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Origins: 19th Century.

• Studying growth of populations and the course of chemical reactions using

d

dt
W (t) = βW (t) ⇒ W (t) = Aeβt

which is a good model for unopposed growth, like the US population’s
growth at the time.

• Adolphe Quetelet (1796 - 1874), Belgian astronomer turned statistician,
knew it produced impossible values and asked his pupil Pierre-François Ver-
hulst (1804-1849) to help him work on a more realistic model. They chose

d

dt
W (t) = βW (t)− Φ(W (t))

to resist further growth, and with the choice of Φ to be a quadratic function,
they got:

d

dt
W (t) = βW (t)(Ω−W (t)),

where Ω is the saturation limit of W. Writing P (t) = W (t)
Ω as the proportion of

saturation limit:
d

dt
P (t) = βP (t)(1− P (t))

P (t) =
e(α+βt)

1 + e(α+βt)

where α is the constant from the integration, and this new β is actually the old
β times Ω. Verhulst’s “logistic” function has values between 0 and 1.
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Note: it’s not the logistic loss, which is a function that strictly decreases.

He published in 3 papers between 1838 and 1847. The first paper demonstrated
that the curve agrees very well with the actual course of the population in France,
Belgium, Essex, and Russia for periods up to 1833. He did not say how he fitted
the curves. In the second paper he tried to fit the logistic to 3 points using 20-30
years of data (which in general is a not a great way to get a good model). His
estimates of the limiting population Ω of 6.6 million for Belgium and 40 million
for France were a little off - these populations are now 11 million for Belgium
and 65 million for France. In another paper, the estimate was corrected, and
they estimated 9.5 million for Belgium (pretty close!).

Verhulst died young in poor heath, and his work was forgotten about, but rein-
vented in 1920 by Raymond Pearl and Lowell Reed who were studying popula-
tion growth of the US. They also tried to fit the logistic function to population
growth, and estimated Ω for the US to be 197 million (the current population is
318 million). Actually, Pearl and collaborators spent 20 years applying the lo-
gistic growth curve to almost any living population (fruit flies, humans in North
Africa, cantaloupes).

Verhulst’s work was rediscovered just after Pearl and Reed’s first paper in 1920,
but they didn’t acknowledge him in their second paper, and only in a footnote
in a third paper (by Pearl) in 1922. They cited him in 1923, but didn’t use his
terminology and called his papers “long since forgotten.” The name logistic was
revived by Yule, in a presidential address to the Royal Statistical Society in 1925.
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There was a lot of debate over whether the logistic function could replace the cdf
of the normal distribution. The person who really showed this could happen was
Joseph Berkson (1899-1982), who was the chief statistician at the Mayo Clinic,
and who was a collaborator of Reed’s. But because of his personality and attacks
on the method of maximum likelihood, controversy ensued... it took until around
the 1960’s to resolve it!

Let’s start with a probabilistic model. Assume x ∈ Rp, and that x is determin-
istic (chosen, not random):

Y ∼ Bernoulli(P (Y = 1|x)).

Here Y takes either 0 or 1, but we need a ±1 for classification. I’ll write 0̃ for
now to stand for either 0 or −1. The model is linear, λTx, relates to Y this way:

ln

!
P (Y = 1|x,λ)
P (Y = 0̃|x,λ)

"

# $% &
“odds ratio”

= λTx

Why does this model make any sense at all? We want to make a linear combi-
nation of feature values, like in regular regression, which explains the right hand
side. But that can take any real values. We need to turn it into a model for
P (Y = 1|x,λ), which takes values only between 0 and 1. The odds ratio turns
those probabilities into positive real numbers, then the log turns it into any real
numbers.

P (Y = 1|x,λ)
P (Y = 0̃|x,λ)

= eλ
Tx

P (Y = 1|x,λ) = eλ
TxP (Y = 0̃|x,λ) = eλ

Tx(1− P (Y = 1|x,λ))

P (Y = 1|x,λ)
'
1 + eλ

Tx
(
= eλ

Tx

P (Y = 1|x,λ) = eλ
Tx

1 + eλTx
← logistic function

To fit to data, we will use maximum likelihood estimation. We choose
parameters λ to maximize the likelihood of the data given the model.

L(λ) := P (Y1 = y1, . . . , Yn = yn|λ,x1, . . . ,xn)
iid
=

n)

i=1

P (Yi = yi|λ,xi).
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Choose
λ∗ ∈ argmax

λ
L(λ) = argmax

λ
logL(λ)# $% &
log-likelihood

where we take the log for convenience since it doesn’t effect the argmax.

But first, we’ll simplify. We need P (Y = yi|λ,xi) for both yi = 1 and yi = −1.

If

*
++,

++-

yi = 1, need P (Y = 1|λ,xi) := pi =
eλ

T xi

1+eλ
T xi

= 1

1+e−λT xi
= 1

1+e−yiλ
T xi

yi = −1 (i.e., 0̃), need P (Y = 0̃|λ,xi) = 1− pi =
1+eλ

T xi

1+eλ
T xi

− eλ
T xi

1+eλ
T xi

= 1

1+eλ
T xi

= 1

1+e−yiλ
T xi

.

So, we can just write

P (Y = yi|λ,xi) =
1

1 + e−yiλTxi
.

Then,

λ∗ ∈ argmax
λ

logL(λ)

= argmax
λ

log
n)

i=1

P (Yi = yi|λ,xi),

= argmax
λ

n.

i=1

log
1

1 + e−yiλTxi

= argmin
λ

n.

i=1

log(1 + e−yiλ
Txi).

This agrees with the “frequentist” derivation we had before.

The loss is convex in λ so we can minimize by gradient descent.
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