (D(Xi)(Z)

zZ X Xk

®(x;)(z) 1s a number. It is k(z,x;).



Define the feature map

Construct the vectors fofI)othVb‘Glﬁr/ﬁﬁao@

Z o,k <— “vectors”

where m, o; and x1...x,, € X can be anything.
The vector space 1s:

span ({®(x) : v € X}) = {f Z@z mENxZEonZER}

The 1S:

)=, Bik(-, (-
o) =2 ) \ (f9hm =D ) aibjk(zi,z))
i1, =1

f() — 221 CVz'k(',%;) e



9(-) = Z;nzll Bik(-, x}) N
» 9/ H, — QU jk ZIZ};,CE}
1) = sk o ¥ 0 3 D)

Is 1t well-defined?

[t’s symmetric, since k is symmetric: (g, f)g, = Z Zﬁjaik(x;-, W)= Cfghm, .
It’s bilinear: o T,'jf:l 7=,,1 !
(f,9)m, = ,BJ y:ai/f(% 37/;) = Zﬁ]f<x/])
m/ g=1 Cl/w =]
<f1+f27 ZBJ fl +f2 )) f(l’,])
= ) +
Z Pif(@ Z Pinla Can do same for other side:

Ili}

<f1> > <f27 > k <f7 g1 “IF 92>Hk — <f7 gl>Hk -+ <f7 92>Hk



g<> ) Zj:zl 5]]{;(7'%;) \ OZZBJ Li, L .7

f() =2 iy cik(, i) o i=1 j=

Is 1t well-defined?

’_n
p_a

It’s strictly positive definite:

(f, P a Zaza] (i, 7)) = a’Ka >0

23=1
Because £ 1s a kernel, K is a positive semidefinite Gram matrix

So we got positive semidefinite. ..



ZZ’ZI O‘?«k(axz) ® i=

;_n

Interlude

azﬂj Py L

;_.x

— Reproducing property! —

—— A reproducing kernel! —



(o= Zm:’ Bik(-, z") m m
. ]k(. x.J) .\‘ (Fr9)m = ) > cubik(zi,5)

f) =210

Is it well-defined?
Last thing: (f, flg, =0 =

reproducmg property L

= f =0 for all x

| ( )|2 _|< 7f>ch|2
(( z), k(- ) m,

Cauchy Schwarz
(must have it to be an inner product)

reproducing property\

< > Hy = k(%l‘)(f, f>Hk —



For completeness, define a norm [z, = \/<f7 f)H,

And include its completion: Hy = {f: f=) aik(-,2:)}

e — e

We say H is a Reproducihg Kernel Hilbert Space if there exists a k : X x X — R,
such that

1. k has the reproducing property, i.e., f(z) = (f(-), k(-,z))n
2. k spans H, that is, H = span{k(-,z) : z € X'}

—_—

— T —



The RKHS I described is from the Moore-Aronszajn Theorem (1950)
that states that for every positive definite function (-, -) there exists a
unique RKHS.

There 1s another way to construct an RKHS that is closer to what we
did in the finite case, based on Mercer’s theorem. (Think eigenvalues
and eigenvectors.)

<[€(7 x), f>Hk — Z aik(xz-’ x) - f(gj) — Reproducing property! '

<k('7 w)v k('a 37/)>Hk — k(-Ta xl) — A reproducing kernel! -
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Ly, the space of square integrable functions.

The kernel would need to be the Dirac delta function. But it is not in L.

f(z) = / 3z~ 2)f (2
(

L
/5(2)2dz < not finite.
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Start with SVM — we want to find solutions to this problem:

f* = argmin;cy, R ()

R™0(f) = Z hingeloss(f(z:), yi) + C|| f ||,

=1

What about any loss function?

n
R (f) = ) (£ (@) m) + Cllf I,
=1
Let’s even use a generic regularization term

R™(f) == Zf(f(xz),yz) + Q| f11%,)

where () is nondecreasing



— Representer Theorem (Kimeldorf and Wahba, 1971)

B
:#)

Fix a set X', kernel &, and let H, be the corresponding RKHS.

Let 2 : R — R be a nondecreasing function.
To solve SVM, all we

. . 2 .
For any loss function /¢ : R* — IR, the solutions of need are the ag's,

n
i v
f* = argmlnfer Z g(f(xz)y yz) + Q(“‘f”%{k) (We knew that)
=1 RS s
can be expressed in the following form: |
n Qﬁ"l’}‘f’&‘:‘?ﬁ"-‘fkﬁaza%‘:‘m’.cmz«,:':w:;sw.
Fr=Y k@),

Even if we're trying to solve an optimization problem in an infinite dimensional space H; ,
where an arbitrary loss depends on arbitrary x;’s,
then the solution lies in the span of the n kernels centered on these x;’s.



Proof- Project fonto the subspace span{k(x;,-) : 1 <i < n}

f:fs+fj_

(perpendicular) || 113 = | fsllzr, + I fLllz, = I1fsll%,

(monotonicity) Q(I|f||qu) D Q(”fs”%{k)

f(x’l) — <f7 k“(x’L? )>Hk — <f87 k(x’u ))Hk+<fJ_7 k'(ﬂ:z, )>Hk
— <f87 k(.’l?z, )>ch = fS(:EZ)
/

n n /
0f (@), u) = Y A(fs(xi), vi)



minimize, Y £(F (@), %) + QI FI,)
=1
'V

n |
PRICACHRIRR(FATS
=1

Thus, to minimize, set f 1 to 0.

So, the minimizer is in span{k(z;, ) : 1 < i < n}.



- Representer Theorem (Kimeldorf and Wahba, 1971)

Fix a set X', kernel £, and let A, be the corresponding RKHS.

Let 2 : R — R be a nondecreasing function.
For any loss function ¢ : R? — R, the solutions of

f* € argmin; g, Zg(f(ffz'), Yi) + Q(||f||qu)

1=1

can be expressed in the following form:

f* = Z aik(xi) ) X
i=1

b
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Let’s construct kernels from other kernels. Say &, and &, are kernels.

O,

k‘(x,Z) — akl(x,z) + ,Bkz(QI,Z) for a, 6 > 0

k1 has @7 and <, >Hk1 k2 has P and< >Hk2
oki(z,2) = (Va®i(z),Va®i(2)),  Bka(z,2) = (v BB2(2), v/ B®2(2)) s,
k(z,z) = oaki(z,z)+ Bkaz, z) /

= (Va®i(z), Va®i(z))m, + (v/BPa(z) \f‘IH
= ((Va®(z \/_‘1’2 \/_‘1’1 \[‘I’z

sO k 1s an inner product



O,

k(z,z) =ki(z, 2)ke(x, 2)

©,

k(z,z) =ki(h(z),h(z)), where h : X — X

ki (h(z), h(2)) = (®(h(z)), ®(h(2)))m,
= (Pn(2), Pn(2)) Hyen

O,
k(z,z) =g(x)g(z) for g : X - R

O

k(x, Z) = h(kl (CIZ, Z)) where / 1s a polynomial with positive coefficients




k(z,z) =ki(z, 2)ke(x, 2)

k(x,z) = aki(z, z) + Bka(zx, 2) for a, 8 > 0

O

k(x, Z) = h(/ﬁ (CB, Z)) where / 1s a polynomial with positive coefficients




O,

k(z,z) = exp(ki(z, 2))

. » : 1
polynomial with positive coefficients ”

M/},

eXp(z): lim (1—|—z—|—---+.—)

1—00 ’l!

.xl )C2 )C3 .X4 x5 x6 x7

4 k(xa,X;)

Each element is a limit of polynomials

o ]
X7



k(z,z) = exp(ki(x, 2))

k(x, Z) = exp (_”xo_zzllfz)

kix,z) =

)

k(z,z) = ki(z, 2)ks(z, 2)




@

k(x,z) = exp (

— — 2 :
[BS 2Z||e2) / Gaussian kernel
g

®(x) = k(x,:) = exp (

|x — ||122

o2

/\J\



Reminder:

l
f(x) = Za:yik(xi,x) Y

_”xz‘ = x”%2

B(x;) = k(xi,X) = exp
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J(x)=0
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Notes:

* The width of the gaussian kernel controls regularization:
* Too small kernel = memorizing the data = overfitting!
* Too large kernel = too flat = underfitting!

* Either tune it using CV or set it to the default.

* It 1s not clear how to choose which kernel to use (linear, poly, gaussian).
Usually try a few. Or just use gaussian!

Gaussian kernel demo 1n the next video!



